mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
Normalize and prune top-level APIs
This commit is contained in:
parent
d1444f8e09
commit
1378544933
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
10
docs/source/reference/api/eland.DataFrame.es_info.rst
Normal file
10
docs/source/reference/api/eland.DataFrame.es_info.rst
Normal file
@ -0,0 +1,10 @@
|
||||
eland.DataFrame.es_info
|
||||
=======================
|
||||
|
||||
.. currentmodule:: eland
|
||||
|
||||
.. warning::
|
||||
Previously this method was named ``info_es()``.
|
||||
DataFrame.info_es() is deprecated, use DataFrame.es_info() instead.
|
||||
|
||||
.. automethod:: DataFrame.es_info
|
@ -1,6 +0,0 @@
|
||||
eland.DataFrame.info_es
|
||||
=======================
|
||||
|
||||
.. currentmodule:: eland
|
||||
|
||||
.. automethod:: DataFrame.info_es
|
6
docs/source/reference/api/eland.DataFrame.to_pandas.rst
Normal file
6
docs/source/reference/api/eland.DataFrame.to_pandas.rst
Normal file
@ -0,0 +1,6 @@
|
||||
eland.DataFrame.to_pandas
|
||||
=========================
|
||||
|
||||
.. currentmodule:: eland
|
||||
|
||||
.. automethod:: DataFrame.to_pandas
|
10
docs/source/reference/api/eland.Series.es_info.rst
Normal file
10
docs/source/reference/api/eland.Series.es_info.rst
Normal file
@ -0,0 +1,10 @@
|
||||
eland.Series.es_info
|
||||
====================
|
||||
|
||||
.. currentmodule:: eland
|
||||
|
||||
.. warning::
|
||||
Previously this method was named ``info_es()``.
|
||||
Series.info_es() is deprecated, use Series.es_info() instead.
|
||||
|
||||
.. automethod:: Series.es_info
|
@ -1,6 +0,0 @@
|
||||
eland.Series.info_es
|
||||
====================
|
||||
|
||||
.. currentmodule:: eland
|
||||
|
||||
.. automethod:: Series.info_es
|
6
docs/source/reference/api/eland.Series.to_pandas.rst
Normal file
6
docs/source/reference/api/eland.Series.to_pandas.rst
Normal file
@ -0,0 +1,6 @@
|
||||
eland.DataFrame.to_pandas
|
||||
=========================
|
||||
|
||||
.. currentmodule:: eland
|
||||
|
||||
.. automethod:: Series.to_pandas
|
6
docs/source/reference/api/eland.csv_to_eland.rst
Normal file
6
docs/source/reference/api/eland.csv_to_eland.rst
Normal file
@ -0,0 +1,6 @@
|
||||
eland.csv_to_eland
|
||||
==================
|
||||
|
||||
.. currentmodule:: eland
|
||||
|
||||
.. autofunction:: csv_to_eland
|
@ -1,6 +0,0 @@
|
||||
eland.read_csv
|
||||
==============
|
||||
|
||||
.. currentmodule:: eland
|
||||
|
||||
.. autofunction:: read_csv
|
@ -1,6 +0,0 @@
|
||||
eland.read_es
|
||||
=============
|
||||
|
||||
.. currentmodule:: eland
|
||||
|
||||
.. autofunction:: read_es
|
@ -82,7 +82,7 @@ Elasticsearch Functions
|
||||
.. autosummary::
|
||||
:toctree: api/
|
||||
|
||||
DataFrame.info_es
|
||||
DataFrame.es_info
|
||||
DataFrame.es_query
|
||||
|
||||
Serialization / IO / conversion
|
||||
@ -95,3 +95,4 @@ Serialization / IO / conversion
|
||||
DataFrame.to_csv
|
||||
DataFrame.to_html
|
||||
DataFrame.to_string
|
||||
DataFrame.to_pandas
|
||||
|
@ -5,13 +5,6 @@ General utility functions
|
||||
=========================
|
||||
.. currentmodule:: eland
|
||||
|
||||
Elasticsearch access
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
.. autosummary::
|
||||
:toctree: api/
|
||||
|
||||
read_es
|
||||
|
||||
Pandas and Eland
|
||||
~~~~~~~~~~~~~~~~
|
||||
.. autosummary::
|
||||
|
@ -10,4 +10,4 @@ Flat File
|
||||
.. autosummary::
|
||||
:toctree: api/
|
||||
|
||||
read_csv
|
||||
csv_to_eland
|
||||
|
@ -89,10 +89,11 @@ Serialization / IO / conversion
|
||||
|
||||
Series.to_string
|
||||
Series.to_numpy
|
||||
Series.to_pandas
|
||||
|
||||
Elasticsearch utilities
|
||||
Elasticsearch Functions
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
.. autosummary::
|
||||
:toctree: api/
|
||||
|
||||
Series.info_es
|
||||
Series.es_info
|
||||
|
@ -17,7 +17,7 @@ from eland.index import Index
|
||||
from eland.ndframe import NDFrame
|
||||
from eland.series import Series
|
||||
from eland.dataframe import DataFrame
|
||||
from eland.utils import pandas_to_eland, eland_to_pandas, read_es, read_csv
|
||||
from eland.etl import pandas_to_eland, eland_to_pandas, read_es, read_csv, csv_to_eland
|
||||
|
||||
__all__ = [
|
||||
"DataFrame",
|
||||
@ -26,6 +26,7 @@ __all__ = [
|
||||
"Index",
|
||||
"pandas_to_eland",
|
||||
"eland_to_pandas",
|
||||
"csv_to_eland",
|
||||
"read_csv",
|
||||
"read_es",
|
||||
"SortOrder",
|
||||
|
@ -19,10 +19,11 @@ from pandas.io.formats.printing import pprint_thing
|
||||
from pandas.util._validators import validate_bool_kwarg
|
||||
|
||||
import eland.plotting as gfx
|
||||
from eland import NDFrame
|
||||
from eland import Series
|
||||
from eland.ndframe import NDFrame
|
||||
from eland.series import Series
|
||||
from eland.common import DEFAULT_NUM_ROWS_DISPLAYED, docstring_parameter
|
||||
from eland.filter import BooleanFilter
|
||||
from eland.utils import deprecated_api
|
||||
|
||||
|
||||
class DataFrame(NDFrame):
|
||||
@ -34,14 +35,14 @@ class DataFrame(NDFrame):
|
||||
|
||||
Parameters
|
||||
----------
|
||||
client: Elasticsearch client argument(s) (e.g. 'localhost:9200')
|
||||
es_client: Elasticsearch client argument(s) (e.g. 'localhost:9200')
|
||||
- elasticsearch-py parameters or
|
||||
- elasticsearch-py instance
|
||||
index_pattern: str
|
||||
es_index_pattern: str
|
||||
Elasticsearch index pattern. This can contain wildcards. (e.g. 'flights')
|
||||
columns: list of str, optional
|
||||
List of DataFrame columns. A subset of the Elasticsearch index's fields.
|
||||
index_field: str, optional
|
||||
es_index_field: str, optional
|
||||
The Elasticsearch index field to use as the DataFrame index. Defaults to _id if None is used.
|
||||
|
||||
See Also
|
||||
@ -68,7 +69,7 @@ class DataFrame(NDFrame):
|
||||
|
||||
>>> from elasticsearch import Elasticsearch
|
||||
>>> es = Elasticsearch("localhost:9200")
|
||||
>>> df = ed.DataFrame(client=es, index_pattern='flights', columns=['AvgTicketPrice', 'Cancelled'])
|
||||
>>> df = ed.DataFrame(es_client=es, es_index_pattern='flights', columns=['AvgTicketPrice', 'Cancelled'])
|
||||
>>> df.head()
|
||||
AvgTicketPrice Cancelled
|
||||
0 841.265642 False
|
||||
@ -83,8 +84,12 @@ class DataFrame(NDFrame):
|
||||
index field
|
||||
(TODO - currently index_field must also be a field if not _id)
|
||||
|
||||
>>> df = ed.DataFrame(client='localhost', index_pattern='flights', columns=['AvgTicketPrice', 'timestamp'],
|
||||
... index_field='timestamp')
|
||||
>>> df = ed.DataFrame(
|
||||
... es_client='localhost',
|
||||
... es_index_pattern='flights',
|
||||
... columns=['AvgTicketPrice', 'timestamp'],
|
||||
... es_index_field='timestamp'
|
||||
... )
|
||||
>>> df.head()
|
||||
AvgTicketPrice timestamp
|
||||
2018-01-01T00:00:00 841.265642 2018-01-01 00:00:00
|
||||
@ -98,12 +103,12 @@ class DataFrame(NDFrame):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
client=None,
|
||||
index_pattern=None,
|
||||
es_client=None,
|
||||
es_index_pattern=None,
|
||||
es_index_field=None,
|
||||
columns=None,
|
||||
index_field=None,
|
||||
query_compiler=None,
|
||||
):
|
||||
_query_compiler=None,
|
||||
) -> None:
|
||||
"""
|
||||
There are effectively 2 constructors:
|
||||
|
||||
@ -112,18 +117,18 @@ class DataFrame(NDFrame):
|
||||
|
||||
The constructor with 'query_compiler' is for internal use only.
|
||||
"""
|
||||
if query_compiler is None:
|
||||
if client is None or index_pattern is None:
|
||||
if _query_compiler is None:
|
||||
if es_client is None or es_index_pattern is None:
|
||||
raise ValueError(
|
||||
"client and index_pattern must be defined in DataFrame constructor"
|
||||
)
|
||||
# python 3 syntax
|
||||
super().__init__(
|
||||
client=client,
|
||||
index_pattern=index_pattern,
|
||||
es_client=es_client,
|
||||
es_index_pattern=es_index_pattern,
|
||||
columns=columns,
|
||||
index_field=index_field,
|
||||
query_compiler=query_compiler,
|
||||
es_index_field=es_index_field,
|
||||
_query_compiler=_query_compiler,
|
||||
)
|
||||
|
||||
def _get_columns(self):
|
||||
@ -210,7 +215,7 @@ class DataFrame(NDFrame):
|
||||
<BLANKLINE>
|
||||
[3 rows x 2 columns]
|
||||
"""
|
||||
return DataFrame(query_compiler=self._query_compiler.head(n))
|
||||
return DataFrame(_query_compiler=self._query_compiler.head(n))
|
||||
|
||||
def tail(self, n: int = 5) -> "DataFrame":
|
||||
"""
|
||||
@ -254,7 +259,7 @@ class DataFrame(NDFrame):
|
||||
<BLANKLINE>
|
||||
[5 rows x 2 columns]
|
||||
"""
|
||||
return DataFrame(query_compiler=self._query_compiler.tail(n))
|
||||
return DataFrame(_query_compiler=self._query_compiler.tail(n))
|
||||
|
||||
def sample(
|
||||
self, n: int = None, frac: float = None, random_state: int = None
|
||||
@ -290,7 +295,7 @@ class DataFrame(NDFrame):
|
||||
raise ValueError("Please enter a value for `frac` OR `n`, not both")
|
||||
|
||||
return DataFrame(
|
||||
query_compiler=self._query_compiler.sample(
|
||||
_query_compiler=self._query_compiler.sample(
|
||||
n=n, frac=frac, random_state=random_state
|
||||
)
|
||||
)
|
||||
@ -543,7 +548,7 @@ class DataFrame(NDFrame):
|
||||
"""
|
||||
return self._query_compiler.count()
|
||||
|
||||
def info_es(self):
|
||||
def es_info(self):
|
||||
# noinspection PyPep8
|
||||
"""
|
||||
A debug summary of an eland DataFrame internals.
|
||||
@ -570,10 +575,10 @@ class DataFrame(NDFrame):
|
||||
12907 2018-02-11 20:08:25 AMS LIM 225
|
||||
<BLANKLINE>
|
||||
[5 rows x 4 columns]
|
||||
>>> print(df.info_es())
|
||||
index_pattern: flights
|
||||
>>> print(df.es_info())
|
||||
es_index_pattern: flights
|
||||
Index:
|
||||
index_field: _id
|
||||
es_index_field: _id
|
||||
is_source_field: False
|
||||
Mappings:
|
||||
capabilities:
|
||||
@ -593,10 +598,14 @@ class DataFrame(NDFrame):
|
||||
"""
|
||||
buf = StringIO()
|
||||
|
||||
super()._info_es(buf)
|
||||
super()._es_info(buf)
|
||||
|
||||
return buf.getvalue()
|
||||
|
||||
@deprecated_api("eland.DataFrame.es_info()")
|
||||
def info_es(self):
|
||||
return self.es_info()
|
||||
|
||||
def es_query(self, query):
|
||||
"""Applies an Elasticsearch DSL query to the current DataFrame.
|
||||
|
||||
@ -651,7 +660,7 @@ class DataFrame(NDFrame):
|
||||
raise TypeError("'query' must be of type 'dict'")
|
||||
if tuple(query) == ("query",):
|
||||
query = query["query"]
|
||||
return DataFrame(query_compiler=self._query_compiler.es_query(query))
|
||||
return DataFrame(_query_compiler=self._query_compiler.es_query(query))
|
||||
|
||||
def _index_summary(self):
|
||||
# Print index summary e.g.
|
||||
@ -659,11 +668,11 @@ class DataFrame(NDFrame):
|
||||
# Do this by getting head and tail of dataframe
|
||||
if self.empty:
|
||||
# index[0] is out of bounds for empty df
|
||||
head = self.head(1)._to_pandas()
|
||||
tail = self.tail(1)._to_pandas()
|
||||
head = self.head(1).to_pandas()
|
||||
tail = self.tail(1).to_pandas()
|
||||
else:
|
||||
head = self.head(1)._to_pandas().index[0]
|
||||
tail = self.tail(1)._to_pandas().index[0]
|
||||
head = self.head(1).to_pandas().index[0]
|
||||
tail = self.tail(1).to_pandas().index[0]
|
||||
index_summary = f", {pprint_thing(head)} to {pprint_thing(tail)}"
|
||||
|
||||
name = "Index"
|
||||
@ -1076,7 +1085,7 @@ class DataFrame(NDFrame):
|
||||
elif isinstance(key, DataFrame):
|
||||
return self.where(key)
|
||||
elif isinstance(key, BooleanFilter):
|
||||
return DataFrame(query_compiler=self._query_compiler._update_query(key))
|
||||
return DataFrame(_query_compiler=self._query_compiler._update_query(key))
|
||||
else:
|
||||
return self._getitem_column(key)
|
||||
|
||||
@ -1088,7 +1097,7 @@ class DataFrame(NDFrame):
|
||||
|
||||
def _getitem_array(self, key):
|
||||
if isinstance(key, Series):
|
||||
key = key._to_pandas()
|
||||
key = key.to_pandas()
|
||||
if is_bool_indexer(key):
|
||||
if isinstance(key, pd.Series) and not key.index.equals(self.index):
|
||||
warnings.warn(
|
||||
@ -1107,7 +1116,7 @@ class DataFrame(NDFrame):
|
||||
key = pd.RangeIndex(len(self.index))[key]
|
||||
if len(key):
|
||||
return DataFrame(
|
||||
query_compiler=self._query_compiler.getitem_row_array(key)
|
||||
_query_compiler=self._query_compiler.getitem_row_array(key)
|
||||
)
|
||||
else:
|
||||
return DataFrame(columns=self.columns)
|
||||
@ -1118,7 +1127,7 @@ class DataFrame(NDFrame):
|
||||
f" not index"
|
||||
)
|
||||
return DataFrame(
|
||||
query_compiler=self._query_compiler.getitem_column_array(key)
|
||||
_query_compiler=self._query_compiler.getitem_column_array(key)
|
||||
)
|
||||
|
||||
def _create_or_update_from_compiler(self, new_query_compiler, inplace=False):
|
||||
@ -1128,13 +1137,13 @@ class DataFrame(NDFrame):
|
||||
or type(new_query_compiler) in self._query_compiler.__class__.__bases__
|
||||
), f"Invalid Query Compiler object: {type(new_query_compiler)}"
|
||||
if not inplace:
|
||||
return DataFrame(query_compiler=new_query_compiler)
|
||||
return DataFrame(_query_compiler=new_query_compiler)
|
||||
else:
|
||||
self._query_compiler = new_query_compiler
|
||||
|
||||
@staticmethod
|
||||
def _reduce_dimension(query_compiler):
|
||||
return Series(query_compiler=query_compiler)
|
||||
return Series(_query_compiler=query_compiler)
|
||||
|
||||
def to_csv(
|
||||
self,
|
||||
@ -1189,7 +1198,7 @@ class DataFrame(NDFrame):
|
||||
}
|
||||
return self._query_compiler.to_csv(**kwargs)
|
||||
|
||||
def _to_pandas(self, show_progress=False):
|
||||
def to_pandas(self, show_progress: bool = False) -> "DataFrame":
|
||||
"""
|
||||
Utility method to convert eland.Dataframe to pandas.Dataframe
|
||||
|
||||
@ -1256,7 +1265,7 @@ class DataFrame(NDFrame):
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> df = ed.read_es('localhost', 'ecommerce')
|
||||
>>> df = ed.DataFrame('localhost', 'ecommerce')
|
||||
>>> df.shape
|
||||
(4675, 45)
|
||||
"""
|
||||
@ -1372,7 +1381,7 @@ class DataFrame(NDFrame):
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> df = ed.read_es('localhost', 'flights')
|
||||
>>> df = ed.DataFrame('localhost', 'flights')
|
||||
>>> df.shape
|
||||
(13059, 27)
|
||||
>>> df.query('FlightDelayMin > 60').shape
|
||||
@ -1380,7 +1389,7 @@ class DataFrame(NDFrame):
|
||||
"""
|
||||
if isinstance(expr, BooleanFilter):
|
||||
return DataFrame(
|
||||
query_compiler=self._query_compiler._update_query(BooleanFilter(expr))
|
||||
_query_compiler=self._query_compiler._update_query(BooleanFilter(expr))
|
||||
)
|
||||
elif isinstance(expr, str):
|
||||
column_resolver = {}
|
||||
@ -1390,7 +1399,7 @@ class DataFrame(NDFrame):
|
||||
resolvers = column_resolver, {}
|
||||
# Use pandas eval to parse query - TODO validate this further
|
||||
filter = eval(expr, target=self, resolvers=tuple(tuple(resolvers)))
|
||||
return DataFrame(query_compiler=self._query_compiler._update_query(filter))
|
||||
return DataFrame(_query_compiler=self._query_compiler._update_query(filter))
|
||||
else:
|
||||
raise NotImplementedError(expr, type(expr))
|
||||
|
||||
|
521
eland/etl.py
Normal file
521
eland/etl.py
Normal file
@ -0,0 +1,521 @@
|
||||
# Licensed to Elasticsearch B.V under one or more agreements.
|
||||
# Elasticsearch B.V licenses this file to you under the Apache 2.0 License.
|
||||
# See the LICENSE file in the project root for more information
|
||||
|
||||
import csv
|
||||
from typing import Union, List, Tuple, Optional, Mapping, Dict, Any
|
||||
|
||||
import pandas as pd # type: ignore
|
||||
from pandas.io.parsers import _c_parser_defaults # type: ignore
|
||||
|
||||
from eland import DataFrame
|
||||
from eland.field_mappings import FieldMappings
|
||||
from eland.common import ensure_es_client, DEFAULT_CHUNK_SIZE
|
||||
from eland.utils import deprecated_api
|
||||
from elasticsearch import Elasticsearch # type: ignore
|
||||
from elasticsearch.helpers import bulk # type: ignore
|
||||
|
||||
|
||||
@deprecated_api("eland.DataFrame()")
|
||||
def read_es(
|
||||
es_client: Union[str, List[str], Tuple[str, ...], Elasticsearch],
|
||||
es_index_pattern: str,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Utility method to create an eland.Dataframe from an Elasticsearch index_pattern.
|
||||
(Similar to pandas.read_csv, but source data is an Elasticsearch index rather than
|
||||
a csv file)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
es_client: Elasticsearch client argument(s)
|
||||
- elasticsearch-py parameters or
|
||||
- elasticsearch-py instance
|
||||
es_index_pattern: str
|
||||
Elasticsearch index pattern
|
||||
|
||||
Returns
|
||||
-------
|
||||
eland.DataFrame
|
||||
|
||||
See Also
|
||||
--------
|
||||
eland.pandas_to_eland: Create an eland.Dataframe from pandas.DataFrame
|
||||
eland.eland_to_pandas: Create a pandas.Dataframe from eland.DataFrame
|
||||
"""
|
||||
return DataFrame(es_client=es_client, es_index_pattern=es_index_pattern)
|
||||
|
||||
|
||||
def pandas_to_eland(
|
||||
pd_df: pd.DataFrame,
|
||||
es_client: Union[str, List[str], Tuple[str, ...], Elasticsearch],
|
||||
es_dest_index: str,
|
||||
es_if_exists: str = "fail",
|
||||
es_refresh: bool = False,
|
||||
es_dropna: bool = False,
|
||||
es_type_overrides: Optional[Mapping[str, str]] = None,
|
||||
chunksize: Optional[int] = None,
|
||||
use_pandas_index_for_es_ids: bool = True,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Append a pandas DataFrame to an Elasticsearch index.
|
||||
Mainly used in testing.
|
||||
Modifies the elasticsearch destination index
|
||||
|
||||
Parameters
|
||||
----------
|
||||
es_client: Elasticsearch client argument(s)
|
||||
- elasticsearch-py parameters or
|
||||
- elasticsearch-py instance
|
||||
es_dest_index: str
|
||||
Name of Elasticsearch index to be appended to
|
||||
es_if_exists : {'fail', 'replace', 'append'}, default 'fail'
|
||||
How to behave if the index already exists.
|
||||
|
||||
- fail: Raise a ValueError.
|
||||
- replace: Delete the index before inserting new values.
|
||||
- append: Insert new values to the existing index. Create if does not exist.
|
||||
es_refresh: bool, default 'False'
|
||||
Refresh es_dest_index after bulk index
|
||||
es_dropna: bool, default 'False'
|
||||
* True: Remove missing values (see pandas.Series.dropna)
|
||||
* False: Include missing values - may cause bulk to fail
|
||||
es_type_overrides: dict, default None
|
||||
Dict of field_name: es_data_type that overrides default es data types
|
||||
chunksize: int, default None
|
||||
Number of pandas.DataFrame rows to read before bulk index into Elasticsearch
|
||||
use_pandas_index_for_es_ids: bool, default 'True'
|
||||
* True: pandas.DataFrame.index fields will be used to populate Elasticsearch '_id' fields.
|
||||
* False: Ignore pandas.DataFrame.index when indexing into Elasticsearch
|
||||
|
||||
Returns
|
||||
-------
|
||||
eland.Dataframe
|
||||
eland.DataFrame referencing data in destination_index
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> pd_df = pd.DataFrame(data={'A': 3.141,
|
||||
... 'B': 1,
|
||||
... 'C': 'foo',
|
||||
... 'D': pd.Timestamp('20190102'),
|
||||
... 'E': [1.0, 2.0, 3.0],
|
||||
... 'F': False,
|
||||
... 'G': [1, 2, 3],
|
||||
... 'H': 'Long text - to be indexed as es type text'},
|
||||
... index=['0', '1', '2'])
|
||||
>>> type(pd_df)
|
||||
<class 'pandas.core.frame.DataFrame'>
|
||||
>>> pd_df
|
||||
A B ... G H
|
||||
0 3.141 1 ... 1 Long text - to be indexed as es type text
|
||||
1 3.141 1 ... 2 Long text - to be indexed as es type text
|
||||
2 3.141 1 ... 3 Long text - to be indexed as es type text
|
||||
<BLANKLINE>
|
||||
[3 rows x 8 columns]
|
||||
>>> pd_df.dtypes
|
||||
A float64
|
||||
B int64
|
||||
C object
|
||||
D datetime64[ns]
|
||||
E float64
|
||||
F bool
|
||||
G int64
|
||||
H object
|
||||
dtype: object
|
||||
|
||||
Convert `pandas.DataFrame` to `eland.DataFrame` - this creates an Elasticsearch index called `pandas_to_eland`.
|
||||
Overwrite existing Elasticsearch index if it exists `if_exists="replace"`, and sync index so it is
|
||||
readable on return `refresh=True`
|
||||
|
||||
|
||||
>>> ed_df = ed.pandas_to_eland(pd_df,
|
||||
... 'localhost',
|
||||
... 'pandas_to_eland',
|
||||
... es_if_exists="replace",
|
||||
... es_refresh=True,
|
||||
... es_type_overrides={'H':'text'}) # index field 'H' as text not keyword
|
||||
>>> type(ed_df)
|
||||
<class 'eland.dataframe.DataFrame'>
|
||||
>>> ed_df
|
||||
A B ... G H
|
||||
0 3.141 1 ... 1 Long text - to be indexed as es type text
|
||||
1 3.141 1 ... 2 Long text - to be indexed as es type text
|
||||
2 3.141 1 ... 3 Long text - to be indexed as es type text
|
||||
<BLANKLINE>
|
||||
[3 rows x 8 columns]
|
||||
>>> ed_df.dtypes
|
||||
A float64
|
||||
B int64
|
||||
C object
|
||||
D datetime64[ns]
|
||||
E float64
|
||||
F bool
|
||||
G int64
|
||||
H object
|
||||
dtype: object
|
||||
|
||||
See Also
|
||||
--------
|
||||
eland.eland_to_pandas: Create a pandas.Dataframe from eland.DataFrame
|
||||
"""
|
||||
if chunksize is None:
|
||||
chunksize = DEFAULT_CHUNK_SIZE
|
||||
|
||||
mapping = FieldMappings._generate_es_mappings(pd_df, es_type_overrides)
|
||||
es_client = ensure_es_client(es_client)
|
||||
|
||||
# If table exists, check if_exists parameter
|
||||
if es_client.indices.exists(index=es_dest_index):
|
||||
if es_if_exists == "fail":
|
||||
raise ValueError(
|
||||
f"Could not create the index [{es_dest_index}] because it "
|
||||
f"already exists. "
|
||||
f"Change the if_exists parameter to "
|
||||
f"'append' or 'replace' data."
|
||||
)
|
||||
elif es_if_exists == "replace":
|
||||
es_client.indices.delete(index=es_dest_index)
|
||||
es_client.indices.create(index=es_dest_index, body=mapping)
|
||||
# elif if_exists == "append":
|
||||
# TODO validate mapping are compatible
|
||||
else:
|
||||
es_client.indices.create(index=es_dest_index, body=mapping)
|
||||
|
||||
# Now add data
|
||||
actions = []
|
||||
n = 0
|
||||
for row in pd_df.iterrows():
|
||||
if es_dropna:
|
||||
values = row[1].dropna().to_dict()
|
||||
else:
|
||||
values = row[1].to_dict()
|
||||
|
||||
if use_pandas_index_for_es_ids:
|
||||
# Use index as _id
|
||||
id = row[0]
|
||||
|
||||
# Use integer as id field for repeatable results
|
||||
action = {"_index": es_dest_index, "_source": values, "_id": str(id)}
|
||||
else:
|
||||
action = {"_index": es_dest_index, "_source": values}
|
||||
|
||||
actions.append(action)
|
||||
|
||||
n = n + 1
|
||||
|
||||
if n % chunksize == 0:
|
||||
bulk(client=es_client, actions=actions, refresh=es_refresh)
|
||||
actions = []
|
||||
|
||||
bulk(client=es_client, actions=actions, refresh=es_refresh)
|
||||
return DataFrame(es_client, es_dest_index)
|
||||
|
||||
|
||||
def eland_to_pandas(ed_df: DataFrame, show_progress: bool = False) -> pd.DataFrame:
|
||||
"""
|
||||
Convert an eland.Dataframe to a pandas.DataFrame
|
||||
|
||||
**Note: this loads the entire Elasticsearch index into in core pandas.DataFrame structures. For large
|
||||
indices this can create significant load on the Elasticsearch cluster and require signficant memory**
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ed_df: eland.DataFrame
|
||||
The source eland.Dataframe referencing the Elasticsearch index
|
||||
show_progress: bool
|
||||
Output progress of option to stdout? By default False.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pandas.Dataframe
|
||||
pandas.DataFrame contains all rows and columns in eland.DataFrame
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> ed_df = ed.DataFrame('localhost', 'flights').head()
|
||||
>>> type(ed_df)
|
||||
<class 'eland.dataframe.DataFrame'>
|
||||
>>> ed_df
|
||||
AvgTicketPrice Cancelled ... dayOfWeek timestamp
|
||||
0 841.265642 False ... 0 2018-01-01 00:00:00
|
||||
1 882.982662 False ... 0 2018-01-01 18:27:00
|
||||
2 190.636904 False ... 0 2018-01-01 17:11:14
|
||||
3 181.694216 True ... 0 2018-01-01 10:33:28
|
||||
4 730.041778 False ... 0 2018-01-01 05:13:00
|
||||
<BLANKLINE>
|
||||
[5 rows x 27 columns]
|
||||
|
||||
Convert `eland.DataFrame` to `pandas.DataFrame` (Note: this loads entire Elasticsearch index into core memory)
|
||||
|
||||
>>> pd_df = ed.eland_to_pandas(ed_df)
|
||||
>>> type(pd_df)
|
||||
<class 'pandas.core.frame.DataFrame'>
|
||||
>>> pd_df
|
||||
AvgTicketPrice Cancelled ... dayOfWeek timestamp
|
||||
0 841.265642 False ... 0 2018-01-01 00:00:00
|
||||
1 882.982662 False ... 0 2018-01-01 18:27:00
|
||||
2 190.636904 False ... 0 2018-01-01 17:11:14
|
||||
3 181.694216 True ... 0 2018-01-01 10:33:28
|
||||
4 730.041778 False ... 0 2018-01-01 05:13:00
|
||||
<BLANKLINE>
|
||||
[5 rows x 27 columns]
|
||||
|
||||
Convert `eland.DataFrame` to `pandas.DataFrame` and show progress every 10000 rows
|
||||
|
||||
>>> pd_df = ed.eland_to_pandas(ed.DataFrame('localhost', 'flights'), show_progress=True) # doctest: +SKIP
|
||||
2020-01-29 12:43:36.572395: read 10000 rows
|
||||
2020-01-29 12:43:37.309031: read 13059 rows
|
||||
|
||||
See Also
|
||||
--------
|
||||
eland.pandas_to_eland: Create an eland.Dataframe from pandas.DataFrame
|
||||
"""
|
||||
return ed_df.to_pandas(show_progress=show_progress)
|
||||
|
||||
|
||||
def csv_to_eland( # type: ignore
|
||||
filepath_or_buffer,
|
||||
es_client: Union[str, List[str], Tuple[str, ...], Elasticsearch],
|
||||
es_dest_index: str,
|
||||
es_if_exists: str = "fail",
|
||||
es_refresh: bool = False,
|
||||
es_dropna: bool = False,
|
||||
es_type_overrides: Optional[Mapping[str, str]] = None,
|
||||
sep=",",
|
||||
delimiter=None,
|
||||
# Column and Index Locations and Names
|
||||
header="infer",
|
||||
names=None,
|
||||
index_col=None,
|
||||
usecols=None,
|
||||
squeeze=False,
|
||||
prefix=None,
|
||||
mangle_dupe_cols=True,
|
||||
# General Parsing Configuration
|
||||
dtype=None,
|
||||
engine=None,
|
||||
converters=None,
|
||||
true_values=None,
|
||||
false_values=None,
|
||||
skipinitialspace=False,
|
||||
skiprows=None,
|
||||
skipfooter=0,
|
||||
nrows=None,
|
||||
# Iteration
|
||||
# iterator=False,
|
||||
chunksize=None,
|
||||
# NA and Missing Data Handling
|
||||
na_values=None,
|
||||
keep_default_na=True,
|
||||
na_filter=True,
|
||||
verbose=False,
|
||||
skip_blank_lines=True,
|
||||
# Datetime Handling
|
||||
parse_dates=False,
|
||||
infer_datetime_format=False,
|
||||
keep_date_col=False,
|
||||
date_parser=None,
|
||||
dayfirst=False,
|
||||
cache_dates=True,
|
||||
# Quoting, Compression, and File Format
|
||||
compression="infer",
|
||||
thousands=None,
|
||||
decimal=b".",
|
||||
lineterminator=None,
|
||||
quotechar='"',
|
||||
quoting=csv.QUOTE_MINIMAL,
|
||||
doublequote=True,
|
||||
escapechar=None,
|
||||
comment=None,
|
||||
encoding=None,
|
||||
dialect=None,
|
||||
# Error Handling
|
||||
error_bad_lines=True,
|
||||
warn_bad_lines=True,
|
||||
# Internal
|
||||
delim_whitespace=False,
|
||||
low_memory=_c_parser_defaults["low_memory"],
|
||||
memory_map=False,
|
||||
float_precision=None,
|
||||
) -> "DataFrame":
|
||||
"""
|
||||
Read a comma-separated values (csv) file into eland.DataFrame (i.e. an Elasticsearch index).
|
||||
|
||||
**Modifies an Elasticsearch index**
|
||||
|
||||
**Note pandas iteration options not supported**
|
||||
|
||||
Parameters
|
||||
----------
|
||||
es_client: Elasticsearch client argument(s)
|
||||
- elasticsearch-py parameters or
|
||||
- elasticsearch-py instance
|
||||
es_dest_index: str
|
||||
Name of Elasticsearch index to be appended to
|
||||
es_if_exists : {'fail', 'replace', 'append'}, default 'fail'
|
||||
How to behave if the index already exists.
|
||||
|
||||
- fail: Raise a ValueError.
|
||||
- replace: Delete the index before inserting new values.
|
||||
- append: Insert new values to the existing index. Create if does not exist.
|
||||
es_dropna: bool, default 'False'
|
||||
* True: Remove missing values (see pandas.Series.dropna)
|
||||
* False: Include missing values - may cause bulk to fail
|
||||
es_type_overrides: dict, default None
|
||||
Dict of columns: es_type to override default es datatype mappings
|
||||
chunksize
|
||||
number of csv rows to read before bulk index into Elasticsearch
|
||||
|
||||
Other Parameters
|
||||
----------------
|
||||
Parameters derived from :pandas_api_docs:`pandas.read_csv`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
:pandas_api_docs:`pandas.read_csv`
|
||||
|
||||
Notes
|
||||
-----
|
||||
iterator not supported
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
See if 'churn' index exists in Elasticsearch
|
||||
|
||||
>>> from elasticsearch import Elasticsearch # doctest: +SKIP
|
||||
>>> es = Elasticsearch() # doctest: +SKIP
|
||||
>>> es.indices.exists(index="churn") # doctest: +SKIP
|
||||
False
|
||||
|
||||
Read 'churn.csv' and use first column as _id (and eland.DataFrame index)
|
||||
::
|
||||
|
||||
# churn.csv
|
||||
,state,account length,area code,phone number,international plan,voice mail plan,number vmail messages,total day minutes,total day calls,total day charge,total eve minutes,total eve calls,total eve charge,total night minutes,total night calls,total night charge,total intl minutes,total intl calls,total intl charge,customer service calls,churn
|
||||
0,KS,128,415,382-4657,no,yes,25,265.1,110,45.07,197.4,99,16.78,244.7,91,11.01,10.0,3,2.7,1,0
|
||||
1,OH,107,415,371-7191,no,yes,26,161.6,123,27.47,195.5,103,16.62,254.4,103,11.45,13.7,3,3.7,1,0
|
||||
...
|
||||
|
||||
>>> ed.csv_to_eland(
|
||||
... "churn.csv",
|
||||
... es_client='localhost',
|
||||
... es_dest_index='churn',
|
||||
... es_refresh=True,
|
||||
... index_col=0
|
||||
... ) # doctest: +SKIP
|
||||
account length area code churn customer service calls ... total night calls total night charge total night minutes voice mail plan
|
||||
0 128 415 0 1 ... 91 11.01 244.7 yes
|
||||
1 107 415 0 1 ... 103 11.45 254.4 yes
|
||||
2 137 415 0 0 ... 104 7.32 162.6 no
|
||||
3 84 408 0 2 ... 89 8.86 196.9 no
|
||||
4 75 415 0 3 ... 121 8.41 186.9 no
|
||||
... ... ... ... ... ... ... ... ... ...
|
||||
3328 192 415 0 2 ... 83 12.56 279.1 yes
|
||||
3329 68 415 0 3 ... 123 8.61 191.3 no
|
||||
3330 28 510 0 2 ... 91 8.64 191.9 no
|
||||
3331 184 510 0 2 ... 137 6.26 139.2 no
|
||||
3332 74 415 0 0 ... 77 10.86 241.4 yes
|
||||
<BLANKLINE>
|
||||
[3333 rows x 21 columns]
|
||||
|
||||
Validate data now exists in 'churn' index:
|
||||
|
||||
>>> es.search(index="churn", size=1) # doctest: +SKIP
|
||||
{'took': 1, 'timed_out': False, '_shards': {'total': 1, 'successful': 1, 'skipped': 0, 'failed': 0}, 'hits': {'total': {'value': 3333, 'relation': 'eq'}, 'max_score': 1.0, 'hits': [{'_index': 'churn', '_id': '0', '_score': 1.0, '_source': {'state': 'KS', 'account length': 128, 'area code': 415, 'phone number': '382-4657', 'international plan': 'no', 'voice mail plan': 'yes', 'number vmail messages': 25, 'total day minutes': 265.1, 'total day calls': 110, 'total day charge': 45.07, 'total eve minutes': 197.4, 'total eve calls': 99, 'total eve charge': 16.78, 'total night minutes': 244.7, 'total night calls': 91, 'total night charge': 11.01, 'total intl minutes': 10.0, 'total intl calls': 3, 'total intl charge': 2.7, 'customer service calls': 1, 'churn': 0}}]}}
|
||||
|
||||
TODO - currently the eland.DataFrame may not retain the order of the data in the csv.
|
||||
"""
|
||||
kwargs: Dict[str, Any] = {
|
||||
"sep": sep,
|
||||
"delimiter": delimiter,
|
||||
"engine": engine,
|
||||
"dialect": dialect,
|
||||
"compression": compression,
|
||||
# "engine_specified": engine_specified,
|
||||
"doublequote": doublequote,
|
||||
"escapechar": escapechar,
|
||||
"quotechar": quotechar,
|
||||
"quoting": quoting,
|
||||
"skipinitialspace": skipinitialspace,
|
||||
"lineterminator": lineterminator,
|
||||
"header": header,
|
||||
"index_col": index_col,
|
||||
"names": names,
|
||||
"prefix": prefix,
|
||||
"skiprows": skiprows,
|
||||
"skipfooter": skipfooter,
|
||||
"na_values": na_values,
|
||||
"true_values": true_values,
|
||||
"false_values": false_values,
|
||||
"keep_default_na": keep_default_na,
|
||||
"thousands": thousands,
|
||||
"comment": comment,
|
||||
"decimal": decimal,
|
||||
"parse_dates": parse_dates,
|
||||
"keep_date_col": keep_date_col,
|
||||
"dayfirst": dayfirst,
|
||||
"date_parser": date_parser,
|
||||
"cache_dates": cache_dates,
|
||||
"nrows": nrows,
|
||||
# "iterator": iterator,
|
||||
"chunksize": chunksize,
|
||||
"converters": converters,
|
||||
"dtype": dtype,
|
||||
"usecols": usecols,
|
||||
"verbose": verbose,
|
||||
"encoding": encoding,
|
||||
"squeeze": squeeze,
|
||||
"memory_map": memory_map,
|
||||
"float_precision": float_precision,
|
||||
"na_filter": na_filter,
|
||||
"delim_whitespace": delim_whitespace,
|
||||
"warn_bad_lines": warn_bad_lines,
|
||||
"error_bad_lines": error_bad_lines,
|
||||
"low_memory": low_memory,
|
||||
"mangle_dupe_cols": mangle_dupe_cols,
|
||||
"infer_datetime_format": infer_datetime_format,
|
||||
"skip_blank_lines": skip_blank_lines,
|
||||
}
|
||||
|
||||
if chunksize is None:
|
||||
kwargs["chunksize"] = DEFAULT_CHUNK_SIZE
|
||||
|
||||
# read csv in chunks to pandas DataFrame and dump to eland DataFrame (and Elasticsearch)
|
||||
reader = pd.read_csv(filepath_or_buffer, **kwargs)
|
||||
|
||||
first_write = True
|
||||
for chunk in reader:
|
||||
if first_write:
|
||||
pandas_to_eland(
|
||||
chunk,
|
||||
es_client,
|
||||
es_dest_index,
|
||||
es_if_exists=es_if_exists,
|
||||
chunksize=chunksize,
|
||||
es_refresh=es_refresh,
|
||||
es_dropna=es_dropna,
|
||||
es_type_overrides=es_type_overrides,
|
||||
)
|
||||
first_write = False
|
||||
else:
|
||||
pandas_to_eland(
|
||||
chunk,
|
||||
es_client,
|
||||
es_dest_index,
|
||||
es_if_exists="append",
|
||||
chunksize=chunksize,
|
||||
es_refresh=es_refresh,
|
||||
es_dropna=es_dropna,
|
||||
es_type_overrides=es_type_overrides,
|
||||
)
|
||||
|
||||
# Now create an eland.DataFrame that references the new index
|
||||
return DataFrame(es_client, es_index_pattern=es_dest_index)
|
||||
|
||||
|
||||
@deprecated_api("eland.csv_to_eland()")
|
||||
def read_csv(*args, **kwargs) -> DataFrame: # type: ignore
|
||||
return csv_to_eland(*args, **kwargs)
|
@ -14,7 +14,10 @@ from pandas.core.dtypes.common import (
|
||||
is_string_dtype,
|
||||
)
|
||||
from pandas.core.dtypes.inference import is_list_like
|
||||
from typing import NamedTuple, Optional
|
||||
from typing import NamedTuple, Optional, Mapping, Dict, TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from eland import DataFrame
|
||||
|
||||
|
||||
class Field(NamedTuple):
|
||||
@ -431,7 +434,9 @@ class FieldMappings:
|
||||
return es_dtype
|
||||
|
||||
@staticmethod
|
||||
def _generate_es_mappings(dataframe, es_type_overrides=None):
|
||||
def _generate_es_mappings(
|
||||
dataframe: "DataFrame", es_type_overrides: Optional[Mapping[str, str]] = None
|
||||
) -> Dict[str, str]:
|
||||
"""Given a pandas dataframe, generate the associated Elasticsearch mapping
|
||||
|
||||
Parameters
|
||||
@ -712,7 +717,7 @@ class FieldMappings:
|
||||
# Convert return from 'str' to 'np.dtype'
|
||||
return pd_dtypes.apply(lambda x: np.dtype(x))
|
||||
|
||||
def info_es(self, buf):
|
||||
def es_info(self, buf):
|
||||
buf.write("Mappings:\n")
|
||||
buf.write(f" capabilities:\n{self._mappings_capabilities.to_string()}\n")
|
||||
|
||||
|
@ -4,6 +4,7 @@
|
||||
|
||||
|
||||
from typing import Optional, TextIO, TYPE_CHECKING
|
||||
from eland.utils import deprecated_api
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .query_compiler import QueryCompiler
|
||||
@ -30,7 +31,7 @@ class Index:
|
||||
ID_SORT_FIELD = "_doc" # if index field is _id, sort by _doc
|
||||
|
||||
def __init__(
|
||||
self, query_compiler: "QueryCompiler", index_field: Optional[str] = None
|
||||
self, query_compiler: "QueryCompiler", es_index_field: Optional[str] = None
|
||||
):
|
||||
self._query_compiler = query_compiler
|
||||
|
||||
@ -41,7 +42,7 @@ class Index:
|
||||
# The type:ignore is due to mypy not being smart enough
|
||||
# to recognize the property.setter has a different type
|
||||
# than the property.getter.
|
||||
self.index_field = index_field # type: ignore
|
||||
self.es_index_field = es_index_field # type: ignore
|
||||
|
||||
@property
|
||||
def sort_field(self) -> str:
|
||||
@ -54,11 +55,11 @@ class Index:
|
||||
return self._is_source_field
|
||||
|
||||
@property
|
||||
def index_field(self) -> str:
|
||||
def es_index_field(self) -> str:
|
||||
return self._index_field
|
||||
|
||||
@index_field.setter
|
||||
def index_field(self, index_field: Optional[str]) -> None:
|
||||
@es_index_field.setter
|
||||
def es_index_field(self, index_field: Optional[str]) -> None:
|
||||
if index_field is None or index_field == Index.ID_INDEX_FIELD:
|
||||
self._index_field = Index.ID_INDEX_FIELD
|
||||
self._is_source_field = False
|
||||
@ -77,7 +78,11 @@ class Index:
|
||||
def __iter__(self) -> "Index":
|
||||
return self
|
||||
|
||||
def info_es(self, buf: TextIO) -> None:
|
||||
def es_info(self, buf: TextIO) -> None:
|
||||
buf.write("Index:\n")
|
||||
buf.write(f" index_field: {self.index_field}\n")
|
||||
buf.write(f" es_index_field: {self.es_index_field}\n")
|
||||
buf.write(f" is_source_field: {self.is_source_field}\n")
|
||||
|
||||
@deprecated_api("eland.Index.es_info()")
|
||||
def info_es(self, buf: TextIO) -> None:
|
||||
self.es_info(buf)
|
||||
|
@ -36,11 +36,11 @@ only Elasticsearch aggregatable fields can be aggregated or grouped.
|
||||
class NDFrame(ABC):
|
||||
def __init__(
|
||||
self,
|
||||
client=None,
|
||||
index_pattern=None,
|
||||
es_client=None,
|
||||
es_index_pattern=None,
|
||||
columns=None,
|
||||
index_field=None,
|
||||
query_compiler=None,
|
||||
es_index_field=None,
|
||||
_query_compiler=None,
|
||||
):
|
||||
"""
|
||||
pandas.DataFrame/Series like API that proxies into Elasticsearch index(es).
|
||||
@ -50,14 +50,14 @@ class NDFrame(ABC):
|
||||
client : elasticsearch.Elasticsearch
|
||||
A reference to a Elasticsearch python client
|
||||
"""
|
||||
if query_compiler is None:
|
||||
query_compiler = QueryCompiler(
|
||||
client=client,
|
||||
index_pattern=index_pattern,
|
||||
if _query_compiler is None:
|
||||
_query_compiler = QueryCompiler(
|
||||
client=es_client,
|
||||
index_pattern=es_index_pattern,
|
||||
display_names=columns,
|
||||
index_field=index_field,
|
||||
index_field=es_index_field,
|
||||
)
|
||||
self._query_compiler = query_compiler
|
||||
self._query_compiler = _query_compiler
|
||||
|
||||
def _get_index(self):
|
||||
"""
|
||||
@ -77,11 +77,11 @@ class NDFrame(ABC):
|
||||
--------
|
||||
>>> df = ed.DataFrame('localhost', 'flights')
|
||||
>>> assert isinstance(df.index, ed.Index)
|
||||
>>> df.index.index_field
|
||||
>>> df.index.es_index_field
|
||||
'_id'
|
||||
>>> s = df['Carrier']
|
||||
>>> assert isinstance(s.index, ed.Index)
|
||||
>>> s.index.index_field
|
||||
>>> s.index.es_index_field
|
||||
'_id'
|
||||
"""
|
||||
return self._query_compiler.index
|
||||
@ -118,15 +118,15 @@ class NDFrame(ABC):
|
||||
def _build_repr(self, num_rows):
|
||||
# self could be Series or DataFrame
|
||||
if len(self.index) <= num_rows:
|
||||
return self._to_pandas()
|
||||
return self.to_pandas()
|
||||
|
||||
num_rows = num_rows
|
||||
|
||||
head_rows = int(num_rows / 2) + num_rows % 2
|
||||
tail_rows = num_rows - head_rows
|
||||
|
||||
head = self.head(head_rows)._to_pandas()
|
||||
tail = self.tail(tail_rows)._to_pandas()
|
||||
head = self.head(head_rows).to_pandas()
|
||||
tail = self.tail(tail_rows).to_pandas()
|
||||
|
||||
return head.append(tail)
|
||||
|
||||
@ -142,8 +142,8 @@ class NDFrame(ABC):
|
||||
"""
|
||||
return len(self.index)
|
||||
|
||||
def _info_es(self, buf):
|
||||
self._query_compiler.info_es(buf)
|
||||
def _es_info(self, buf):
|
||||
self._query_compiler.es_info(buf)
|
||||
|
||||
def mean(self, numeric_only=True):
|
||||
"""
|
||||
@ -478,7 +478,7 @@ class NDFrame(ABC):
|
||||
return self._query_compiler.describe()
|
||||
|
||||
@abstractmethod
|
||||
def _to_pandas(self, show_progress=False):
|
||||
def to_pandas(self, show_progress=False):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
|
@ -11,7 +11,7 @@ import numpy as np
|
||||
import pandas as pd
|
||||
from elasticsearch.helpers import scan
|
||||
|
||||
from eland import Index
|
||||
from eland.index import Index
|
||||
from eland.common import (
|
||||
SortOrder,
|
||||
DEFAULT_CSV_BATCH_OUTPUT_SIZE,
|
||||
@ -860,7 +860,7 @@ class Operations:
|
||||
# This can return None
|
||||
return size
|
||||
|
||||
def info_es(self, query_compiler, buf):
|
||||
def es_info(self, query_compiler, buf):
|
||||
buf.write("Operations:\n")
|
||||
buf.write(f" tasks: {self._tasks}\n")
|
||||
|
||||
|
@ -12,7 +12,7 @@ import pandas as pd
|
||||
from eland.field_mappings import FieldMappings
|
||||
from eland.filter import QueryFilter
|
||||
from eland.operations import Operations
|
||||
from eland import Index
|
||||
from eland.index import Index
|
||||
from eland.common import (
|
||||
ensure_es_client,
|
||||
DEFAULT_PROGRESS_REPORTING_NUM_ROWS,
|
||||
@ -64,7 +64,7 @@ class QueryCompiler:
|
||||
if to_copy is not None:
|
||||
self._client = to_copy._client
|
||||
self._index_pattern = to_copy._index_pattern
|
||||
self._index = Index(self, to_copy._index.index_field)
|
||||
self._index = Index(self, to_copy._index.es_index_field)
|
||||
self._operations = copy.deepcopy(to_copy._operations)
|
||||
self._mappings: FieldMappings = copy.deepcopy(to_copy._mappings)
|
||||
else:
|
||||
@ -240,9 +240,9 @@ class QueryCompiler:
|
||||
|
||||
# get index value - can be _id or can be field value in source
|
||||
if self._index.is_source_field:
|
||||
index_field = row[self._index.index_field]
|
||||
index_field = row[self._index.es_index_field]
|
||||
else:
|
||||
index_field = hit[self._index.index_field]
|
||||
index_field = hit[self._index.es_index_field]
|
||||
index.append(index_field)
|
||||
|
||||
# flatten row to map correctly to 2D DataFrame
|
||||
@ -349,7 +349,7 @@ class QueryCompiler:
|
||||
index_count: int
|
||||
Count of docs where index_field exists
|
||||
"""
|
||||
return self._operations.index_count(self, self.index.index_field)
|
||||
return self._operations.index_count(self, self.index.es_index_field)
|
||||
|
||||
def _index_matches_count(self, items):
|
||||
"""
|
||||
@ -358,7 +358,9 @@ class QueryCompiler:
|
||||
index_count: int
|
||||
Count of docs where items exist
|
||||
"""
|
||||
return self._operations.index_matches_count(self, self.index.index_field, items)
|
||||
return self._operations.index_matches_count(
|
||||
self, self.index.es_index_field, items
|
||||
)
|
||||
|
||||
def _empty_pd_ef(self):
|
||||
# Return an empty dataframe with correct columns and dtypes
|
||||
@ -463,7 +465,7 @@ class QueryCompiler:
|
||||
result._mappings.display_names = new_columns.to_list()
|
||||
|
||||
if index is not None:
|
||||
result._operations.drop_index_values(self, self.index.index_field, index)
|
||||
result._operations.drop_index_values(self, self.index.es_index_field, index)
|
||||
|
||||
return result
|
||||
|
||||
@ -503,12 +505,12 @@ class QueryCompiler:
|
||||
def value_counts(self, es_size):
|
||||
return self._operations.value_counts(self, es_size)
|
||||
|
||||
def info_es(self, buf):
|
||||
buf.write(f"index_pattern: {self._index_pattern}\n")
|
||||
def es_info(self, buf):
|
||||
buf.write(f"es_index_pattern: {self._index_pattern}\n")
|
||||
|
||||
self._index.info_es(buf)
|
||||
self._mappings.info_es(buf)
|
||||
self._operations.info_es(self, buf)
|
||||
self._index.es_info(buf)
|
||||
self._mappings.es_info(buf)
|
||||
self._operations.es_info(self, buf)
|
||||
|
||||
def describe(self):
|
||||
return self._operations.describe(self)
|
||||
@ -550,10 +552,10 @@ class QueryCompiler:
|
||||
f"{self._client} != {right._client}"
|
||||
)
|
||||
|
||||
if self._index.index_field != right._index.index_field:
|
||||
if self._index.es_index_field != right._index.es_index_field:
|
||||
raise ValueError(
|
||||
f"Can not perform arithmetic operations across different index fields "
|
||||
f"{self._index.index_field} != {right._index.index_field}"
|
||||
f"{self._index.es_index_field} != {right._index.es_index_field}"
|
||||
)
|
||||
|
||||
if self._index_pattern != right._index_pattern:
|
||||
|
@ -40,6 +40,7 @@ from eland.filter import (
|
||||
ScriptFilter,
|
||||
IsIn,
|
||||
)
|
||||
from eland.utils import deprecated_api
|
||||
|
||||
|
||||
def _get_method_name():
|
||||
@ -52,13 +53,13 @@ class Series(NDFrame):
|
||||
|
||||
Parameters
|
||||
----------
|
||||
client : elasticsearch.Elasticsearch
|
||||
es_client : elasticsearch.Elasticsearch
|
||||
A reference to a Elasticsearch python client
|
||||
|
||||
index_pattern : str
|
||||
es_index_pattern : str
|
||||
An Elasticsearch index pattern. This can contain wildcards.
|
||||
|
||||
index_field : str
|
||||
es_index_field : str
|
||||
The field to base the series on
|
||||
|
||||
Notes
|
||||
@ -72,7 +73,7 @@ class Series(NDFrame):
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> ed.Series(client='localhost', index_pattern='flights', name='Carrier')
|
||||
>>> ed.Series(es_client='localhost', es_index_pattern='flights', name='Carrier')
|
||||
0 Kibana Airlines
|
||||
1 Logstash Airways
|
||||
2 Logstash Airways
|
||||
@ -89,11 +90,11 @@ class Series(NDFrame):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
client=None,
|
||||
index_pattern=None,
|
||||
es_client=None,
|
||||
es_index_pattern=None,
|
||||
name=None,
|
||||
index_field=None,
|
||||
query_compiler=None,
|
||||
es_index_field=None,
|
||||
_query_compiler=None,
|
||||
):
|
||||
# Series has 1 column
|
||||
if name is None:
|
||||
@ -102,11 +103,11 @@ class Series(NDFrame):
|
||||
columns = [name]
|
||||
|
||||
super().__init__(
|
||||
client=client,
|
||||
index_pattern=index_pattern,
|
||||
es_client=es_client,
|
||||
es_index_pattern=es_index_pattern,
|
||||
columns=columns,
|
||||
index_field=index_field,
|
||||
query_compiler=query_compiler,
|
||||
es_index_field=es_index_field,
|
||||
_query_compiler=_query_compiler,
|
||||
)
|
||||
|
||||
hist = eland.plotting.ed_hist_series
|
||||
@ -217,16 +218,20 @@ class Series(NDFrame):
|
||||
13058 JetBeats
|
||||
Name: Airline, Length: 13059, dtype: object
|
||||
"""
|
||||
return Series(query_compiler=self._query_compiler.rename({self.name: new_name}))
|
||||
return Series(
|
||||
_query_compiler=self._query_compiler.rename({self.name: new_name})
|
||||
)
|
||||
|
||||
def head(self, n=5):
|
||||
return Series(query_compiler=self._query_compiler.head(n))
|
||||
return Series(_query_compiler=self._query_compiler.head(n))
|
||||
|
||||
def tail(self, n=5):
|
||||
return Series(query_compiler=self._query_compiler.tail(n))
|
||||
return Series(_query_compiler=self._query_compiler.tail(n))
|
||||
|
||||
def sample(self, n: int = None, frac: float = None, random_state: int = None):
|
||||
return Series(query_compiler=self._query_compiler.sample(n, frac, random_state))
|
||||
return Series(
|
||||
_query_compiler=self._query_compiler.sample(n, frac, random_state)
|
||||
)
|
||||
|
||||
def value_counts(self, es_size=10):
|
||||
"""
|
||||
@ -390,7 +395,7 @@ class Series(NDFrame):
|
||||
result = _buf.getvalue()
|
||||
return result
|
||||
|
||||
def _to_pandas(self, show_progress=False):
|
||||
def to_pandas(self, show_progress=False):
|
||||
return self._query_compiler.to_pandas(show_progress=show_progress)[self.name]
|
||||
|
||||
@property
|
||||
@ -484,13 +489,17 @@ class Series(NDFrame):
|
||||
"""
|
||||
return 1
|
||||
|
||||
def info_es(self):
|
||||
def es_info(self):
|
||||
buf = StringIO()
|
||||
|
||||
super()._info_es(buf)
|
||||
super()._es_info(buf)
|
||||
|
||||
return buf.getvalue()
|
||||
|
||||
@deprecated_api("eland.Series.es_info()")
|
||||
def info_es(self):
|
||||
return self.es_info()
|
||||
|
||||
def __add__(self, right):
|
||||
"""
|
||||
Return addition of series and right, element-wise (binary operator add).
|
||||
@ -1081,7 +1090,7 @@ class Series(NDFrame):
|
||||
left_object.arithmetic_operation(method_name, right_object)
|
||||
|
||||
series = Series(
|
||||
query_compiler=self._query_compiler.arithmetic_op_fields(
|
||||
_query_compiler=self._query_compiler.arithmetic_op_fields(
|
||||
display_name, left_object
|
||||
)
|
||||
)
|
||||
|
@ -24,10 +24,10 @@ from eland.tests import (
|
||||
_pd_flights = pd.read_json(FLIGHTS_DF_FILE_NAME).sort_index()
|
||||
_pd_flights["timestamp"] = pd.to_datetime(_pd_flights["timestamp"])
|
||||
_pd_flights.index = _pd_flights.index.map(str) # make index 'object' not int
|
||||
_ed_flights = ed.read_es(ES_TEST_CLIENT, FLIGHTS_INDEX_NAME)
|
||||
_ed_flights = ed.DataFrame(ES_TEST_CLIENT, FLIGHTS_INDEX_NAME)
|
||||
|
||||
_pd_flights_small = _pd_flights.head(48)
|
||||
_ed_flights_small = ed.read_es(ES_TEST_CLIENT, FLIGHTS_SMALL_INDEX_NAME)
|
||||
_ed_flights_small = ed.DataFrame(ES_TEST_CLIENT, FLIGHTS_SMALL_INDEX_NAME)
|
||||
|
||||
_pd_ecommerce = pd.read_json(ECOMMERCE_DF_FILE_NAME).sort_index()
|
||||
_pd_ecommerce["order_date"] = pd.to_datetime(_pd_ecommerce["order_date"])
|
||||
@ -37,7 +37,7 @@ _pd_ecommerce["products.created_on"] = _pd_ecommerce["products.created_on"].appl
|
||||
_pd_ecommerce.insert(2, "customer_birth_date", None)
|
||||
_pd_ecommerce.index = _pd_ecommerce.index.map(str) # make index 'object' not int
|
||||
_pd_ecommerce["customer_birth_date"].astype("datetime64")
|
||||
_ed_ecommerce = ed.read_es(ES_TEST_CLIENT, ECOMMERCE_INDEX_NAME)
|
||||
_ed_ecommerce = ed.DataFrame(ES_TEST_CLIENT, ECOMMERCE_INDEX_NAME)
|
||||
|
||||
|
||||
class TestData:
|
||||
@ -68,7 +68,7 @@ def assert_pandas_eland_frame_equal(left, right):
|
||||
raise AssertionError(f"Expected type ed.DataFrame, found {type(right)} instead")
|
||||
|
||||
# Use pandas tests to check similarity
|
||||
assert_frame_equal(left, right._to_pandas())
|
||||
assert_frame_equal(left, right.to_pandas())
|
||||
|
||||
|
||||
def assert_eland_frame_equal(left, right):
|
||||
@ -79,7 +79,7 @@ def assert_eland_frame_equal(left, right):
|
||||
raise AssertionError(f"Expected type ed.DataFrame, found {type(right)} instead")
|
||||
|
||||
# Use pandas tests to check similarity
|
||||
assert_frame_equal(left._to_pandas(), right._to_pandas())
|
||||
assert_frame_equal(left.to_pandas(), right.to_pandas())
|
||||
|
||||
|
||||
def assert_pandas_eland_series_equal(left, right, check_less_precise=False):
|
||||
@ -90,4 +90,4 @@ def assert_pandas_eland_series_equal(left, right, check_less_precise=False):
|
||||
raise AssertionError(f"Expected type ed.Series, found {type(right)} instead")
|
||||
|
||||
# Use pandas tests to check similarity
|
||||
assert_series_equal(left, right._to_pandas(), check_less_precise=check_less_precise)
|
||||
assert_series_equal(left, right.to_pandas(), check_less_precise=check_less_precise)
|
||||
|
@ -101,7 +101,7 @@ class TestDataFrameDateTime(TestData):
|
||||
# print(df.to_string())
|
||||
# print(ed_df.to_string())
|
||||
# print(ed_df.dtypes)
|
||||
# print(ed_df._to_pandas().dtypes)
|
||||
# print(ed_df.to_pandas().dtypes)
|
||||
|
||||
assert_series_equal(df.dtypes, ed_df.dtypes)
|
||||
|
||||
@ -109,7 +109,7 @@ class TestDataFrameDateTime(TestData):
|
||||
|
||||
def test_all_formats(self):
|
||||
index_name = self.time_index_name
|
||||
ed_df = ed.read_es(ES_TEST_CLIENT, index_name)
|
||||
ed_df = ed.DataFrame(ES_TEST_CLIENT, index_name)
|
||||
|
||||
for format_name in self.time_formats.keys():
|
||||
times = [
|
||||
|
@ -20,15 +20,15 @@ class TestDataFrameInit:
|
||||
|
||||
# Construct invalid DataFrame (throws)
|
||||
with pytest.raises(ValueError):
|
||||
ed.DataFrame(client=ES_TEST_CLIENT)
|
||||
ed.DataFrame(es_client=ES_TEST_CLIENT)
|
||||
|
||||
# Construct invalid DataFrame (throws)
|
||||
with pytest.raises(ValueError):
|
||||
ed.DataFrame(index_pattern=FLIGHTS_INDEX_NAME)
|
||||
ed.DataFrame(es_index_pattern=FLIGHTS_INDEX_NAME)
|
||||
|
||||
# Good constructors
|
||||
ed.DataFrame(ES_TEST_CLIENT, FLIGHTS_INDEX_NAME)
|
||||
ed.DataFrame(client=ES_TEST_CLIENT, index_pattern=FLIGHTS_INDEX_NAME)
|
||||
ed.DataFrame(es_client=ES_TEST_CLIENT, es_index_pattern=FLIGHTS_INDEX_NAME)
|
||||
|
||||
qc = QueryCompiler(client=ES_TEST_CLIENT, index_pattern=FLIGHTS_INDEX_NAME)
|
||||
ed.DataFrame(query_compiler=qc)
|
||||
ed.DataFrame(_query_compiler=qc)
|
||||
|
@ -7,7 +7,7 @@ import pytest
|
||||
from pandas.testing import assert_frame_equal
|
||||
|
||||
from eland.tests.common import TestData
|
||||
from eland.utils import eland_to_pandas
|
||||
from eland import eland_to_pandas
|
||||
|
||||
|
||||
class TestDataFrameSample(TestData):
|
||||
|
@ -65,7 +65,7 @@ class TestDataFrameToCSV(TestData):
|
||||
|
||||
test_index = FLIGHTS_INDEX_NAME + "." + str(now_millis)
|
||||
|
||||
ed_flights_from_csv = ed.read_csv(
|
||||
ed_flights_from_csv = ed.csv_to_eland(
|
||||
results_file,
|
||||
ES_TEST_CLIENT,
|
||||
test_index,
|
||||
|
@ -43,7 +43,7 @@ class TestScriptedFields(TestData):
|
||||
|
||||
# note 'None' is printed as 'NaN' in index, but .index shows it is 'None'
|
||||
buf = StringIO()
|
||||
ed_field_mappings.info_es(buf)
|
||||
ed_field_mappings.es_info(buf)
|
||||
print(buf.getvalue())
|
||||
|
||||
expected = self.pd_flights().columns.to_list()
|
||||
|
@ -47,7 +47,7 @@ class TestSeriesFrameHist(TestData):
|
||||
pd_weights = pd.DataFrame({"FlightDelayMin": pd_filteredhist[0]})
|
||||
|
||||
d = ed_flights[ed_flights.FlightDelay == True].FlightDelayMin
|
||||
print(d.info_es())
|
||||
print(d.es_info())
|
||||
|
||||
ed_bins, ed_weights = ed_flights[
|
||||
ed_flights.FlightDelay == True
|
||||
|
@ -12,4 +12,4 @@ class TestSeriesInfoEs(TestData):
|
||||
ed_flights = self.ed_flights()["AvgTicketPrice"]
|
||||
|
||||
# No assertion, just test it can be called
|
||||
ed_flights.info_es()
|
||||
ed_flights.es_info()
|
||||
|
@ -23,14 +23,14 @@ class TestSeriesRename(TestData):
|
||||
print(pd_renamed)
|
||||
print(ed_renamed)
|
||||
|
||||
print(ed_renamed.info_es())
|
||||
print(ed_renamed.es_info())
|
||||
|
||||
assert_pandas_eland_series_equal(pd_renamed, ed_renamed)
|
||||
|
||||
pd_renamed2 = pd_renamed.rename("renamed2")
|
||||
ed_renamed2 = ed_renamed.rename("renamed2")
|
||||
|
||||
print(ed_renamed2.info_es())
|
||||
print(ed_renamed2.es_info())
|
||||
|
||||
assert "renamed2" == ed_renamed2.name
|
||||
|
||||
|
@ -14,7 +14,7 @@ class TestSeriesSample(TestData):
|
||||
SEED = 42
|
||||
|
||||
def build_from_index(self, ed_series):
|
||||
ed2pd_series = ed_series._to_pandas()
|
||||
ed2pd_series = ed_series.to_pandas()
|
||||
return self.pd_flights()["Carrier"].iloc[ed2pd_series.index]
|
||||
|
||||
def test_sample(self):
|
||||
|
519
eland/utils.py
519
eland/utils.py
@ -2,515 +2,24 @@
|
||||
# Elasticsearch B.V licenses this file to you under the Apache 2.0 License.
|
||||
# See the LICENSE file in the project root for more information
|
||||
|
||||
import csv
|
||||
from typing import Union, List, Tuple, Optional, Mapping
|
||||
|
||||
import pandas as pd
|
||||
from pandas.io.parsers import _c_parser_defaults
|
||||
|
||||
from eland import DataFrame
|
||||
from eland.field_mappings import FieldMappings
|
||||
from eland.common import ensure_es_client, DEFAULT_CHUNK_SIZE
|
||||
from elasticsearch import Elasticsearch
|
||||
from elasticsearch.helpers import bulk
|
||||
import functools
|
||||
import warnings
|
||||
from typing import Callable, TypeVar
|
||||
|
||||
|
||||
def read_es(
|
||||
es_client: Union[str, List[str], Tuple[str, ...], Elasticsearch],
|
||||
es_index_pattern: str,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Utility method to create an eland.Dataframe from an Elasticsearch index_pattern.
|
||||
(Similar to pandas.read_csv, but source data is an Elasticsearch index rather than
|
||||
a csv file)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
es_client: Elasticsearch client argument(s)
|
||||
- elasticsearch-py parameters or
|
||||
- elasticsearch-py instance
|
||||
es_index_pattern: str
|
||||
Elasticsearch index pattern
|
||||
|
||||
Returns
|
||||
-------
|
||||
eland.DataFrame
|
||||
|
||||
See Also
|
||||
--------
|
||||
eland.pandas_to_eland: Create an eland.Dataframe from pandas.DataFrame
|
||||
eland.eland_to_pandas: Create a pandas.Dataframe from eland.DataFrame
|
||||
"""
|
||||
return DataFrame(client=es_client, index_pattern=es_index_pattern)
|
||||
F = TypeVar("F")
|
||||
|
||||
|
||||
def pandas_to_eland(
|
||||
pd_df: pd.DataFrame,
|
||||
es_client: Union[str, List[str], Tuple[str, ...], Elasticsearch],
|
||||
es_dest_index: str,
|
||||
es_if_exists: str = "fail",
|
||||
es_refresh: bool = False,
|
||||
es_dropna: bool = False,
|
||||
es_type_overrides: Optional[Mapping[str, str]] = None,
|
||||
chunksize: Optional[int] = None,
|
||||
use_pandas_index_for_es_ids: bool = True,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Append a pandas DataFrame to an Elasticsearch index.
|
||||
Mainly used in testing.
|
||||
Modifies the elasticsearch destination index
|
||||
|
||||
Parameters
|
||||
----------
|
||||
es_client: Elasticsearch client argument(s)
|
||||
- elasticsearch-py parameters or
|
||||
- elasticsearch-py instance
|
||||
es_dest_index: str
|
||||
Name of Elasticsearch index to be appended to
|
||||
es_if_exists : {'fail', 'replace', 'append'}, default 'fail'
|
||||
How to behave if the index already exists.
|
||||
|
||||
- fail: Raise a ValueError.
|
||||
- replace: Delete the index before inserting new values.
|
||||
- append: Insert new values to the existing index. Create if does not exist.
|
||||
es_refresh: bool, default 'False'
|
||||
Refresh es_dest_index after bulk index
|
||||
es_dropna: bool, default 'False'
|
||||
* True: Remove missing values (see pandas.Series.dropna)
|
||||
* False: Include missing values - may cause bulk to fail
|
||||
es_type_overrides: dict, default None
|
||||
Dict of field_name: es_data_type that overrides default es data types
|
||||
chunksize: int, default None
|
||||
Number of pandas.DataFrame rows to read before bulk index into Elasticsearch
|
||||
use_pandas_index_for_es_ids: bool, default 'True'
|
||||
* True: pandas.DataFrame.index fields will be used to populate Elasticsearch '_id' fields.
|
||||
* False: Ignore pandas.DataFrame.index when indexing into Elasticsearch
|
||||
|
||||
Returns
|
||||
-------
|
||||
eland.Dataframe
|
||||
eland.DataFrame referencing data in destination_index
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> pd_df = pd.DataFrame(data={'A': 3.141,
|
||||
... 'B': 1,
|
||||
... 'C': 'foo',
|
||||
... 'D': pd.Timestamp('20190102'),
|
||||
... 'E': [1.0, 2.0, 3.0],
|
||||
... 'F': False,
|
||||
... 'G': [1, 2, 3],
|
||||
... 'H': 'Long text - to be indexed as es type text'},
|
||||
... index=['0', '1', '2'])
|
||||
>>> type(pd_df)
|
||||
<class 'pandas.core.frame.DataFrame'>
|
||||
>>> pd_df
|
||||
A B ... G H
|
||||
0 3.141 1 ... 1 Long text - to be indexed as es type text
|
||||
1 3.141 1 ... 2 Long text - to be indexed as es type text
|
||||
2 3.141 1 ... 3 Long text - to be indexed as es type text
|
||||
<BLANKLINE>
|
||||
[3 rows x 8 columns]
|
||||
>>> pd_df.dtypes
|
||||
A float64
|
||||
B int64
|
||||
C object
|
||||
D datetime64[ns]
|
||||
E float64
|
||||
F bool
|
||||
G int64
|
||||
H object
|
||||
dtype: object
|
||||
|
||||
Convert `pandas.DataFrame` to `eland.DataFrame` - this creates an Elasticsearch index called `pandas_to_eland`.
|
||||
Overwrite existing Elasticsearch index if it exists `if_exists="replace"`, and sync index so it is
|
||||
readable on return `refresh=True`
|
||||
|
||||
|
||||
>>> ed_df = ed.pandas_to_eland(pd_df,
|
||||
... 'localhost',
|
||||
... 'pandas_to_eland',
|
||||
... es_if_exists="replace",
|
||||
... es_refresh=True,
|
||||
... es_type_overrides={'H':'text'}) # index field 'H' as text not keyword
|
||||
>>> type(ed_df)
|
||||
<class 'eland.dataframe.DataFrame'>
|
||||
>>> ed_df
|
||||
A B ... G H
|
||||
0 3.141 1 ... 1 Long text - to be indexed as es type text
|
||||
1 3.141 1 ... 2 Long text - to be indexed as es type text
|
||||
2 3.141 1 ... 3 Long text - to be indexed as es type text
|
||||
<BLANKLINE>
|
||||
[3 rows x 8 columns]
|
||||
>>> ed_df.dtypes
|
||||
A float64
|
||||
B int64
|
||||
C object
|
||||
D datetime64[ns]
|
||||
E float64
|
||||
F bool
|
||||
G int64
|
||||
H object
|
||||
dtype: object
|
||||
|
||||
See Also
|
||||
--------
|
||||
eland.read_es: Create an eland.Dataframe from an Elasticsearch index
|
||||
eland.eland_to_pandas: Create a pandas.Dataframe from eland.DataFrame
|
||||
"""
|
||||
if chunksize is None:
|
||||
chunksize = DEFAULT_CHUNK_SIZE
|
||||
|
||||
mapping = FieldMappings._generate_es_mappings(pd_df, es_type_overrides)
|
||||
es_client = ensure_es_client(es_client)
|
||||
|
||||
# If table exists, check if_exists parameter
|
||||
if es_client.indices.exists(index=es_dest_index):
|
||||
if es_if_exists == "fail":
|
||||
raise ValueError(
|
||||
f"Could not create the index [{es_dest_index}] because it "
|
||||
f"already exists. "
|
||||
f"Change the if_exists parameter to "
|
||||
f"'append' or 'replace' data."
|
||||
def deprecated_api(replace_with: str) -> Callable[[F], F]:
|
||||
def wrapper(f: F) -> F:
|
||||
@functools.wraps(f)
|
||||
def wrapped(*args, **kwargs):
|
||||
warnings.warn(
|
||||
f"{f.__name__} is deprecated, use {replace_with} instead",
|
||||
DeprecationWarning,
|
||||
)
|
||||
elif es_if_exists == "replace":
|
||||
es_client.indices.delete(index=es_dest_index)
|
||||
es_client.indices.create(index=es_dest_index, body=mapping)
|
||||
# elif if_exists == "append":
|
||||
# TODO validate mapping are compatible
|
||||
else:
|
||||
es_client.indices.create(index=es_dest_index, body=mapping)
|
||||
return f(*args, **kwargs)
|
||||
|
||||
# Now add data
|
||||
actions = []
|
||||
n = 0
|
||||
for row in pd_df.iterrows():
|
||||
if es_dropna:
|
||||
values = row[1].dropna().to_dict()
|
||||
else:
|
||||
values = row[1].to_dict()
|
||||
return wrapped
|
||||
|
||||
if use_pandas_index_for_es_ids:
|
||||
# Use index as _id
|
||||
id = row[0]
|
||||
|
||||
# Use integer as id field for repeatable results
|
||||
action = {"_index": es_dest_index, "_source": values, "_id": str(id)}
|
||||
else:
|
||||
action = {"_index": es_dest_index, "_source": values}
|
||||
|
||||
actions.append(action)
|
||||
|
||||
n = n + 1
|
||||
|
||||
if n % chunksize == 0:
|
||||
bulk(client=es_client, actions=actions, refresh=es_refresh)
|
||||
actions = []
|
||||
|
||||
bulk(client=es_client, actions=actions, refresh=es_refresh)
|
||||
return DataFrame(es_client, es_dest_index)
|
||||
|
||||
|
||||
def eland_to_pandas(ed_df: DataFrame, show_progress: bool = False) -> pd.DataFrame:
|
||||
"""
|
||||
Convert an eland.Dataframe to a pandas.DataFrame
|
||||
|
||||
**Note: this loads the entire Elasticsearch index into in core pandas.DataFrame structures. For large
|
||||
indices this can create significant load on the Elasticsearch cluster and require signficant memory**
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ed_df: eland.DataFrame
|
||||
The source eland.Dataframe referencing the Elasticsearch index
|
||||
show_progress: bool
|
||||
Output progress of option to stdout? By default False.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pandas.Dataframe
|
||||
pandas.DataFrame contains all rows and columns in eland.DataFrame
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> ed_df = ed.DataFrame('localhost', 'flights').head()
|
||||
>>> type(ed_df)
|
||||
<class 'eland.dataframe.DataFrame'>
|
||||
>>> ed_df
|
||||
AvgTicketPrice Cancelled ... dayOfWeek timestamp
|
||||
0 841.265642 False ... 0 2018-01-01 00:00:00
|
||||
1 882.982662 False ... 0 2018-01-01 18:27:00
|
||||
2 190.636904 False ... 0 2018-01-01 17:11:14
|
||||
3 181.694216 True ... 0 2018-01-01 10:33:28
|
||||
4 730.041778 False ... 0 2018-01-01 05:13:00
|
||||
<BLANKLINE>
|
||||
[5 rows x 27 columns]
|
||||
|
||||
Convert `eland.DataFrame` to `pandas.DataFrame` (Note: this loads entire Elasticsearch index into core memory)
|
||||
|
||||
>>> pd_df = ed.eland_to_pandas(ed_df)
|
||||
>>> type(pd_df)
|
||||
<class 'pandas.core.frame.DataFrame'>
|
||||
>>> pd_df
|
||||
AvgTicketPrice Cancelled ... dayOfWeek timestamp
|
||||
0 841.265642 False ... 0 2018-01-01 00:00:00
|
||||
1 882.982662 False ... 0 2018-01-01 18:27:00
|
||||
2 190.636904 False ... 0 2018-01-01 17:11:14
|
||||
3 181.694216 True ... 0 2018-01-01 10:33:28
|
||||
4 730.041778 False ... 0 2018-01-01 05:13:00
|
||||
<BLANKLINE>
|
||||
[5 rows x 27 columns]
|
||||
|
||||
Convert `eland.DataFrame` to `pandas.DataFrame` and show progress every 10000 rows
|
||||
|
||||
>>> pd_df = ed.eland_to_pandas(ed.DataFrame('localhost', 'flights'), show_progress=True) # doctest: +SKIP
|
||||
2020-01-29 12:43:36.572395: read 10000 rows
|
||||
2020-01-29 12:43:37.309031: read 13059 rows
|
||||
|
||||
See Also
|
||||
--------
|
||||
eland.read_es: Create an eland.Dataframe from an Elasticsearch index
|
||||
eland.pandas_to_eland: Create an eland.Dataframe from pandas.DataFrame
|
||||
"""
|
||||
return ed_df._to_pandas(show_progress=show_progress)
|
||||
|
||||
|
||||
def read_csv(
|
||||
filepath_or_buffer,
|
||||
es_client,
|
||||
es_dest_index,
|
||||
es_if_exists="fail",
|
||||
es_refresh=False,
|
||||
es_dropna=False,
|
||||
es_type_overrides=None,
|
||||
sep=",",
|
||||
delimiter=None,
|
||||
# Column and Index Locations and Names
|
||||
header="infer",
|
||||
names=None,
|
||||
index_col=None,
|
||||
usecols=None,
|
||||
squeeze=False,
|
||||
prefix=None,
|
||||
mangle_dupe_cols=True,
|
||||
# General Parsing Configuration
|
||||
dtype=None,
|
||||
engine=None,
|
||||
converters=None,
|
||||
true_values=None,
|
||||
false_values=None,
|
||||
skipinitialspace=False,
|
||||
skiprows=None,
|
||||
skipfooter=0,
|
||||
nrows=None,
|
||||
# Iteration
|
||||
# iterator=False,
|
||||
chunksize=None,
|
||||
# NA and Missing Data Handling
|
||||
na_values=None,
|
||||
keep_default_na=True,
|
||||
na_filter=True,
|
||||
verbose=False,
|
||||
skip_blank_lines=True,
|
||||
# Datetime Handling
|
||||
parse_dates=False,
|
||||
infer_datetime_format=False,
|
||||
keep_date_col=False,
|
||||
date_parser=None,
|
||||
dayfirst=False,
|
||||
cache_dates=True,
|
||||
# Quoting, Compression, and File Format
|
||||
compression="infer",
|
||||
thousands=None,
|
||||
decimal=b".",
|
||||
lineterminator=None,
|
||||
quotechar='"',
|
||||
quoting=csv.QUOTE_MINIMAL,
|
||||
doublequote=True,
|
||||
escapechar=None,
|
||||
comment=None,
|
||||
encoding=None,
|
||||
dialect=None,
|
||||
# Error Handling
|
||||
error_bad_lines=True,
|
||||
warn_bad_lines=True,
|
||||
# Internal
|
||||
delim_whitespace=False,
|
||||
low_memory=_c_parser_defaults["low_memory"],
|
||||
memory_map=False,
|
||||
float_precision=None,
|
||||
):
|
||||
"""
|
||||
Read a comma-separated values (csv) file into eland.DataFrame (i.e. an Elasticsearch index).
|
||||
|
||||
**Modifies an Elasticsearch index**
|
||||
|
||||
**Note pandas iteration options not supported**
|
||||
|
||||
Parameters
|
||||
----------
|
||||
es_client: Elasticsearch client argument(s)
|
||||
- elasticsearch-py parameters or
|
||||
- elasticsearch-py instance
|
||||
es_dest_index: str
|
||||
Name of Elasticsearch index to be appended to
|
||||
es_if_exists : {'fail', 'replace', 'append'}, default 'fail'
|
||||
How to behave if the index already exists.
|
||||
|
||||
- fail: Raise a ValueError.
|
||||
- replace: Delete the index before inserting new values.
|
||||
- append: Insert new values to the existing index. Create if does not exist.
|
||||
es_dropna: bool, default 'False'
|
||||
* True: Remove missing values (see pandas.Series.dropna)
|
||||
* False: Include missing values - may cause bulk to fail
|
||||
es_type_overrides: dict, default None
|
||||
Dict of columns: es_type to override default es datatype mappings
|
||||
chunksize
|
||||
number of csv rows to read before bulk index into Elasticsearch
|
||||
|
||||
Other Parameters
|
||||
----------------
|
||||
Parameters derived from :pandas_api_docs:`pandas.read_csv`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
:pandas_api_docs:`pandas.read_csv`
|
||||
|
||||
Notes
|
||||
-----
|
||||
iterator not supported
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
See if 'churn' index exists in Elasticsearch
|
||||
|
||||
>>> from elasticsearch import Elasticsearch # doctest: +SKIP
|
||||
>>> es = Elasticsearch() # doctest: +SKIP
|
||||
>>> es.indices.exists(index="churn") # doctest: +SKIP
|
||||
False
|
||||
|
||||
Read 'churn.csv' and use first column as _id (and eland.DataFrame index)
|
||||
::
|
||||
|
||||
# churn.csv
|
||||
,state,account length,area code,phone number,international plan,voice mail plan,number vmail messages,total day minutes,total day calls,total day charge,total eve minutes,total eve calls,total eve charge,total night minutes,total night calls,total night charge,total intl minutes,total intl calls,total intl charge,customer service calls,churn
|
||||
0,KS,128,415,382-4657,no,yes,25,265.1,110,45.07,197.4,99,16.78,244.7,91,11.01,10.0,3,2.7,1,0
|
||||
1,OH,107,415,371-7191,no,yes,26,161.6,123,27.47,195.5,103,16.62,254.4,103,11.45,13.7,3,3.7,1,0
|
||||
...
|
||||
|
||||
>>> ed.read_csv("churn.csv",
|
||||
... es_client='localhost',
|
||||
... es_dest_index='churn',
|
||||
... es_refresh=True,
|
||||
... index_col=0) # doctest: +SKIP
|
||||
account length area code churn customer service calls ... total night calls total night charge total night minutes voice mail plan
|
||||
0 128 415 0 1 ... 91 11.01 244.7 yes
|
||||
1 107 415 0 1 ... 103 11.45 254.4 yes
|
||||
2 137 415 0 0 ... 104 7.32 162.6 no
|
||||
3 84 408 0 2 ... 89 8.86 196.9 no
|
||||
4 75 415 0 3 ... 121 8.41 186.9 no
|
||||
... ... ... ... ... ... ... ... ... ...
|
||||
3328 192 415 0 2 ... 83 12.56 279.1 yes
|
||||
3329 68 415 0 3 ... 123 8.61 191.3 no
|
||||
3330 28 510 0 2 ... 91 8.64 191.9 no
|
||||
3331 184 510 0 2 ... 137 6.26 139.2 no
|
||||
3332 74 415 0 0 ... 77 10.86 241.4 yes
|
||||
<BLANKLINE>
|
||||
[3333 rows x 21 columns]
|
||||
|
||||
Validate data now exists in 'churn' index:
|
||||
|
||||
>>> es.search(index="churn", size=1) # doctest: +SKIP
|
||||
{'took': 1, 'timed_out': False, '_shards': {'total': 1, 'successful': 1, 'skipped': 0, 'failed': 0}, 'hits': {'total': {'value': 3333, 'relation': 'eq'}, 'max_score': 1.0, 'hits': [{'_index': 'churn', '_id': '0', '_score': 1.0, '_source': {'state': 'KS', 'account length': 128, 'area code': 415, 'phone number': '382-4657', 'international plan': 'no', 'voice mail plan': 'yes', 'number vmail messages': 25, 'total day minutes': 265.1, 'total day calls': 110, 'total day charge': 45.07, 'total eve minutes': 197.4, 'total eve calls': 99, 'total eve charge': 16.78, 'total night minutes': 244.7, 'total night calls': 91, 'total night charge': 11.01, 'total intl minutes': 10.0, 'total intl calls': 3, 'total intl charge': 2.7, 'customer service calls': 1, 'churn': 0}}]}}
|
||||
|
||||
TODO - currently the eland.DataFrame may not retain the order of the data in the csv.
|
||||
"""
|
||||
kwds = dict()
|
||||
|
||||
kwds.update(
|
||||
sep=sep,
|
||||
delimiter=delimiter,
|
||||
engine=engine,
|
||||
dialect=dialect,
|
||||
compression=compression,
|
||||
# engine_specified=engine_specified,
|
||||
doublequote=doublequote,
|
||||
escapechar=escapechar,
|
||||
quotechar=quotechar,
|
||||
quoting=quoting,
|
||||
skipinitialspace=skipinitialspace,
|
||||
lineterminator=lineterminator,
|
||||
header=header,
|
||||
index_col=index_col,
|
||||
names=names,
|
||||
prefix=prefix,
|
||||
skiprows=skiprows,
|
||||
skipfooter=skipfooter,
|
||||
na_values=na_values,
|
||||
true_values=true_values,
|
||||
false_values=false_values,
|
||||
keep_default_na=keep_default_na,
|
||||
thousands=thousands,
|
||||
comment=comment,
|
||||
decimal=decimal,
|
||||
parse_dates=parse_dates,
|
||||
keep_date_col=keep_date_col,
|
||||
dayfirst=dayfirst,
|
||||
date_parser=date_parser,
|
||||
cache_dates=cache_dates,
|
||||
nrows=nrows,
|
||||
# iterator=iterator,
|
||||
chunksize=chunksize,
|
||||
converters=converters,
|
||||
dtype=dtype,
|
||||
usecols=usecols,
|
||||
verbose=verbose,
|
||||
encoding=encoding,
|
||||
squeeze=squeeze,
|
||||
memory_map=memory_map,
|
||||
float_precision=float_precision,
|
||||
na_filter=na_filter,
|
||||
delim_whitespace=delim_whitespace,
|
||||
warn_bad_lines=warn_bad_lines,
|
||||
error_bad_lines=error_bad_lines,
|
||||
low_memory=low_memory,
|
||||
mangle_dupe_cols=mangle_dupe_cols,
|
||||
infer_datetime_format=infer_datetime_format,
|
||||
skip_blank_lines=skip_blank_lines,
|
||||
)
|
||||
|
||||
if chunksize is None:
|
||||
kwds.update(chunksize=DEFAULT_CHUNK_SIZE)
|
||||
|
||||
# read csv in chunks to pandas DataFrame and dump to eland DataFrame (and Elasticsearch)
|
||||
reader = pd.read_csv(filepath_or_buffer, **kwds)
|
||||
|
||||
first_write = True
|
||||
for chunk in reader:
|
||||
if first_write:
|
||||
pandas_to_eland(
|
||||
chunk,
|
||||
es_client,
|
||||
es_dest_index,
|
||||
es_if_exists=es_if_exists,
|
||||
chunksize=chunksize,
|
||||
es_refresh=es_refresh,
|
||||
es_dropna=es_dropna,
|
||||
es_type_overrides=es_type_overrides,
|
||||
)
|
||||
first_write = False
|
||||
else:
|
||||
pandas_to_eland(
|
||||
chunk,
|
||||
es_client,
|
||||
es_dest_index,
|
||||
es_if_exists="append",
|
||||
chunksize=chunksize,
|
||||
es_refresh=es_refresh,
|
||||
es_dropna=es_dropna,
|
||||
es_type_overrides=es_type_overrides,
|
||||
)
|
||||
|
||||
# Now create an eland.DataFrame that references the new index
|
||||
return DataFrame(es_client, es_dest_index)
|
||||
return wrapper
|
||||
|
@ -25,6 +25,7 @@ TYPED_FILES = {
|
||||
"eland/actions.py",
|
||||
"eland/arithmetics.py",
|
||||
"eland/common.py",
|
||||
"eland/etl.py",
|
||||
"eland/filter.py",
|
||||
"eland/index.py",
|
||||
"eland/query.py",
|
||||
@ -106,7 +107,7 @@ def docs(session):
|
||||
session.run("pandoc", "--version", external=True)
|
||||
|
||||
session.install("-r", "docs/requirements-docs.txt")
|
||||
session.run("python", "setup.py", "install")
|
||||
session.install(".")
|
||||
|
||||
# See if we have an Elasticsearch cluster active
|
||||
# to rebuild the Jupyter notebooks with.
|
||||
|
Loading…
x
Reference in New Issue
Block a user