mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
Revert "Merge branch 'main' into do-not-delete_legacy-docs"
This reverts commit d5ab4f4d06c1687ec9df72be595160902a68e3ee, reversing changes made to ebd0ab10a17a70c22eedcbdaba53965a9a176775. Revert "Update machine-learning.asciidoc" This reverts commit ebd0ab10a17a70c22eedcbdaba53965a9a176775.
This commit is contained in:
parent
d5ab4f4d06
commit
1224615b60
21
.github/workflows/comment-on-asciidoc-changes.yml
vendored
Normal file
21
.github/workflows/comment-on-asciidoc-changes.yml
vendored
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
---
|
||||||
|
name: Comment on PR for .asciidoc changes
|
||||||
|
|
||||||
|
on:
|
||||||
|
# We need to use pull_request_target to be able to comment on PRs from forks
|
||||||
|
pull_request_target:
|
||||||
|
types:
|
||||||
|
- synchronize
|
||||||
|
- opened
|
||||||
|
- reopened
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
- master
|
||||||
|
- "9.0"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
comment-on-asciidoc-change:
|
||||||
|
permissions:
|
||||||
|
contents: read
|
||||||
|
pull-requests: write
|
||||||
|
uses: elastic/docs-builder/.github/workflows/comment-on-asciidoc-changes.yml@main
|
19
.github/workflows/docs-build.yml
vendored
19
.github/workflows/docs-build.yml
vendored
@ -1,19 +0,0 @@
|
|||||||
name: docs-build
|
|
||||||
|
|
||||||
on:
|
|
||||||
push:
|
|
||||||
branches:
|
|
||||||
- main
|
|
||||||
pull_request_target: ~
|
|
||||||
merge_group: ~
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
docs-preview:
|
|
||||||
uses: elastic/docs-builder/.github/workflows/preview-build.yml@main
|
|
||||||
with:
|
|
||||||
path-pattern: docs/**
|
|
||||||
permissions:
|
|
||||||
deployments: write
|
|
||||||
id-token: write
|
|
||||||
contents: read
|
|
||||||
pull-requests: read
|
|
14
.github/workflows/docs-cleanup.yml
vendored
14
.github/workflows/docs-cleanup.yml
vendored
@ -1,14 +0,0 @@
|
|||||||
name: docs-cleanup
|
|
||||||
|
|
||||||
on:
|
|
||||||
pull_request_target:
|
|
||||||
types:
|
|
||||||
- closed
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
docs-preview:
|
|
||||||
uses: elastic/docs-builder/.github/workflows/preview-cleanup.yml@main
|
|
||||||
permissions:
|
|
||||||
contents: none
|
|
||||||
id-token: write
|
|
||||||
deployments: write
|
|
@ -1,8 +0,0 @@
|
|||||||
project: 'Eland Python client'
|
|
||||||
cross_links:
|
|
||||||
- docs-content
|
|
||||||
toc:
|
|
||||||
- toc: reference
|
|
||||||
subs:
|
|
||||||
es: "Elasticsearch"
|
|
||||||
ml: "machine learning"
|
|
@ -1,16 +1,16 @@
|
|||||||
---
|
[[dataframes]]
|
||||||
mapped_pages:
|
== Data Frames
|
||||||
- https://www.elastic.co/guide/en/elasticsearch/client/eland/current/dataframes.html
|
|
||||||
---
|
|
||||||
|
|
||||||
# Data Frames [dataframes]
|
`eland.DataFrame` wraps an Elasticsearch index in a Pandas-like API
|
||||||
|
and defers all processing and filtering of data to Elasticsearch
|
||||||
|
instead of your local machine. This means you can process large
|
||||||
|
amounts of data within Elasticsearch from a Jupyter Notebook
|
||||||
|
without overloading your machine.
|
||||||
|
|
||||||
`eland.DataFrame` wraps an Elasticsearch index in a Pandas-like API and defers all processing and filtering of data to Elasticsearch instead of your local machine. This means you can process large amounts of data within Elasticsearch from a Jupyter Notebook without overloading your machine.
|
[source,python]
|
||||||
|
-------------------------------------
|
||||||
```python
|
|
||||||
>>> import eland as ed
|
>>> import eland as ed
|
||||||
>>>
|
>>> # Connect to 'flights' index via localhost Elasticsearch node
|
||||||
# Connect to 'flights' index via localhost Elasticsearch node
|
|
||||||
>>> df = ed.DataFrame('http://localhost:9200', 'flights')
|
>>> df = ed.DataFrame('http://localhost:9200', 'flights')
|
||||||
|
|
||||||
# eland.DataFrame instance has the same API as pandas.DataFrame
|
# eland.DataFrame instance has the same API as pandas.DataFrame
|
||||||
@ -59,5 +59,4 @@ Elasticsearch storage usage: 5.043 MB
|
|||||||
sum 9.261629e+07 8.204365e+06
|
sum 9.261629e+07 8.204365e+06
|
||||||
min 0.000000e+00 1.000205e+02
|
min 0.000000e+00 1.000205e+02
|
||||||
std 4.578263e+03 2.663867e+02
|
std 4.578263e+03 2.663867e+02
|
||||||
```
|
-------------------------------------
|
||||||
|
|
14
docs/guide/index.asciidoc
Normal file
14
docs/guide/index.asciidoc
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
= Eland Python Client
|
||||||
|
|
||||||
|
:doctype: book
|
||||||
|
|
||||||
|
include::{asciidoc-dir}/../../shared/versions/stack/{source_branch}.asciidoc[]
|
||||||
|
include::{asciidoc-dir}/../../shared/attributes.asciidoc[]
|
||||||
|
|
||||||
|
include::overview.asciidoc[]
|
||||||
|
|
||||||
|
include::installation.asciidoc[]
|
||||||
|
|
||||||
|
include::dataframes.asciidoc[]
|
||||||
|
|
||||||
|
include::machine-learning.asciidoc[]
|
16
docs/guide/installation.asciidoc
Normal file
16
docs/guide/installation.asciidoc
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
[[installation]]
|
||||||
|
== Installation
|
||||||
|
|
||||||
|
Eland can be installed with https://pip.pypa.io[pip] from https://pypi.org/project/eland[PyPI]. We recommend https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/[using a virtual environment] when installing with pip:
|
||||||
|
|
||||||
|
[source,sh]
|
||||||
|
-----------------------------
|
||||||
|
$ python -m pip install eland
|
||||||
|
-----------------------------
|
||||||
|
|
||||||
|
Alternatively, Eland can be installed with https://docs.conda.io[Conda] from https://anaconda.org/conda-forge/eland[Conda Forge]:
|
||||||
|
|
||||||
|
[source,sh]
|
||||||
|
------------------------------------
|
||||||
|
$ conda install -c conda-forge eland
|
||||||
|
------------------------------------
|
@ -5,8 +5,7 @@
|
|||||||
[[ml-trained-models]]
|
[[ml-trained-models]]
|
||||||
=== Trained models
|
=== Trained models
|
||||||
|
|
||||||
Eland allows transforming *some*
|
Eland allows transforming trained models from scikit-learn, XGBoost,
|
||||||
https://eland.readthedocs.io/en/latest/reference/api/eland.ml.MLModel.import_model.html#parameters[trained models] from scikit-learn, XGBoost,
|
|
||||||
and LightGBM libraries to be serialized and used as an inference
|
and LightGBM libraries to be serialized and used as an inference
|
||||||
model in {es}.
|
model in {es}.
|
||||||
|
|
||||||
|
@ -1,36 +1,33 @@
|
|||||||
---
|
[[overview]]
|
||||||
mapped_pages:
|
== Overview
|
||||||
- https://www.elastic.co/guide/en/elasticsearch/client/eland/current/index.html
|
|
||||||
- https://www.elastic.co/guide/en/elasticsearch/client/eland/current/overview.html
|
|
||||||
navigation_title: Eland
|
|
||||||
---
|
|
||||||
|
|
||||||
# Eland Python client [overview]
|
Eland is a Python client and toolkit for DataFrames and {ml} in {es}.
|
||||||
|
Full documentation is available on https://eland.readthedocs.io[Read the Docs].
|
||||||
|
Source code is available on https://github.com/elastic/eland[GitHub].
|
||||||
|
|
||||||
Eland is a Python client and toolkit for DataFrames and {{ml}} in {{es}}. Full documentation is available on [Read the Docs](https://eland.readthedocs.io). Source code is available on [GitHub](https://github.com/elastic/eland).
|
[discrete]
|
||||||
|
=== Compatibility
|
||||||
|
|
||||||
|
- Supports Python 3.9+ and Pandas 1.5
|
||||||
|
- Supports {es} 8+ clusters, recommended 8.16 or later for all features to work.
|
||||||
|
Make sure your Eland major version matches the major version of your Elasticsearch cluster.
|
||||||
|
|
||||||
## Compatibility [_compatibility]
|
The recommended way to set your requirements in your `setup.py` or
|
||||||
|
`requirements.txt` is::
|
||||||
|
|
||||||
* Supports Python 3.9+ and Pandas 1.5
|
|
||||||
* Supports {{es}} 8+ clusters, recommended 8.16 or later for all features to work. Make sure your Eland major version matches the major version of your Elasticsearch cluster.
|
|
||||||
|
|
||||||
The recommended way to set your requirements in your `setup.py` or `requirements.txt` is::
|
|
||||||
|
|
||||||
```
|
|
||||||
# Elasticsearch 8.x
|
# Elasticsearch 8.x
|
||||||
eland>=8,<9
|
eland>=8,<9
|
||||||
```
|
|
||||||
```
|
|
||||||
# Elasticsearch 7.x
|
# Elasticsearch 7.x
|
||||||
eland>=7,<8
|
eland>=7,<8
|
||||||
```
|
|
||||||
|
|
||||||
## Getting Started [_getting_started]
|
[discrete]
|
||||||
|
=== Getting Started
|
||||||
|
|
||||||
Create a `DataFrame` object connected to an {{es}} cluster running on `http://localhost:9200`:
|
Create a `DataFrame` object connected to an {es} cluster running on `http://localhost:9200`:
|
||||||
|
|
||||||
```python
|
[source,python]
|
||||||
|
------------------------------------
|
||||||
>>> import eland as ed
|
>>> import eland as ed
|
||||||
>>> df = ed.DataFrame(
|
>>> df = ed.DataFrame(
|
||||||
... es_client="http://localhost:9200",
|
... es_client="http://localhost:9200",
|
||||||
@ -51,14 +48,15 @@ Create a `DataFrame` object connected to an {{es}} cluster running on `http://lo
|
|||||||
13058 858.144337 False ... 6 2018-02-11 14:54:34
|
13058 858.144337 False ... 6 2018-02-11 14:54:34
|
||||||
|
|
||||||
[13059 rows x 27 columns]
|
[13059 rows x 27 columns]
|
||||||
```
|
------------------------------------
|
||||||
|
|
||||||
|
[discrete]
|
||||||
### Elastic Cloud [_elastic_cloud]
|
==== Elastic Cloud
|
||||||
|
|
||||||
You can also connect Eland to an Elasticsearch instance in Elastic Cloud:
|
You can also connect Eland to an Elasticsearch instance in Elastic Cloud:
|
||||||
|
|
||||||
```python
|
[source,python]
|
||||||
|
------------------------------------
|
||||||
>>> import eland as ed
|
>>> import eland as ed
|
||||||
>>> from elasticsearch import Elasticsearch
|
>>> from elasticsearch import Elasticsearch
|
||||||
|
|
||||||
@ -75,16 +73,16 @@ You can also connect Eland to an Elasticsearch instance in Elastic Cloud:
|
|||||||
3 181.694216 True ... 0 2018-01-01 10:33:28
|
3 181.694216 True ... 0 2018-01-01 10:33:28
|
||||||
4 730.041778 False ... 0 2018-01-01 05:13:00
|
4 730.041778 False ... 0 2018-01-01 05:13:00
|
||||||
[5 rows x 27 columns]
|
[5 rows x 27 columns]
|
||||||
```
|
------------------------------------
|
||||||
|
|
||||||
Eland can be used for complex queries and aggregations:
|
Eland can be used for complex queries and aggregations:
|
||||||
|
|
||||||
```python
|
[source,python]
|
||||||
|
------------------------------------
|
||||||
>>> df[df.Carrier != "Kibana Airlines"].groupby("Carrier").mean(numeric_only=False)
|
>>> df[df.Carrier != "Kibana Airlines"].groupby("Carrier").mean(numeric_only=False)
|
||||||
AvgTicketPrice Cancelled timestamp
|
AvgTicketPrice Cancelled timestamp
|
||||||
Carrier
|
Carrier
|
||||||
ES-Air 630.235816 0.129814 2018-01-21 20:45:00.200000000
|
ES-Air 630.235816 0.129814 2018-01-21 20:45:00.200000000
|
||||||
JetBeats 627.457373 0.134698 2018-01-21 14:43:18.112400635
|
JetBeats 627.457373 0.134698 2018-01-21 14:43:18.112400635
|
||||||
Logstash Airways 624.581974 0.125188 2018-01-21 16:14:50.711798340
|
Logstash Airways 624.581974 0.125188 2018-01-21 16:14:50.711798340
|
||||||
```
|
------------------------------------
|
||||||
|
|
@ -1,19 +0,0 @@
|
|||||||
---
|
|
||||||
mapped_pages:
|
|
||||||
- https://www.elastic.co/guide/en/elasticsearch/client/eland/current/installation.html
|
|
||||||
---
|
|
||||||
|
|
||||||
# Installation [installation]
|
|
||||||
|
|
||||||
Eland can be installed with [pip](https://pip.pypa.io) from [PyPI](https://pypi.org/project/eland). We recommend [using a virtual environment](https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/) when installing with pip:
|
|
||||||
|
|
||||||
```sh
|
|
||||||
$ python -m pip install eland
|
|
||||||
```
|
|
||||||
|
|
||||||
Alternatively, Eland can be installed with [Conda](https://docs.conda.io) from [Conda Forge](https://anaconda.org/conda-forge/eland):
|
|
||||||
|
|
||||||
```sh
|
|
||||||
$ conda install -c conda-forge eland
|
|
||||||
```
|
|
||||||
|
|
@ -1,199 +0,0 @@
|
|||||||
---
|
|
||||||
mapped_pages:
|
|
||||||
- https://www.elastic.co/guide/en/elasticsearch/client/eland/current/machine-learning.html
|
|
||||||
---
|
|
||||||
|
|
||||||
# Machine Learning [machine-learning]
|
|
||||||
|
|
||||||
|
|
||||||
## Trained models [ml-trained-models]
|
|
||||||
|
|
||||||
Eland allows transforming *some*
|
|
||||||
https://eland.readthedocs.io/en/latest/reference/api/eland.ml.MLModel.import_model.html#parameters[trained models] from scikit-learn, XGBoost,
|
|
||||||
and LightGBM libraries to be serialized and used as an inference model in {{es}}.
|
|
||||||
|
|
||||||
```python
|
|
||||||
>>> from xgboost import XGBClassifier
|
|
||||||
>>> from eland.ml import MLModel
|
|
||||||
|
|
||||||
# Train and exercise an XGBoost ML model locally
|
|
||||||
>>> xgb_model = XGBClassifier(booster="gbtree")
|
|
||||||
>>> xgb_model.fit(training_data[0], training_data[1])
|
|
||||||
|
|
||||||
>>> xgb_model.predict(training_data[0])
|
|
||||||
[0 1 1 0 1 0 0 0 1 0]
|
|
||||||
|
|
||||||
# Import the model into Elasticsearch
|
|
||||||
>>> es_model = MLModel.import_model(
|
|
||||||
es_client="http://localhost:9200",
|
|
||||||
model_id="xgb-classifier",
|
|
||||||
model=xgb_model,
|
|
||||||
feature_names=["f0", "f1", "f2", "f3", "f4"],
|
|
||||||
)
|
|
||||||
|
|
||||||
# Exercise the ML model in Elasticsearch with the training data
|
|
||||||
>>> es_model.predict(training_data[0])
|
|
||||||
[0 1 1 0 1 0 0 0 1 0]
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
## Natural language processing (NLP) with PyTorch [ml-nlp-pytorch]
|
|
||||||
|
|
||||||
::::{important}
|
|
||||||
You need to install the appropriate version of PyTorch to import an NLP model. Run `python -m pip install 'eland[pytorch]'` to install that version.
|
|
||||||
::::
|
|
||||||
|
|
||||||
|
|
||||||
For NLP tasks, Eland enables you to import PyTorch models into {{es}}. Use the `eland_import_hub_model` script to download and install supported [transformer models](https://huggingface.co/transformers) from the [Hugging Face model hub](https://huggingface.co/models). For example:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
$ eland_import_hub_model <authentication> \ <1>
|
|
||||||
--url http://localhost:9200/ \ <2>
|
|
||||||
--hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \ <3>
|
|
||||||
--task-type ner \ <4>
|
|
||||||
--start
|
|
||||||
```
|
|
||||||
|
|
||||||
1. Use an authentication method to access your cluster. Refer to [Authentication methods](machine-learning.md#ml-nlp-pytorch-auth).
|
|
||||||
2. The cluster URL. Alternatively, use `--cloud-id`.
|
|
||||||
3. Specify the identifier for the model in the Hugging Face model hub.
|
|
||||||
4. Specify the type of NLP task. Supported values are `fill_mask`, `ner`, `question_answering`, `text_classification`, `text_embedding`, `text_expansion`, `text_similarity` and `zero_shot_classification`.
|
|
||||||
|
|
||||||
|
|
||||||
For more information about the available options, run `eland_import_hub_model` with the `--help` option.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
$ eland_import_hub_model --help
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
### Import model with Docker [ml-nlp-pytorch-docker]
|
|
||||||
|
|
||||||
::::{important}
|
|
||||||
To use the Docker container, you need to clone the Eland repository: [https://github.com/elastic/eland](https://github.com/elastic/eland)
|
|
||||||
::::
|
|
||||||
|
|
||||||
|
|
||||||
If you want to use Eland without installing it, you can use the Docker image:
|
|
||||||
|
|
||||||
You can use the container interactively:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
$ docker run -it --rm --network host docker.elastic.co/eland/eland
|
|
||||||
```
|
|
||||||
|
|
||||||
Running installed scripts is also possible without an interactive shell, for example:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
docker run -it --rm docker.elastic.co/eland/eland \
|
|
||||||
eland_import_hub_model \
|
|
||||||
--url $ELASTICSEARCH_URL \
|
|
||||||
--hub-model-id elastic/distilbert-base-uncased-finetuned-conll03-english \
|
|
||||||
--start
|
|
||||||
```
|
|
||||||
|
|
||||||
Replace the `$ELASTICSEARCH_URL` with the URL for your Elasticsearch cluster. For authentication purposes, include an administrator username and password in the URL in the following format: `https://username:password@host:port`.
|
|
||||||
|
|
||||||
|
|
||||||
### Install models in an air-gapped environment [ml-nlp-pytorch-air-gapped]
|
|
||||||
|
|
||||||
You can install models in a restricted or closed network by pointing the `eland_import_hub_model` script to local files.
|
|
||||||
|
|
||||||
For an offline install of a Hugging Face model, the model first needs to be cloned locally, Git and [Git Large File Storage](https://git-lfs.com/) are required to be installed in your system.
|
|
||||||
|
|
||||||
1. Select a model you want to use from Hugging Face. Refer to the [compatible third party model](docs-content://explore-analyze/machine-learning/nlp/ml-nlp-model-ref.md) list for more information on the supported architectures.
|
|
||||||
2. Clone the selected model from Hugging Face by using the model URL. For example:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
git clone https://huggingface.co/dslim/bert-base-NER
|
|
||||||
```
|
|
||||||
|
|
||||||
This command results in a local copy of of the model in the directory `bert-base-NER`.
|
|
||||||
|
|
||||||
3. Use the `eland_import_hub_model` script with the `--hub-model-id` set to the directory of the cloned model to install it:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
eland_import_hub_model \
|
|
||||||
--url 'XXXX' \
|
|
||||||
--hub-model-id /PATH/TO/MODEL \
|
|
||||||
--task-type ner \
|
|
||||||
--es-username elastic --es-password XXX \
|
|
||||||
--es-model-id bert-base-ner
|
|
||||||
```
|
|
||||||
|
|
||||||
If you use the Docker image to run `eland_import_hub_model` you must bind mount the model directory, so the container can read the files:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
docker run --mount type=bind,source=/PATH/TO/MODEL,destination=/model,readonly -it --rm docker.elastic.co/eland/eland \
|
|
||||||
eland_import_hub_model \
|
|
||||||
--url 'XXXX' \
|
|
||||||
--hub-model-id /model \
|
|
||||||
--task-type ner \
|
|
||||||
--es-username elastic --es-password XXX \
|
|
||||||
--es-model-id bert-base-ner
|
|
||||||
```
|
|
||||||
|
|
||||||
Once it’s uploaded to {{es}}, the model will have the ID specified by `--es-model-id`. If it is not set, the model ID is derived from `--hub-model-id`; spaces and path delimiters are converted to double underscores `__`.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### Connect to Elasticsearch through a proxy [ml-nlp-pytorch-proxy]
|
|
||||||
|
|
||||||
Behind the scenes, Eland uses the `requests` Python library, which [allows configuring proxies through an environment variable](https://requests.readthedocs.io/en/latest/user/advanced/#proxies). For example, to use an HTTP proxy to connect to an HTTPS Elasticsearch cluster, you need to set the `HTTPS_PROXY` environment variable when invoking Eland:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
HTTPS_PROXY=http://proxy-host:proxy-port eland_import_hub_model ...
|
|
||||||
```
|
|
||||||
|
|
||||||
If you disabled security on your Elasticsearch cluster, you should use `HTTP_PROXY` instead.
|
|
||||||
|
|
||||||
|
|
||||||
### Authentication methods [ml-nlp-pytorch-auth]
|
|
||||||
|
|
||||||
The following authentication options are available when using the import script:
|
|
||||||
|
|
||||||
* Elasticsearch username and password authentication (specified with the `-u` and `-p` options):
|
|
||||||
|
|
||||||
```bash
|
|
||||||
eland_import_hub_model -u <username> -p <password> --cloud-id <cloud-id> ...
|
|
||||||
```
|
|
||||||
|
|
||||||
These `-u` and `-p` options also work when you use `--url`.
|
|
||||||
|
|
||||||
* Elasticsearch username and password authentication (embedded in the URL):
|
|
||||||
|
|
||||||
```bash
|
|
||||||
eland_import_hub_model --url https://<user>:<password>@<hostname>:<port> ...
|
|
||||||
```
|
|
||||||
|
|
||||||
* Elasticsearch API key authentication:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
eland_import_hub_model --es-api-key <api-key> --url https://<hostname>:<port> ...
|
|
||||||
```
|
|
||||||
|
|
||||||
* HuggingFace Hub access token (for private models):
|
|
||||||
|
|
||||||
```bash
|
|
||||||
eland_import_hub_model --hub-access-token <access-token> ...
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### TLS/SSL [ml-nlp-pytorch-tls]
|
|
||||||
|
|
||||||
The following TLS/SSL options for Elasticsearch are available when using the import script:
|
|
||||||
|
|
||||||
* Specify alternate CA bundle to verify the cluster certificate:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
eland_import_hub_model --ca-certs CA_CERTS ...
|
|
||||||
```
|
|
||||||
|
|
||||||
* Disable TLS/SSL verification altogether (strongly discouraged):
|
|
||||||
|
|
||||||
```bash
|
|
||||||
eland_import_hub_model --insecure ...
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
@ -1,6 +0,0 @@
|
|||||||
project: 'Eland reference'
|
|
||||||
toc:
|
|
||||||
- file: index.md
|
|
||||||
- file: installation.md
|
|
||||||
- file: dataframes.md
|
|
||||||
- file: machine-learning.md
|
|
Loading…
x
Reference in New Issue
Block a user