mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
Introduction of eland.Series - big refactor
Creation of eland.NDFrame as base class for DataFrame and Series
This commit is contained in:
parent
582d744848
commit
30df901fce
@ -1,5 +1,7 @@
|
||||
from .utils import *
|
||||
from .dataframe import *
|
||||
from .client import *
|
||||
from .mappings import *
|
||||
from .ndframe import *
|
||||
from .index import *
|
||||
from .mappings import *
|
||||
from .dataframe import *
|
||||
from .series import *
|
||||
|
@ -26,18 +26,18 @@ only Elasticsearch aggregatable fields can be aggregated or grouped.
|
||||
import sys
|
||||
|
||||
import pandas as pd
|
||||
from elasticsearch_dsl import Search
|
||||
from pandas.compat import StringIO
|
||||
from pandas.core import common as com
|
||||
from pandas.io.common import _expand_user, _stringify_path
|
||||
|
||||
from pandas.io.formats import format as fmt
|
||||
from pandas.io.formats.printing import pprint_thing
|
||||
from pandas.compat import StringIO
|
||||
from pandas.io.common import _expand_user, _stringify_path
|
||||
from pandas.io.formats import console
|
||||
|
||||
import eland as ed
|
||||
from eland import NDFrame
|
||||
from eland import Index
|
||||
|
||||
|
||||
class DataFrame():
|
||||
class DataFrame(NDFrame):
|
||||
"""
|
||||
pandas.DataFrame like API that proxies into Elasticsearch index(es).
|
||||
|
||||
@ -49,9 +49,6 @@ class DataFrame():
|
||||
index_pattern : str
|
||||
An Elasticsearch index pattern. This can contain wildcards (e.g. filebeat-*).
|
||||
|
||||
operations: list of operation
|
||||
A list of Elasticsearch analytics operations e.g. filter, aggregations etc.
|
||||
|
||||
See Also
|
||||
--------
|
||||
|
||||
@ -83,229 +80,14 @@ class DataFrame():
|
||||
index_pattern,
|
||||
mappings=None,
|
||||
index_field=None):
|
||||
|
||||
self._client = ed.Client(client)
|
||||
self._index_pattern = index_pattern
|
||||
|
||||
# Get and persist mappings, this allows us to correctly
|
||||
# map returned types from Elasticsearch to pandas datatypes
|
||||
if mappings is None:
|
||||
self._mappings = ed.Mappings(self._client, self._index_pattern)
|
||||
else:
|
||||
self._mappings = mappings
|
||||
|
||||
self._index = ed.Index(index_field)
|
||||
|
||||
def _es_results_to_pandas(self, results):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
results: dict
|
||||
Elasticsearch results from self.client.search
|
||||
|
||||
Returns
|
||||
-------
|
||||
df: pandas.DataFrame
|
||||
_source values extracted from results and mapped to pandas DataFrame
|
||||
dtypes are mapped via Mapping object
|
||||
|
||||
Notes
|
||||
-----
|
||||
Fields containing lists in Elasticsearch don't map easily to pandas.DataFrame
|
||||
For example, an index with mapping:
|
||||
```
|
||||
"mappings" : {
|
||||
"properties" : {
|
||||
"group" : {
|
||||
"type" : "keyword"
|
||||
},
|
||||
"user" : {
|
||||
"type" : "nested",
|
||||
"properties" : {
|
||||
"first" : {
|
||||
"type" : "keyword"
|
||||
},
|
||||
"last" : {
|
||||
"type" : "keyword"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
Adding a document:
|
||||
```
|
||||
"_source" : {
|
||||
"group" : "amsterdam",
|
||||
"user" : [
|
||||
{
|
||||
"first" : "John",
|
||||
"last" : "Smith"
|
||||
},
|
||||
{
|
||||
"first" : "Alice",
|
||||
"last" : "White"
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
(https://www.elastic.co/guide/en/elasticsearch/reference/current/nested.html)
|
||||
this would be transformed internally (in Elasticsearch) into a document that looks more like this:
|
||||
```
|
||||
{
|
||||
"group" : "amsterdam",
|
||||
"user.first" : [ "alice", "john" ],
|
||||
"user.last" : [ "smith", "white" ]
|
||||
}
|
||||
```
|
||||
When mapping this a pandas data frame we mimic this transformation.
|
||||
|
||||
Similarly, if a list is added to Elasticsearch:
|
||||
```
|
||||
PUT my_index/_doc/1
|
||||
{
|
||||
"list" : [
|
||||
0, 1, 2
|
||||
]
|
||||
}
|
||||
```
|
||||
The mapping is:
|
||||
```
|
||||
"mappings" : {
|
||||
"properties" : {
|
||||
"user" : {
|
||||
"type" : "long"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
TODO - explain how lists are handled (https://www.elastic.co/guide/en/elasticsearch/reference/current/array.html)
|
||||
TODO - an option here is to use Elasticsearch's multi-field matching instead of pandas treatment of lists (which isn't great)
|
||||
NOTE - using this lists is generally not a good way to use this API
|
||||
"""
|
||||
|
||||
def flatten_dict(y):
|
||||
out = {}
|
||||
|
||||
def flatten(x, name=''):
|
||||
# We flatten into source fields e.g. if type=geo_point
|
||||
# location: {lat=52.38, lon=4.90}
|
||||
if name == '':
|
||||
is_source_field = False
|
||||
pd_dtype = 'object'
|
||||
else:
|
||||
is_source_field, pd_dtype = self._mappings.source_field_pd_dtype(name[:-1])
|
||||
|
||||
if not is_source_field and type(x) is dict:
|
||||
for a in x:
|
||||
flatten(x[a], name + a + '.')
|
||||
elif not is_source_field and type(x) is list:
|
||||
for a in x:
|
||||
flatten(a, name)
|
||||
elif is_source_field == True: # only print source fields from mappings (TODO - not so efficient for large number of fields and filtered mapping)
|
||||
field_name = name[:-1]
|
||||
|
||||
# Coerce types - for now just datetime
|
||||
if pd_dtype == 'datetime64[ns]':
|
||||
x = pd.to_datetime(x)
|
||||
|
||||
# Elasticsearch can have multiple values for a field. These are represented as lists, so
|
||||
# create lists for this pivot (see notes above)
|
||||
if field_name in out:
|
||||
if type(out[field_name]) is not list:
|
||||
l = [out[field_name]]
|
||||
out[field_name] = l
|
||||
out[field_name].append(x)
|
||||
else:
|
||||
out[field_name] = x
|
||||
|
||||
flatten(y)
|
||||
|
||||
return out
|
||||
|
||||
rows = []
|
||||
index = []
|
||||
for hit in results['hits']['hits']:
|
||||
row = hit['_source']
|
||||
|
||||
# get index value - can be _id or can be field value in source
|
||||
if self._index.is_source_field:
|
||||
index_field = row[self._index.index_field]
|
||||
else:
|
||||
index_field = hit[self._index.index_field]
|
||||
index.append(index_field)
|
||||
|
||||
# flatten row to map correctly to 2D DataFrame
|
||||
rows.append(flatten_dict(row))
|
||||
|
||||
# Create pandas DataFrame
|
||||
df = pd.DataFrame(data=rows, index=index)
|
||||
|
||||
# _source may not contain all columns in the mapping
|
||||
# therefore, fill in missing columns
|
||||
# (note this returns self.columns NOT IN df.columns)
|
||||
missing_columns = list(set(self.columns) - set(df.columns))
|
||||
|
||||
for missing in missing_columns:
|
||||
is_source_field, pd_dtype = self._mappings.source_field_pd_dtype(missing)
|
||||
df[missing] = None
|
||||
df[missing].astype(pd_dtype)
|
||||
|
||||
# Sort columns in mapping order
|
||||
df = df[self.columns]
|
||||
|
||||
return df
|
||||
# python 3 syntax
|
||||
super().__init__(client, index_pattern, mappings=mappings, index_field=index_field)
|
||||
|
||||
def head(self, n=5):
|
||||
sort_params = self._index.sort_field + ":asc"
|
||||
|
||||
results = self._client.search(index=self._index_pattern, size=n, sort=sort_params)
|
||||
|
||||
return self._es_results_to_pandas(results)
|
||||
return super()._head(n)
|
||||
|
||||
def tail(self, n=5):
|
||||
sort_params = self._index.sort_field + ":desc"
|
||||
|
||||
results = self._client.search(index=self._index_pattern, size=n, sort=sort_params)
|
||||
|
||||
df = self._es_results_to_pandas(results)
|
||||
|
||||
# reverse order (index ascending)
|
||||
return df.sort_index()
|
||||
|
||||
def describe(self):
|
||||
numeric_source_fields = self._mappings.numeric_source_fields()
|
||||
|
||||
# for each field we compute:
|
||||
# count, mean, std, min, 25%, 50%, 75%, max
|
||||
search = Search(using=self._client, index=self._index_pattern).extra(size=0)
|
||||
|
||||
for field in numeric_source_fields:
|
||||
search.aggs.metric('extended_stats_' + field, 'extended_stats', field=field)
|
||||
search.aggs.metric('percentiles_' + field, 'percentiles', field=field)
|
||||
|
||||
response = search.execute()
|
||||
|
||||
results = {}
|
||||
|
||||
for field in numeric_source_fields:
|
||||
values = []
|
||||
values.append(response.aggregations['extended_stats_' + field]['count'])
|
||||
values.append(response.aggregations['extended_stats_' + field]['avg'])
|
||||
values.append(response.aggregations['extended_stats_' + field]['std_deviation'])
|
||||
values.append(response.aggregations['extended_stats_' + field]['min'])
|
||||
values.append(response.aggregations['percentiles_' + field]['values']['25.0'])
|
||||
values.append(response.aggregations['percentiles_' + field]['values']['50.0'])
|
||||
values.append(response.aggregations['percentiles_' + field]['values']['75.0'])
|
||||
values.append(response.aggregations['extended_stats_' + field]['max'])
|
||||
|
||||
# if not None
|
||||
if (values.count(None) < len(values)):
|
||||
results[field] = values
|
||||
|
||||
df = pd.DataFrame(data=results, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'])
|
||||
|
||||
return df
|
||||
return super()._tail(n)
|
||||
|
||||
def info(self, verbose=None, buf=None, max_cols=None, memory_usage=None,
|
||||
null_counts=None):
|
||||
@ -325,7 +107,7 @@ class DataFrame():
|
||||
lines = []
|
||||
|
||||
lines.append(str(type(self)))
|
||||
lines.append(self.index_summary())
|
||||
lines.append(self._index_summary())
|
||||
|
||||
if len(self.columns) == 0:
|
||||
lines.append('Empty {name}'.format(name=type(self).__name__))
|
||||
@ -437,18 +219,14 @@ class DataFrame():
|
||||
|
||||
@property
|
||||
def columns(self):
|
||||
return pd.Index(self._mappings.source_fields())
|
||||
|
||||
@property
|
||||
def index(self):
|
||||
return self._index
|
||||
return super()._columns
|
||||
|
||||
def set_index(self, index_field):
|
||||
copy = self.copy()
|
||||
copy._index = ed.Index(index_field)
|
||||
copy._index = Index(index_field)
|
||||
return copy
|
||||
|
||||
def index_summary(self):
|
||||
def _index_summary(self):
|
||||
head = self.head(1).index[0]
|
||||
tail = self.tail(1).index[0]
|
||||
index_summary = ', %s to %s' % (pprint_thing(head),
|
||||
@ -457,13 +235,6 @@ class DataFrame():
|
||||
name = "Index"
|
||||
return '%s: %s entries%s' % (name, len(self), index_summary)
|
||||
|
||||
@property
|
||||
def dtypes(self):
|
||||
return self._mappings.dtypes()
|
||||
|
||||
def get_dtype_counts(self):
|
||||
return self._mappings.get_dtype_counts()
|
||||
|
||||
def count(self):
|
||||
"""
|
||||
Count non-NA cells for each column (TODO row)
|
||||
@ -487,24 +258,9 @@ class DataFrame():
|
||||
|
||||
return count
|
||||
|
||||
def index_count(self):
|
||||
"""
|
||||
Returns
|
||||
-------
|
||||
index_count: int
|
||||
Count of docs where index_field exists
|
||||
"""
|
||||
exists_query = {"query": {"exists": {"field": self._index.index_field}}}
|
||||
def describe(self):
|
||||
return super()._describe()
|
||||
|
||||
index_count = self._client.count(index=self._index_pattern, body=exists_query)
|
||||
|
||||
return index_count
|
||||
|
||||
def _filter_by_columns(self, columns):
|
||||
# Return new eland.DataFrame with modified mappings
|
||||
mappings = ed.Mappings(mappings=self._mappings, columns=columns)
|
||||
|
||||
return DataFrame(self._client, self._index_pattern, mappings=mappings)
|
||||
|
||||
def __getitem__(self, key):
|
||||
# NOTE: there is a difference between pandas here.
|
||||
@ -544,17 +300,14 @@ class DataFrame():
|
||||
else:
|
||||
raise TypeError('__getitem__ arguments invalid: [{0}]'.format(key))
|
||||
|
||||
return self._filter_by_columns(columns)
|
||||
mappings = self._filter_mappings(columns)
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
Returns length of info axis, but here we use the index.
|
||||
"""
|
||||
return self._client.count(index=self._index_pattern)
|
||||
# Return new eland.DataFrame with modified mappings
|
||||
return DataFrame(self._client, self._index_pattern, mappings=mappings)
|
||||
|
||||
def copy(self):
|
||||
# TODO - test and validate...may need deep copying
|
||||
return ed.DataFrame(self._client,
|
||||
return DataFrame(self._client,
|
||||
self._index_pattern,
|
||||
self._mappings,
|
||||
self._index)
|
||||
@ -590,73 +343,37 @@ class DataFrame():
|
||||
if max_rows == None:
|
||||
max_rows = pd.get_option('display.max_rows')
|
||||
|
||||
sdf = self.__fake_dataframe__(max_rows=max_rows+1)
|
||||
|
||||
_show_dimensions = show_dimensions
|
||||
df = self._fake_head_tail_df(max_rows=max_rows+1)
|
||||
|
||||
if buf is not None:
|
||||
_buf = _expand_user(_stringify_path(buf))
|
||||
else:
|
||||
_buf = StringIO()
|
||||
|
||||
sdf.to_string(buf=_buf, columns=columns,
|
||||
col_space=col_space, na_rep=na_rep,
|
||||
formatters=formatters,
|
||||
float_format=float_format,
|
||||
sparsify=sparsify, justify=justify,
|
||||
index_names=index_names,
|
||||
header=header, index=index,
|
||||
max_rows=max_rows,
|
||||
max_cols=max_cols,
|
||||
show_dimensions=False, # print this outside of this call
|
||||
decimal=decimal,
|
||||
line_width=line_width)
|
||||
df.to_string(buf=_buf, columns=columns,
|
||||
col_space=col_space, na_rep=na_rep,
|
||||
formatters=formatters,
|
||||
float_format=float_format,
|
||||
sparsify=sparsify, justify=justify,
|
||||
index_names=index_names,
|
||||
header=header, index=index,
|
||||
max_rows=max_rows,
|
||||
max_cols=max_cols,
|
||||
show_dimensions=False, # print this outside of this call
|
||||
decimal=decimal,
|
||||
line_width=line_width)
|
||||
|
||||
if _show_dimensions:
|
||||
# Our fake dataframe has incorrect number of rows (max_rows*2+1) - write out
|
||||
# the correct number of rows
|
||||
if show_dimensions:
|
||||
_buf.write("\n\n[{nrows} rows x {ncols} columns]"
|
||||
.format(nrows=self.index_count(), ncols=len(self.columns)))
|
||||
.format(nrows=self._index_count(), ncols=len(self.columns)))
|
||||
|
||||
if buf is None:
|
||||
result = _buf.getvalue()
|
||||
return result
|
||||
|
||||
|
||||
def __fake_dataframe__(self, max_rows=1):
|
||||
head_rows = int(max_rows / 2) + max_rows % 2
|
||||
tail_rows = max_rows - head_rows
|
||||
|
||||
head = self.head(head_rows)
|
||||
tail = self.tail(tail_rows)
|
||||
|
||||
num_rows = len(self)
|
||||
|
||||
if (num_rows > max_rows):
|
||||
# If we have a lot of rows, create a SparseDataFrame and use
|
||||
# pandas to_string logic
|
||||
# NOTE: this sparse DataFrame can't be used as the middle
|
||||
# section is all NaNs. However, it gives us potentially a nice way
|
||||
# to use the pandas IO methods.
|
||||
# TODO - if data is indexed by time series, return top/bottom of
|
||||
# time series, rather than first max_rows items
|
||||
"""
|
||||
if tail_rows > 0:
|
||||
locations = [0, num_rows - tail_rows]
|
||||
lengths = [head_rows, tail_rows]
|
||||
else:
|
||||
locations = [0]
|
||||
lengths = [head_rows]
|
||||
|
||||
sdf = pd.DataFrame({item: pd.SparseArray(data=head[item],
|
||||
sparse_index=
|
||||
BlockIndex(
|
||||
num_rows, locations, lengths))
|
||||
for item in self.columns})
|
||||
"""
|
||||
return pd.concat([head, tail])
|
||||
|
||||
|
||||
return pd.concat([head, tail])
|
||||
|
||||
|
||||
# From pandas.DataFrame
|
||||
def _put_str(s, space):
|
||||
|
343
eland/ndframe.py
Normal file
343
eland/ndframe.py
Normal file
@ -0,0 +1,343 @@
|
||||
"""
|
||||
NDFrame
|
||||
---------
|
||||
Base class for eland.DataFrame and eland.Series.
|
||||
|
||||
The underlying data resides in Elasticsearch and the API aligns as much as
|
||||
possible with pandas APIs.
|
||||
|
||||
This allows the eland.DataFrame to access large datasets stored in Elasticsearch,
|
||||
without storing the dataset in local memory.
|
||||
|
||||
Implementation Details
|
||||
----------------------
|
||||
|
||||
Elasticsearch indexes can be configured in many different ways, and these indexes
|
||||
utilise different data structures to pandas.
|
||||
|
||||
eland.DataFrame operations that return individual rows (e.g. df.head()) return
|
||||
_source data. If _source is not enabled, this data is not accessible.
|
||||
|
||||
Similarly, only Elasticsearch searchable fields can be searched or filtered, and
|
||||
only Elasticsearch aggregatable fields can be aggregated or grouped.
|
||||
|
||||
"""
|
||||
import pandas as pd
|
||||
from elasticsearch_dsl import Search
|
||||
|
||||
import eland as ed
|
||||
|
||||
|
||||
class NDFrame():
|
||||
"""
|
||||
pandas.DataFrame/Series like API that proxies into Elasticsearch index(es).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
client : eland.Client
|
||||
A reference to a Elasticsearch python client
|
||||
|
||||
index_pattern : str
|
||||
An Elasticsearch index pattern. This can contain wildcards (e.g. filebeat-*).
|
||||
|
||||
See Also
|
||||
--------
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
client,
|
||||
index_pattern,
|
||||
mappings=None,
|
||||
index_field=None):
|
||||
|
||||
self._client = ed.Client(client)
|
||||
self._index_pattern = index_pattern
|
||||
|
||||
# Get and persist mappings, this allows us to correctly
|
||||
# map returned types from Elasticsearch to pandas datatypes
|
||||
if mappings is None:
|
||||
self._mappings = ed.Mappings(self._client, self._index_pattern)
|
||||
else:
|
||||
self._mappings = mappings
|
||||
|
||||
self._index = ed.Index(index_field)
|
||||
|
||||
def _es_results_to_pandas(self, results):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
results: dict
|
||||
Elasticsearch results from self.client.search
|
||||
|
||||
Returns
|
||||
-------
|
||||
df: pandas.DataFrame
|
||||
_source values extracted from results and mapped to pandas DataFrame
|
||||
dtypes are mapped via Mapping object
|
||||
|
||||
Notes
|
||||
-----
|
||||
Fields containing lists in Elasticsearch don't map easily to pandas.DataFrame
|
||||
For example, an index with mapping:
|
||||
```
|
||||
"mappings" : {
|
||||
"properties" : {
|
||||
"group" : {
|
||||
"type" : "keyword"
|
||||
},
|
||||
"user" : {
|
||||
"type" : "nested",
|
||||
"properties" : {
|
||||
"first" : {
|
||||
"type" : "keyword"
|
||||
},
|
||||
"last" : {
|
||||
"type" : "keyword"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
Adding a document:
|
||||
```
|
||||
"_source" : {
|
||||
"group" : "amsterdam",
|
||||
"user" : [
|
||||
{
|
||||
"first" : "John",
|
||||
"last" : "Smith"
|
||||
},
|
||||
{
|
||||
"first" : "Alice",
|
||||
"last" : "White"
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
(https://www.elastic.co/guide/en/elasticsearch/reference/current/nested.html)
|
||||
this would be transformed internally (in Elasticsearch) into a document that looks more like this:
|
||||
```
|
||||
{
|
||||
"group" : "amsterdam",
|
||||
"user.first" : [ "alice", "john" ],
|
||||
"user.last" : [ "smith", "white" ]
|
||||
}
|
||||
```
|
||||
When mapping this a pandas data frame we mimic this transformation.
|
||||
|
||||
Similarly, if a list is added to Elasticsearch:
|
||||
```
|
||||
PUT my_index/_doc/1
|
||||
{
|
||||
"list" : [
|
||||
0, 1, 2
|
||||
]
|
||||
}
|
||||
```
|
||||
The mapping is:
|
||||
```
|
||||
"mappings" : {
|
||||
"properties" : {
|
||||
"user" : {
|
||||
"type" : "long"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
TODO - explain how lists are handled (https://www.elastic.co/guide/en/elasticsearch/reference/current/array.html)
|
||||
TODO - an option here is to use Elasticsearch's multi-field matching instead of pandas treatment of lists (which isn't great)
|
||||
NOTE - using this lists is generally not a good way to use this API
|
||||
"""
|
||||
def flatten_dict(y):
|
||||
out = {}
|
||||
|
||||
def flatten(x, name=''):
|
||||
# We flatten into source fields e.g. if type=geo_point
|
||||
# location: {lat=52.38, lon=4.90}
|
||||
if name == '':
|
||||
is_source_field = False
|
||||
pd_dtype = 'object'
|
||||
else:
|
||||
is_source_field, pd_dtype = self._mappings.source_field_pd_dtype(name[:-1])
|
||||
|
||||
if not is_source_field and type(x) is dict:
|
||||
for a in x:
|
||||
flatten(x[a], name + a + '.')
|
||||
elif not is_source_field and type(x) is list:
|
||||
for a in x:
|
||||
flatten(a, name)
|
||||
elif is_source_field == True: # only print source fields from mappings (TODO - not so efficient for large number of fields and filtered mapping)
|
||||
field_name = name[:-1]
|
||||
|
||||
# Coerce types - for now just datetime
|
||||
if pd_dtype == 'datetime64[ns]':
|
||||
x = pd.to_datetime(x)
|
||||
|
||||
# Elasticsearch can have multiple values for a field. These are represented as lists, so
|
||||
# create lists for this pivot (see notes above)
|
||||
if field_name in out:
|
||||
if type(out[field_name]) is not list:
|
||||
l = [out[field_name]]
|
||||
out[field_name] = l
|
||||
out[field_name].append(x)
|
||||
else:
|
||||
out[field_name] = x
|
||||
|
||||
flatten(y)
|
||||
|
||||
return out
|
||||
|
||||
rows = []
|
||||
index = []
|
||||
for hit in results['hits']['hits']:
|
||||
row = hit['_source']
|
||||
|
||||
# get index value - can be _id or can be field value in source
|
||||
if self._index.is_source_field:
|
||||
index_field = row[self._index.index_field]
|
||||
else:
|
||||
index_field = hit[self._index.index_field]
|
||||
index.append(index_field)
|
||||
|
||||
# flatten row to map correctly to 2D DataFrame
|
||||
rows.append(flatten_dict(row))
|
||||
|
||||
# Create pandas DataFrame
|
||||
df = pd.DataFrame(data=rows, index=index)
|
||||
|
||||
# _source may not contain all columns in the mapping
|
||||
# therefore, fill in missing columns
|
||||
# (note this returns self.columns NOT IN df.columns)
|
||||
missing_columns = list(set(self._columns) - set(df.columns))
|
||||
|
||||
for missing in missing_columns:
|
||||
is_source_field, pd_dtype = self._mappings.source_field_pd_dtype(missing)
|
||||
df[missing] = None
|
||||
df[missing].astype(pd_dtype)
|
||||
|
||||
# Sort columns in mapping order
|
||||
df = df[self._columns]
|
||||
|
||||
return df
|
||||
|
||||
def _head(self, n=5):
|
||||
"""
|
||||
Protected method that returns head as pandas.DataFrame.
|
||||
|
||||
Returns
|
||||
-------
|
||||
_head
|
||||
pandas.DataFrame of top N values
|
||||
"""
|
||||
sort_params = self._index.sort_field + ":asc"
|
||||
|
||||
results = self._client.search(index=self._index_pattern, size=n, sort=sort_params)
|
||||
|
||||
return self._es_results_to_pandas(results)
|
||||
|
||||
def _tail(self, n=5):
|
||||
"""
|
||||
Protected method that returns tail as pandas.DataFrame.
|
||||
|
||||
Returns
|
||||
-------
|
||||
_tail
|
||||
pandas.DataFrame of last N values
|
||||
"""
|
||||
sort_params = self._index.sort_field + ":desc"
|
||||
|
||||
results = self._client.search(index=self._index_pattern, size=n, sort=sort_params)
|
||||
|
||||
df = self._es_results_to_pandas(results)
|
||||
|
||||
# reverse order (index ascending)
|
||||
return df.sort_index()
|
||||
|
||||
def _describe(self):
|
||||
numeric_source_fields = self._mappings.numeric_source_fields()
|
||||
|
||||
# for each field we compute:
|
||||
# count, mean, std, min, 25%, 50%, 75%, max
|
||||
search = Search(using=self._client, index=self._index_pattern).extra(size=0)
|
||||
|
||||
for field in numeric_source_fields:
|
||||
search.aggs.metric('extended_stats_' + field, 'extended_stats', field=field)
|
||||
search.aggs.metric('percentiles_' + field, 'percentiles', field=field)
|
||||
|
||||
response = search.execute()
|
||||
|
||||
results = {}
|
||||
|
||||
for field in numeric_source_fields:
|
||||
values = list()
|
||||
values.append(response.aggregations['extended_stats_' + field]['count'])
|
||||
values.append(response.aggregations['extended_stats_' + field]['avg'])
|
||||
values.append(response.aggregations['extended_stats_' + field]['std_deviation'])
|
||||
values.append(response.aggregations['extended_stats_' + field]['min'])
|
||||
values.append(response.aggregations['percentiles_' + field]['values']['25.0'])
|
||||
values.append(response.aggregations['percentiles_' + field]['values']['50.0'])
|
||||
values.append(response.aggregations['percentiles_' + field]['values']['75.0'])
|
||||
values.append(response.aggregations['extended_stats_' + field]['max'])
|
||||
|
||||
# if not None
|
||||
if values.count(None) < len(values):
|
||||
results[field] = values
|
||||
|
||||
df = pd.DataFrame(data=results, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'])
|
||||
|
||||
return df
|
||||
|
||||
def _filter_mappings(self, columns):
|
||||
mappings = ed.Mappings(mappings=self._mappings, columns=columns)
|
||||
|
||||
return mappings
|
||||
|
||||
@property
|
||||
def index(self):
|
||||
return self._index
|
||||
|
||||
@property
|
||||
def dtypes(self):
|
||||
return self._mappings.dtypes()
|
||||
|
||||
@property
|
||||
def _columns(self):
|
||||
return pd.Index(self._mappings.source_fields())
|
||||
|
||||
def get_dtype_counts(self):
|
||||
return self._mappings.get_dtype_counts()
|
||||
|
||||
|
||||
def _index_count(self):
|
||||
"""
|
||||
Returns
|
||||
-------
|
||||
index_count: int
|
||||
Count of docs where index_field exists
|
||||
"""
|
||||
exists_query = {"query": {"exists": {"field": self._index.index_field}}}
|
||||
|
||||
index_count = self._client.count(index=self._index_pattern, body=exists_query)
|
||||
|
||||
return index_count
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
Returns length of info axis, but here we use the index.
|
||||
"""
|
||||
return self._client.count(index=self._index_pattern)
|
||||
|
||||
def _fake_head_tail_df(self, max_rows=1):
|
||||
"""
|
||||
Create a 'fake' pd.DataFrame of the entire ed.DataFrame
|
||||
by concat head and tail. Used for display.
|
||||
"""
|
||||
head_rows = int(max_rows / 2) + max_rows % 2
|
||||
tail_rows = max_rows - head_rows
|
||||
|
||||
head = self._head(head_rows)
|
||||
tail = self._tail(tail_rows)
|
||||
|
||||
return head.append(tail)
|
396
eland/series.py
Normal file
396
eland/series.py
Normal file
@ -0,0 +1,396 @@
|
||||
"""
|
||||
Series
|
||||
---------
|
||||
One-dimensional ndarray with axis labels (including time series).
|
||||
|
||||
The underlying data resides in Elasticsearch and the API aligns as much as
|
||||
possible with pandas.DataFrame API.
|
||||
|
||||
This allows the eland.Series to access large datasets stored in Elasticsearch,
|
||||
without storing the dataset in local memory.
|
||||
|
||||
Implementation Details
|
||||
----------------------
|
||||
Based on NDFrame which underpins eland.1DataFrame
|
||||
|
||||
"""
|
||||
import sys
|
||||
|
||||
import pandas as pd
|
||||
import pandas.compat as compat
|
||||
from pandas.compat import StringIO
|
||||
from pandas.core.dtypes.common import (
|
||||
is_categorical_dtype)
|
||||
from pandas.io.formats import format as fmt
|
||||
from pandas.io.formats.printing import pprint_thing
|
||||
|
||||
from eland import Index
|
||||
from eland import NDFrame
|
||||
|
||||
|
||||
class Series(NDFrame):
|
||||
"""
|
||||
pandas.Series like API that proxies into Elasticsearch index(es).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
client : eland.Client
|
||||
A reference to a Elasticsearch python client
|
||||
|
||||
index_pattern : str
|
||||
An Elasticsearch index pattern. This can contain wildcards (e.g. filebeat-*).
|
||||
|
||||
field_name : str
|
||||
The field to base the series on
|
||||
|
||||
See Also
|
||||
--------
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
import eland as ed
|
||||
client = ed.Client(Elasticsearch())
|
||||
s = ed.DataFrame(client, 'reviews', 'date')
|
||||
df.head()
|
||||
reviewerId vendorId rating date
|
||||
0 0 0 5 2006-04-07 17:08
|
||||
1 1 1 5 2006-05-04 12:16
|
||||
2 2 2 4 2006-04-21 12:26
|
||||
3 3 3 5 2006-04-18 15:48
|
||||
4 3 4 5 2006-04-18 15:49
|
||||
|
||||
Notice that the types are based on Elasticsearch mappings
|
||||
|
||||
Notes
|
||||
-----
|
||||
If the Elasticsearch index is deleted or index mappings are changed after this
|
||||
object is created, the object is not rebuilt and so inconsistencies can occur.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
client,
|
||||
index_pattern,
|
||||
field_name,
|
||||
mappings=None,
|
||||
index_field=None):
|
||||
# python 3 syntax
|
||||
super().__init__(client, index_pattern, mappings=mappings, index_field=index_field)
|
||||
|
||||
# now select column (field_name)
|
||||
self._mappings = self._filter_mappings([field_name])
|
||||
|
||||
def head(self, n=5):
|
||||
return self._df_to_series(super()._head(n))
|
||||
|
||||
def tail(self, n=5):
|
||||
return self._df_to_series(super()._tail(n))
|
||||
|
||||
def info(self, verbose=None, buf=None, max_cols=None, memory_usage=None,
|
||||
null_counts=None):
|
||||
"""
|
||||
Print a concise summary of a DataFrame.
|
||||
|
||||
This method prints information about a DataFrame including
|
||||
the index dtype and column dtypes, non-null values and memory usage.
|
||||
|
||||
This copies a lot of code from pandas.DataFrame.info as it is difficult
|
||||
to split out the appropriate code or creating a SparseDataFrame gives
|
||||
incorrect results on types and counts.
|
||||
"""
|
||||
if buf is None: # pragma: no cover
|
||||
buf = sys.stdout
|
||||
|
||||
lines = []
|
||||
|
||||
lines.append(str(type(self)))
|
||||
lines.append(self._index_summary())
|
||||
|
||||
if len(self.columns) == 0:
|
||||
lines.append('Empty {name}'.format(name=type(self).__name__))
|
||||
fmt.buffer_put_lines(buf, lines)
|
||||
return
|
||||
|
||||
cols = self.columns
|
||||
|
||||
# hack
|
||||
if max_cols is None:
|
||||
max_cols = pd.get_option('display.max_info_columns',
|
||||
len(self.columns) + 1)
|
||||
|
||||
max_rows = pd.get_option('display.max_info_rows', len(self) + 1)
|
||||
|
||||
if null_counts is None:
|
||||
show_counts = ((len(self.columns) <= max_cols) and
|
||||
(len(self) < max_rows))
|
||||
else:
|
||||
show_counts = null_counts
|
||||
exceeds_info_cols = len(self.columns) > max_cols
|
||||
|
||||
def _verbose_repr():
|
||||
lines.append('Data columns (total %d columns):' %
|
||||
len(self.columns))
|
||||
space = max(len(pprint_thing(k)) for k in self.columns) + 4
|
||||
counts = None
|
||||
|
||||
tmpl = "{count}{dtype}"
|
||||
if show_counts:
|
||||
counts = self.count()
|
||||
if len(cols) != len(counts): # pragma: no cover
|
||||
raise AssertionError(
|
||||
'Columns must equal counts '
|
||||
'({cols:d} != {counts:d})'.format(
|
||||
cols=len(cols), counts=len(counts)))
|
||||
tmpl = "{count} non-null {dtype}"
|
||||
|
||||
dtypes = self.dtypes
|
||||
for i, col in enumerate(self._columns):
|
||||
dtype = dtypes.iloc[i]
|
||||
col = pprint_thing(col)
|
||||
|
||||
count = ""
|
||||
if show_counts:
|
||||
count = counts.iloc[i]
|
||||
|
||||
lines.append(_put_str(col, space) + tmpl.format(count=count,
|
||||
dtype=dtype))
|
||||
|
||||
def _non_verbose_repr():
|
||||
lines.append(self._columns._summary(name='Columns'))
|
||||
|
||||
def _sizeof_fmt(num, size_qualifier):
|
||||
# returns size in human readable format
|
||||
for x in ['bytes', 'KB', 'MB', 'GB', 'TB']:
|
||||
if num < 1024.0:
|
||||
return ("{num:3.1f}{size_q} "
|
||||
"{x}".format(num=num, size_q=size_qualifier, x=x))
|
||||
num /= 1024.0
|
||||
return "{num:3.1f}{size_q} {pb}".format(num=num,
|
||||
size_q=size_qualifier,
|
||||
pb='PB')
|
||||
|
||||
if verbose:
|
||||
_verbose_repr()
|
||||
elif verbose is False: # specifically set to False, not nesc None
|
||||
_non_verbose_repr()
|
||||
else:
|
||||
if exceeds_info_cols:
|
||||
_non_verbose_repr()
|
||||
else:
|
||||
_verbose_repr()
|
||||
|
||||
counts = self.get_dtype_counts()
|
||||
dtypes = ['{k}({kk:d})'.format(k=k[0], kk=k[1]) for k
|
||||
in sorted(counts.items())]
|
||||
lines.append('dtypes: {types}'.format(types=', '.join(dtypes)))
|
||||
|
||||
if memory_usage is None:
|
||||
memory_usage = pd.get_option('display.memory_usage')
|
||||
if memory_usage:
|
||||
# append memory usage of df to display
|
||||
size_qualifier = ''
|
||||
|
||||
# TODO - this is different from pd.DataFrame as we shouldn't
|
||||
# really hold much in memory. For now just approximate with getsizeof + ignore deep
|
||||
mem_usage = sys.getsizeof(self)
|
||||
lines.append("memory usage: {mem}\n".format(
|
||||
mem=_sizeof_fmt(mem_usage, size_qualifier)))
|
||||
|
||||
fmt.buffer_put_lines(buf, lines)
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
"""
|
||||
Return a tuple representing the dimensionality of the DataFrame.
|
||||
|
||||
Returns
|
||||
-------
|
||||
shape: tuple
|
||||
0 - number of rows
|
||||
1 - number of columns
|
||||
"""
|
||||
num_rows = len(self)
|
||||
num_columns = len(self._columns)
|
||||
|
||||
return num_rows, num_columns
|
||||
|
||||
@property
|
||||
def set_index(self, index_field):
|
||||
copy = self.copy()
|
||||
copy._index = Index(index_field)
|
||||
return copy
|
||||
|
||||
def _index_summary(self):
|
||||
head = self.head(1).index[0]
|
||||
tail = self.tail(1).index[0]
|
||||
index_summary = ', %s to %s' % (pprint_thing(head),
|
||||
pprint_thing(tail))
|
||||
|
||||
name = "Index"
|
||||
return '%s: %s entries%s' % (name, len(self), index_summary)
|
||||
|
||||
def count(self):
|
||||
"""
|
||||
Count non-NA cells for each column (TODO row)
|
||||
|
||||
Counts are based on exists queries against ES
|
||||
|
||||
This is inefficient, as it creates N queries (N is number of fields).
|
||||
|
||||
An alternative approach is to use value_count aggregations. However, they have issues in that:
|
||||
1. They can only be used with aggregatable fields (e.g. keyword not text)
|
||||
2. For list fields they return multiple counts. E.g. tags=['elastic', 'ml'] returns value_count=2
|
||||
for a single document.
|
||||
"""
|
||||
counts = {}
|
||||
for field in self._mappings.source_fields():
|
||||
exists_query = {"query": {"exists": {"field": field}}}
|
||||
field_exists_count = self._client.count(index=self._index_pattern, body=exists_query)
|
||||
counts[field] = field_exists_count
|
||||
|
||||
count = pd.Series(data=counts, index=self._mappings.source_fields())
|
||||
|
||||
return count
|
||||
|
||||
def describe(self):
|
||||
return super()._describe()
|
||||
|
||||
def _df_to_series(self, df):
|
||||
return df.iloc[:, 0]
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Rendering Methods
|
||||
def __repr__(self):
|
||||
"""
|
||||
From pandas
|
||||
"""
|
||||
buf = StringIO()
|
||||
|
||||
max_rows = pd.get_option("display.max_rows")
|
||||
|
||||
self.to_string(buf=buf, na_rep='NaN', float_format=None, header=True, index=True, length=False,
|
||||
dtype=False, name=False, max_rows=max_rows)
|
||||
|
||||
return buf.getvalue()
|
||||
|
||||
def to_string(self, buf=None, na_rep='NaN',
|
||||
float_format=None, header=True,
|
||||
index=True, length=True, dtype=True,
|
||||
name=True, max_rows=None):
|
||||
"""
|
||||
From pandas
|
||||
|
||||
Render a string representation of the Series.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
buf : StringIO-like, optional
|
||||
buffer to write to
|
||||
na_rep : string, optional
|
||||
string representation of NAN to use, default 'NaN'
|
||||
float_format : one-parameter function, optional
|
||||
formatter function to apply to columns' elements if they are floats
|
||||
default None
|
||||
header : boolean, default True
|
||||
Add the Series header (index name)
|
||||
index : bool, optional
|
||||
Add index (row) labels, default True
|
||||
length : boolean, default False
|
||||
Add the Series length
|
||||
dtype : boolean, default False
|
||||
Add the Series dtype
|
||||
name : boolean, default False
|
||||
Add the Series name if not None
|
||||
max_rows : int, optional
|
||||
Maximum number of rows to show before truncating. If None, show
|
||||
all.
|
||||
|
||||
Returns
|
||||
-------
|
||||
formatted : string (if not buffer passed)
|
||||
"""
|
||||
if max_rows == None:
|
||||
max_rows = pd.get_option("display.max_rows")
|
||||
|
||||
df = self._fake_head_tail_df(max_rows=max_rows + 1)
|
||||
|
||||
s = self._df_to_series(df)
|
||||
|
||||
formatter = Series.SeriesFormatter(s, len(self), name=name, length=length,
|
||||
header=header, index=index,
|
||||
dtype=dtype, na_rep=na_rep,
|
||||
float_format=float_format,
|
||||
max_rows=max_rows)
|
||||
result = formatter.to_string()
|
||||
|
||||
# catch contract violations
|
||||
if not isinstance(result, compat.text_type):
|
||||
raise AssertionError("result must be of type unicode, type"
|
||||
" of result is {0!r}"
|
||||
"".format(result.__class__.__name__))
|
||||
|
||||
if buf is None:
|
||||
return result
|
||||
else:
|
||||
try:
|
||||
buf.write(result)
|
||||
except AttributeError:
|
||||
with open(buf, 'w') as f:
|
||||
f.write(result)
|
||||
|
||||
class SeriesFormatter(fmt.SeriesFormatter):
|
||||
"""
|
||||
A hacked overridden version of pandas.io.formats.SeriesFormatter that writes correct length
|
||||
"""
|
||||
|
||||
def __init__(self, series, series_length, buf=None, length=True, header=True, index=True,
|
||||
na_rep='NaN', name=False, float_format=None, dtype=True,
|
||||
max_rows=None):
|
||||
super().__init__(series, buf=buf, length=length, header=header, index=index,
|
||||
na_rep=na_rep, name=name, float_format=float_format, dtype=dtype,
|
||||
max_rows=max_rows)
|
||||
self._series_length = series_length
|
||||
|
||||
def _get_footer(self):
|
||||
"""
|
||||
Overridden with length change
|
||||
(from pandas 0.24.2 io.formats.SeriesFormatter)
|
||||
"""
|
||||
name = self.series.name
|
||||
footer = ''
|
||||
|
||||
if getattr(self.series.index, 'freq', None) is not None:
|
||||
footer += 'Freq: {freq}'.format(freq=self.series.index.freqstr)
|
||||
|
||||
if self.name is not False and name is not None:
|
||||
if footer:
|
||||
footer += ', '
|
||||
|
||||
series_name = pprint_thing(name,
|
||||
escape_chars=('\t', '\r', '\n'))
|
||||
footer += ("Name: {sname}".format(sname=series_name)
|
||||
if name is not None else "")
|
||||
|
||||
if (self.length is True or
|
||||
(self.length == 'truncate' and self.truncate_v)):
|
||||
if footer:
|
||||
footer += ', '
|
||||
footer += 'Length: {length}'.format(length=self._series_length)
|
||||
|
||||
if self.dtype is not False and self.dtype is not None:
|
||||
name = getattr(self.tr_series.dtype, 'name', None)
|
||||
if name:
|
||||
if footer:
|
||||
footer += ', '
|
||||
footer += 'dtype: {typ}'.format(typ=pprint_thing(name))
|
||||
|
||||
# level infos are added to the end and in a new line, like it is done
|
||||
# for Categoricals
|
||||
if is_categorical_dtype(self.tr_series.dtype):
|
||||
level_info = self.tr_series._values._repr_categories_info()
|
||||
if footer:
|
||||
footer += "\n"
|
||||
footer += level_info
|
||||
|
||||
return compat.text_type(footer)
|
@ -16,7 +16,7 @@ class TestMapping(TestData):
|
||||
|
||||
assert TEST_MAPPING1_EXPECTED_DF.index.tolist() == mappings.all_fields()
|
||||
|
||||
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mappings.mappings_capabilities['es_dtype']))
|
||||
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mappings._mappings_capabilities['es_dtype']))
|
||||
|
||||
assert TEST_MAPPING1_EXPECTED_SOURCE_FIELD_COUNT == mappings.count_source_fields()
|
||||
|
||||
@ -24,7 +24,7 @@ class TestMapping(TestData):
|
||||
mappings = ed.Mappings(ed.Client(ELASTICSEARCH_HOST), TEST_MAPPING1_INDEX_NAME)
|
||||
|
||||
assert TEST_MAPPING1_EXPECTED_DF.index.tolist() == mappings.all_fields()
|
||||
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mappings.mappings_capabilities['es_dtype']))
|
||||
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mappings._mappings_capabilities['es_dtype']))
|
||||
assert TEST_MAPPING1_EXPECTED_SOURCE_FIELD_COUNT == mappings.count_source_fields()
|
||||
|
||||
# Pick 1 source field
|
||||
@ -43,7 +43,7 @@ class TestMapping(TestData):
|
||||
|
||||
# Check original is still ok
|
||||
assert TEST_MAPPING1_EXPECTED_DF.index.tolist() == mappings.all_fields()
|
||||
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mappings.mappings_capabilities['es_dtype']))
|
||||
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mappings._mappings_capabilities['es_dtype']))
|
||||
assert TEST_MAPPING1_EXPECTED_SOURCE_FIELD_COUNT == mappings.count_source_fields()
|
||||
|
||||
def test_dtypes(self):
|
||||
|
@ -7,7 +7,7 @@ import io
|
||||
from pandas.util.testing import (
|
||||
assert_series_equal, assert_frame_equal)
|
||||
|
||||
class TestDataFrameIndexing(TestData):
|
||||
class TestDataFrameBasics(TestData):
|
||||
|
||||
def test_mapping(self):
|
||||
ed_flights_mappings = pd.DataFrame(self.ed_flights()._mappings._mappings_capabilities
|
32
eland/tests/series/test_basics_pytest.py
Normal file
32
eland/tests/series/test_basics_pytest.py
Normal file
@ -0,0 +1,32 @@
|
||||
# File called _pytest for PyCharm compatability
|
||||
from eland.tests.common import TestData
|
||||
|
||||
import pandas as pd
|
||||
import eland as ed
|
||||
import io
|
||||
|
||||
from eland.tests import ELASTICSEARCH_HOST
|
||||
from eland.tests import FLIGHTS_INDEX_NAME
|
||||
|
||||
from pandas.util.testing import (
|
||||
assert_series_equal, assert_frame_equal)
|
||||
|
||||
class TestSeriesBasics(TestData):
|
||||
|
||||
def test_head_tail(self):
|
||||
pd_s = self.pd_flights()['Carrier']
|
||||
ed_s = ed.Series(ELASTICSEARCH_HOST, FLIGHTS_INDEX_NAME, 'Carrier')
|
||||
|
||||
pd_s_head = pd_s.head(10)
|
||||
ed_s_head = ed_s.head(10)
|
||||
|
||||
assert_series_equal(pd_s_head, ed_s_head)
|
||||
|
||||
pd_s_tail = pd_s.tail(10)
|
||||
ed_s_tail = ed_s.tail(10)
|
||||
|
||||
assert_series_equal(pd_s_tail, ed_s_tail)
|
||||
|
||||
def test_print(self):
|
||||
ed_s = ed.Series(ELASTICSEARCH_HOST, FLIGHTS_INDEX_NAME, 'timestamp')
|
||||
print(ed_s.to_string())
|
Loading…
x
Reference in New Issue
Block a user