mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
Merge pull request #67 from stevedodson/feature/user_guide
Reformat and cleanup based on PyCharm inspect and reformat
This commit is contained in:
commit
33f5495352
1
.gitignore
vendored
1
.gitignore
vendored
@ -12,7 +12,6 @@ docs/build/
|
||||
|
||||
# pytest results
|
||||
eland/tests/dataframe/results/
|
||||
eland/tests/dataframe/results/
|
||||
result_images/
|
||||
|
||||
|
||||
|
@ -12,6 +12,7 @@
|
||||
#
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.insert(0, os.path.abspath("../sphinxext"))
|
||||
sys.path.extend(
|
||||
[
|
||||
@ -20,8 +21,6 @@ sys.path.extend(
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = 'eland'
|
||||
@ -30,7 +29,6 @@ copyright = '2019, Elasticsearch B.V.'
|
||||
# The full version, including alpha/beta/rc tags
|
||||
release = '0.1'
|
||||
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
@ -73,7 +71,6 @@ plot_html_show_source_link = False
|
||||
plot_pre_code = """import numpy as np
|
||||
import eland as ed"""
|
||||
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
|
||||
@ -82,7 +79,6 @@ templates_path = ['_templates']
|
||||
# This pattern also affects html_static_path and html_extra_path.
|
||||
exclude_patterns = []
|
||||
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
|
BIN
docs/source/reference/api/eland-DataFrame-hist-1.png
Normal file
BIN
docs/source/reference/api/eland-DataFrame-hist-1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 36 KiB |
@ -4,3 +4,5 @@ eland.DataFrame.hist
|
||||
.. currentmodule:: eland
|
||||
|
||||
.. automethod:: DataFrame.hist
|
||||
.. image:: eland-DataFrame-hist-1.png
|
||||
|
||||
|
@ -1,8 +1,10 @@
|
||||
# Default number of rows displayed (different to pandas where ALL could be displayed)
|
||||
DEFAULT_NUM_ROWS_DISPLAYED = 60
|
||||
|
||||
|
||||
def docstring_parameter(*sub):
|
||||
def dec(obj):
|
||||
obj.__doc__ = obj.__doc__.format(*sub)
|
||||
return obj
|
||||
|
||||
return dec
|
||||
|
@ -1,7 +1,7 @@
|
||||
import pytest
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
import eland as ed
|
||||
|
||||
# Fix console size for consistent test results
|
||||
@ -9,9 +9,9 @@ pd.set_option('display.max_rows', 10)
|
||||
pd.set_option('display.max_columns', 5)
|
||||
pd.set_option('display.width', 100)
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def add_imports(doctest_namespace):
|
||||
doctest_namespace["np"] = np
|
||||
doctest_namespace["pd"] = pd
|
||||
doctest_namespace["ed"] = ed
|
||||
|
||||
|
@ -5,8 +5,8 @@ from io import StringIO
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import six
|
||||
from pandas.core.computation.eval import eval
|
||||
from pandas.core.common import apply_if_callable, is_bool_indexer
|
||||
from pandas.core.computation.eval import eval
|
||||
from pandas.core.dtypes.common import is_list_like
|
||||
from pandas.core.indexing import check_bool_indexer
|
||||
from pandas.io.common import _expand_user, _stringify_path
|
||||
@ -17,8 +17,8 @@ from pandas.io.formats.printing import pprint_thing
|
||||
import eland.plotting as gfx
|
||||
from eland import NDFrame
|
||||
from eland import Series
|
||||
from eland.filter import BooleanFilter, ScriptFilter
|
||||
from eland.common import DEFAULT_NUM_ROWS_DISPLAYED, docstring_parameter
|
||||
from eland.filter import BooleanFilter
|
||||
|
||||
|
||||
class DataFrame(NDFrame):
|
||||
@ -35,7 +35,7 @@ class DataFrame(NDFrame):
|
||||
- elasticsearch-py instance or
|
||||
- eland.Client instance
|
||||
index_pattern: str
|
||||
Elasticsearch index pattern (e.g. 'flights' or 'filebeat-\*')
|
||||
Elasticsearch index pattern. This can contain wildcards. (e.g. 'flights')
|
||||
columns: list of str, optional
|
||||
List of DataFrame columns. A subset of the Elasticsearch index's fields.
|
||||
index_field: str, optional
|
||||
@ -76,10 +76,12 @@ class DataFrame(NDFrame):
|
||||
<BLANKLINE>
|
||||
[5 rows x 2 columns]
|
||||
|
||||
Constructing DataFrame from an Elasticsearch client and an Elasticsearch index, with 'timestamp' as the DataFrame index field
|
||||
Constructing DataFrame from an Elasticsearch client and an Elasticsearch index, with 'timestamp' as the DataFrame
|
||||
index field
|
||||
(TODO - currently index_field must also be a field if not _id)
|
||||
|
||||
>>> df = ed.DataFrame(client='localhost', index_pattern='flights', columns=['AvgTicketPrice', 'timestamp'], index_field='timestamp')
|
||||
>>> df = ed.DataFrame(client='localhost', index_pattern='flights', columns=['AvgTicketPrice', 'timestamp'],
|
||||
... index_field='timestamp')
|
||||
>>> df.head()
|
||||
AvgTicketPrice timestamp
|
||||
2018-01-01T00:00:00 841.265642 2018-01-01 00:00:00
|
||||
@ -90,6 +92,7 @@ class DataFrame(NDFrame):
|
||||
<BLANKLINE>
|
||||
[5 rows x 2 columns]
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
client=None,
|
||||
index_pattern=None,
|
||||
@ -310,7 +313,8 @@ class DataFrame(NDFrame):
|
||||
An alternative approach is to use value_count aggregations. However, they have issues in that:
|
||||
|
||||
- They can only be used with aggregatable fields (e.g. keyword not text)
|
||||
- For list fields they return multiple counts. E.g. tags=['elastic', 'ml'] returns value_count=2 for a single document.
|
||||
- For list fields they return multiple counts. E.g. tags=['elastic', 'ml'] returns value_count=2 for a
|
||||
single document.
|
||||
|
||||
TODO - add additional pandas.DataFrame.count features
|
||||
|
||||
@ -334,6 +338,7 @@ class DataFrame(NDFrame):
|
||||
return self._query_compiler.count()
|
||||
|
||||
def info_es(self):
|
||||
# noinspection PyPep8
|
||||
"""
|
||||
A debug summary of an eland DataFrame internals.
|
||||
|
||||
@ -437,10 +442,7 @@ class DataFrame(NDFrame):
|
||||
if buf is None: # pragma: no cover
|
||||
buf = sys.stdout
|
||||
|
||||
lines = []
|
||||
|
||||
lines.append(str(type(self)))
|
||||
lines.append(self._index_summary())
|
||||
lines = [str(type(self)), self._index_summary()]
|
||||
|
||||
if len(self.columns) == 0:
|
||||
lines.append('Empty {name}'.format(name=type(self).__name__))
|
||||
@ -697,7 +699,6 @@ class DataFrame(NDFrame):
|
||||
return self[key]
|
||||
raise e
|
||||
|
||||
|
||||
def _getitem(self, key):
|
||||
"""Get the column specified by key for this DataFrame.
|
||||
|
||||
@ -780,7 +781,8 @@ class DataFrame(NDFrame):
|
||||
else:
|
||||
self._query_compiler = new_query_compiler
|
||||
|
||||
def _reduce_dimension(self, query_compiler):
|
||||
@staticmethod
|
||||
def _reduce_dimension(query_compiler):
|
||||
return Series(query_compiler=query_compiler)
|
||||
|
||||
def to_csv(self, path_or_buf=None, sep=",", na_rep='', float_format=None,
|
||||
@ -961,7 +963,8 @@ class DataFrame(NDFrame):
|
||||
raise NotImplementedError("Aggregating via index not currently implemented - needs index transform")
|
||||
|
||||
# currently we only support a subset of functions that aggregate columns.
|
||||
# ['count', 'mad', 'max', 'mean', 'median', 'min', 'mode', 'quantile', 'rank', 'sem', 'skew', 'sum', 'std', 'var', 'nunique']
|
||||
# ['count', 'mad', 'max', 'mean', 'median', 'min', 'mode', 'quantile',
|
||||
# 'rank', 'sem', 'skew', 'sum', 'std', 'var', 'nunique']
|
||||
if isinstance(func, str):
|
||||
# wrap in list
|
||||
func = [func]
|
||||
@ -1031,6 +1034,7 @@ class DataFrame(NDFrame):
|
||||
Parameters
|
||||
----------
|
||||
key: object
|
||||
default: default value if not found
|
||||
|
||||
Returns
|
||||
-------
|
||||
@ -1079,7 +1083,7 @@ class DataFrame(NDFrame):
|
||||
eland_to_pandas
|
||||
to_numpy
|
||||
"""
|
||||
self.to_numpy()
|
||||
return self.to_numpy()
|
||||
|
||||
def to_numpy(self):
|
||||
"""
|
||||
@ -1123,4 +1127,3 @@ class DataFrame(NDFrame):
|
||||
"This method would scan/scroll the entire Elasticsearch index(s) into memory. "
|
||||
"If this is explicitly required, and there is sufficient memory, call `ed.eland_to_pandas(ed_df).values`"
|
||||
)
|
||||
|
||||
|
@ -38,7 +38,7 @@ class Index:
|
||||
|
||||
@index_field.setter
|
||||
def index_field(self, index_field):
|
||||
if index_field == None or index_field == Index.ID_INDEX_FIELD:
|
||||
if index_field is None or index_field == Index.ID_INDEX_FIELD:
|
||||
self._index_field = Index.ID_INDEX_FIELD
|
||||
self._is_source_field = False
|
||||
else:
|
||||
|
@ -13,7 +13,7 @@ class Mappings:
|
||||
Attributes
|
||||
----------
|
||||
|
||||
mappings_capabilities: pandas.DataFrame
|
||||
_mappings_capabilities: pandas.DataFrame
|
||||
A data frame summarising the capabilities of the index mapping
|
||||
|
||||
_source - is top level field (i.e. not a multi-field sub-field)
|
||||
@ -71,7 +71,7 @@ class Mappings:
|
||||
# (this massively improves performance of DataFrame.flatten)
|
||||
self._source_field_pd_dtypes = {}
|
||||
|
||||
for field_name in self._mappings_capabilities[self._mappings_capabilities._source == True].index:
|
||||
for field_name in self._mappings_capabilities[self._mappings_capabilities._source].index:
|
||||
pd_dtype = self._mappings_capabilities.loc[field_name]['pd_dtype']
|
||||
self._source_field_pd_dtypes[field_name] = pd_dtype
|
||||
|
||||
@ -324,8 +324,7 @@ class Mappings:
|
||||
}
|
||||
"""
|
||||
|
||||
mappings = {}
|
||||
mappings['properties'] = {}
|
||||
mappings = {'properties': {}}
|
||||
for field_name_name, dtype in dataframe.dtypes.iteritems():
|
||||
if geo_points is not None and field_name_name in geo_points:
|
||||
es_dtype = 'geo_point'
|
||||
@ -453,13 +452,13 @@ class Mappings:
|
||||
numeric_source_fields: list of str
|
||||
List of source fields where pd_dtype == (int64 or float64 or bool)
|
||||
"""
|
||||
if include_bool == True:
|
||||
df = self._mappings_capabilities[(self._mappings_capabilities._source == True) &
|
||||
if include_bool:
|
||||
df = self._mappings_capabilities[self._mappings_capabilities._source &
|
||||
((self._mappings_capabilities.pd_dtype == 'int64') |
|
||||
(self._mappings_capabilities.pd_dtype == 'float64') |
|
||||
(self._mappings_capabilities.pd_dtype == 'bool'))]
|
||||
else:
|
||||
df = self._mappings_capabilities[(self._mappings_capabilities._source == True) &
|
||||
df = self._mappings_capabilities[self._mappings_capabilities._source &
|
||||
((self._mappings_capabilities.pd_dtype == 'int64') |
|
||||
(self._mappings_capabilities.pd_dtype == 'float64'))]
|
||||
# if field_names exists, filter index with field_names
|
||||
@ -487,7 +486,7 @@ class Mappings:
|
||||
count_source_fields: int
|
||||
Number of source fields in mapping
|
||||
"""
|
||||
return len(self.source_fields())
|
||||
return len(self._source_field_pd_dtypes)
|
||||
|
||||
def dtypes(self, field_names=None):
|
||||
"""
|
||||
|
@ -31,6 +31,7 @@ from pandas.util._validators import validate_bool_kwarg
|
||||
|
||||
from eland import ElandQueryCompiler
|
||||
|
||||
|
||||
class NDFrame:
|
||||
|
||||
def __init__(self,
|
||||
@ -314,7 +315,7 @@ class NDFrame:
|
||||
dayOfWeek 2.835975
|
||||
dtype: float64
|
||||
"""
|
||||
if numeric_only == False:
|
||||
if not numeric_only:
|
||||
raise NotImplementedError("Only mean of numeric fields is implemented")
|
||||
return self._query_compiler.mean()
|
||||
|
||||
@ -348,7 +349,7 @@ class NDFrame:
|
||||
dayOfWeek 3.703500e+04
|
||||
dtype: float64
|
||||
"""
|
||||
if numeric_only == False:
|
||||
if not numeric_only:
|
||||
raise NotImplementedError("Only sum of numeric fields is implemented")
|
||||
return self._query_compiler.sum()
|
||||
|
||||
@ -382,7 +383,7 @@ class NDFrame:
|
||||
dayOfWeek 0.000000
|
||||
dtype: float64
|
||||
"""
|
||||
if numeric_only == False:
|
||||
if not numeric_only:
|
||||
raise NotImplementedError("Only min of numeric fields is implemented")
|
||||
return self._query_compiler.min()
|
||||
|
||||
@ -416,7 +417,7 @@ class NDFrame:
|
||||
dayOfWeek 6.000000
|
||||
dtype: float64
|
||||
"""
|
||||
if numeric_only == False:
|
||||
if not numeric_only:
|
||||
raise NotImplementedError("Only max of numeric fields is implemented")
|
||||
return self._query_compiler.max()
|
||||
|
||||
@ -424,7 +425,8 @@ class NDFrame:
|
||||
"""
|
||||
Return cardinality of each field.
|
||||
|
||||
**Note we can only do this for aggregatable Elasticsearch fields - (in general) numeric and keyword rather than text fields**
|
||||
**Note we can only do this for aggregatable Elasticsearch fields - (in general) numeric and keyword
|
||||
rather than text fields**
|
||||
|
||||
This method will try and field aggregatable fields if possible if mapping has::
|
||||
|
||||
|
@ -39,6 +39,7 @@ class Operations:
|
||||
|
||||
return "desc"
|
||||
|
||||
@staticmethod
|
||||
def from_string(order):
|
||||
if order == "asc":
|
||||
return Operations.SortOrder.ASC
|
||||
@ -46,7 +47,7 @@ class Operations:
|
||||
return Operations.SortOrder.DESC
|
||||
|
||||
def __init__(self, tasks=None):
|
||||
if tasks == None:
|
||||
if tasks is None:
|
||||
self._tasks = []
|
||||
else:
|
||||
self._tasks = tasks
|
||||
@ -105,7 +106,8 @@ class Operations:
|
||||
query_params, post_processing = self._resolve_tasks()
|
||||
|
||||
# Elasticsearch _count is very efficient and so used to return results here. This means that
|
||||
# data frames that have restricted size or sort params will not return valid results (_count doesn't support size).
|
||||
# data frames that have restricted size or sort params will not return valid results
|
||||
# (_count doesn't support size).
|
||||
# Longer term we may fall back to pandas, but this may result in loading all index into memory.
|
||||
if self._size(query_params, post_processing) is not None:
|
||||
raise NotImplementedError("Requesting count with additional query and processing parameters "
|
||||
@ -497,10 +499,14 @@ class Operations:
|
||||
|
||||
def to_pandas(self, query_compiler):
|
||||
class PandasDataFrameCollector:
|
||||
def __init__(self):
|
||||
self.df = None
|
||||
|
||||
def collect(self, df):
|
||||
self.df = df
|
||||
|
||||
def batch_size(self):
|
||||
@staticmethod
|
||||
def batch_size():
|
||||
return None
|
||||
|
||||
collector = PandasDataFrameCollector()
|
||||
@ -528,7 +534,8 @@ class Operations:
|
||||
self.kwargs['mode'] = 'a'
|
||||
df.to_csv(**self.kwargs)
|
||||
|
||||
def batch_size(self):
|
||||
@staticmethod
|
||||
def batch_size():
|
||||
# By default read 10000 docs to csv
|
||||
batch_size = 10000
|
||||
return batch_size
|
||||
@ -568,8 +575,8 @@ class Operations:
|
||||
sort=sort_params,
|
||||
body=body,
|
||||
_source=field_names)
|
||||
except:
|
||||
# Catch ES error and print debug (currently to stdout)
|
||||
except Exception:
|
||||
# Catch all ES errors and print debug (currently to stdout)
|
||||
error = {
|
||||
'index': query_compiler._index_pattern,
|
||||
'size': size,
|
||||
@ -594,7 +601,7 @@ class Operations:
|
||||
partial_result, df = query_compiler._es_results_to_pandas(es_results, collector.batch_size())
|
||||
df = self._apply_df_post_processing(df, post_processing)
|
||||
collector.collect(df)
|
||||
if partial_result == False:
|
||||
if not partial_result:
|
||||
break
|
||||
else:
|
||||
partial_result, df = query_compiler._es_results_to_pandas(es_results)
|
||||
@ -761,7 +768,8 @@ class Operations:
|
||||
|
||||
return query_params, post_processing
|
||||
|
||||
def _resolve_head(self, item, query_params, post_processing):
|
||||
@staticmethod
|
||||
def _resolve_head(item, query_params, post_processing):
|
||||
# head - sort asc, size n
|
||||
# |12345-------------|
|
||||
query_sort_field = item[1][0]
|
||||
@ -792,7 +800,8 @@ class Operations:
|
||||
|
||||
return query_params, post_processing
|
||||
|
||||
def _resolve_tail(self, item, query_params, post_processing):
|
||||
@staticmethod
|
||||
def _resolve_tail(item, query_params, post_processing):
|
||||
# tail - sort desc, size n, post-process sort asc
|
||||
# |-------------12345|
|
||||
query_sort_field = item[1][0]
|
||||
@ -802,7 +811,7 @@ class Operations:
|
||||
# If this is a tail of a tail adjust settings and return
|
||||
if query_params['query_size'] is not None and \
|
||||
query_params['query_sort_order'] == query_sort_order and \
|
||||
post_processing == [('sort_index')]:
|
||||
post_processing == ['sort_index']:
|
||||
if query_size < query_params['query_size']:
|
||||
query_params['query_size'] = query_size
|
||||
return query_params, post_processing
|
||||
@ -830,11 +839,12 @@ class Operations:
|
||||
# reverse sort order
|
||||
query_params['query_sort_order'] = Operations.SortOrder.reverse(query_sort_order)
|
||||
|
||||
post_processing.append(('sort_index'))
|
||||
post_processing.append('sort_index')
|
||||
|
||||
return query_params, post_processing
|
||||
|
||||
def _resolve_iloc(self, item, query_params, post_processing):
|
||||
@staticmethod
|
||||
def _resolve_iloc(item, query_params, post_processing):
|
||||
# tail - sort desc, size n, post-process sort asc
|
||||
# |---4--7-9---------|
|
||||
|
||||
@ -854,7 +864,8 @@ class Operations:
|
||||
|
||||
return query_params, post_processing
|
||||
|
||||
def _resolve_query_ids(self, item, query_params, post_processing):
|
||||
@staticmethod
|
||||
def _resolve_query_ids(item, query_params, post_processing):
|
||||
# task = ('query_ids', ('must_not', items))
|
||||
must_clause = item[1][0]
|
||||
ids = item[1][1]
|
||||
@ -866,7 +877,8 @@ class Operations:
|
||||
|
||||
return query_params, post_processing
|
||||
|
||||
def _resolve_query_terms(self, item, query_params, post_processing):
|
||||
@staticmethod
|
||||
def _resolve_query_terms(item, query_params, post_processing):
|
||||
# task = ('query_terms', ('must_not', (field, terms)))
|
||||
must_clause = item[1][0]
|
||||
field = item[1][1][0]
|
||||
@ -879,7 +891,8 @@ class Operations:
|
||||
|
||||
return query_params, post_processing
|
||||
|
||||
def _resolve_boolean_filter(self, item, query_params, post_processing):
|
||||
@staticmethod
|
||||
def _resolve_boolean_filter(item, query_params, post_processing):
|
||||
# task = ('boolean_filter', object)
|
||||
boolean_filter = item[1]
|
||||
|
||||
@ -1000,15 +1013,14 @@ class Operations:
|
||||
|
||||
return query_params, post_processing
|
||||
|
||||
|
||||
def _resolve_post_processing_task(self, item, query_params, post_processing):
|
||||
@staticmethod
|
||||
def _resolve_post_processing_task(item, query_params, post_processing):
|
||||
# Just do this in post-processing
|
||||
if item[0] != 'field_names':
|
||||
post_processing.append(item)
|
||||
|
||||
return query_params, post_processing
|
||||
|
||||
|
||||
def _size(self, query_params, post_processing):
|
||||
# Shrink wrap code around checking if size parameter is set
|
||||
size = query_params['query_size'] # can be None
|
||||
@ -1023,7 +1035,6 @@ class Operations:
|
||||
# This can return None
|
||||
return size
|
||||
|
||||
|
||||
def info_es(self, buf):
|
||||
buf.write("Operations:\n")
|
||||
buf.write(" tasks: {0}\n".format(self._tasks))
|
||||
@ -1044,7 +1055,6 @@ class Operations:
|
||||
buf.write(" body: {0}\n".format(body))
|
||||
buf.write(" post_processing: {0}\n".format(post_processing))
|
||||
|
||||
|
||||
def update_query(self, boolean_filter):
|
||||
task = ('boolean_filter', boolean_filter)
|
||||
self._tasks.append(task)
|
||||
|
@ -35,11 +35,8 @@ def ed_hist_frame(ed_df, column=None, by=None, grid=True, xlabelsize=None,
|
||||
|
||||
Examples
|
||||
--------
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> df = ed.DataFrame('localhost', 'flights')
|
||||
>>> hist = df.select_dtypes(include=[np.number]).hist(figsize=[10,10])
|
||||
>>> hist = df.select_dtypes(include=[np.number]).hist(figsize=[10,10]) # doctest: +SKIP
|
||||
"""
|
||||
# Start with empty pandas data frame derived from
|
||||
ed_df_bins, ed_df_weights = ed_df._hist(num_bins=bins)
|
||||
|
@ -169,4 +169,3 @@ class Query:
|
||||
|
||||
def __repr__(self):
|
||||
return repr(self.to_search_body())
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from eland import Client
|
||||
from eland import Index
|
||||
@ -188,8 +188,10 @@ class ElandQueryCompiler:
|
||||
}
|
||||
}
|
||||
```
|
||||
TODO - explain how lists are handled (https://www.elastic.co/guide/en/elasticsearch/reference/current/array.html)
|
||||
TODO - an option here is to use Elasticsearch's multi-field matching instead of pandas treatment of lists (which isn't great)
|
||||
TODO - explain how lists are handled
|
||||
(https://www.elastic.co/guide/en/elasticsearch/reference/current/array.html)
|
||||
TODO - an option here is to use Elasticsearch's multi-field matching instead of pandas treatment of lists
|
||||
(which isn't great)
|
||||
NOTE - using this lists is generally not a good way to use this API
|
||||
"""
|
||||
partial_result = False
|
||||
@ -274,7 +276,8 @@ class ElandQueryCompiler:
|
||||
elif not is_source_field and type(x) is list:
|
||||
for a in x:
|
||||
flatten(a, name)
|
||||
elif is_source_field == True: # only print source fields from mappings (TODO - not so efficient for large number of fields and filtered mapping)
|
||||
elif is_source_field: # only print source fields from mappings
|
||||
# (TODO - not so efficient for large number of fields and filtered mapping)
|
||||
field_name = name[:-1]
|
||||
|
||||
# Coerce types - for now just datetime
|
||||
@ -292,8 +295,8 @@ class ElandQueryCompiler:
|
||||
# create lists for this pivot (see notes above)
|
||||
if field_name in out:
|
||||
if type(out[field_name]) is not list:
|
||||
l = [out[field_name]]
|
||||
out[field_name] = l
|
||||
field_as_list = [out[field_name]]
|
||||
out[field_name] = field_as_list
|
||||
out[field_name].append(x)
|
||||
else:
|
||||
out[field_name] = x
|
||||
@ -524,6 +527,7 @@ class ElandQueryCompiler:
|
||||
"""
|
||||
Internal class to deal with column renaming and script_fields
|
||||
"""
|
||||
|
||||
class DisplayNameToFieldNameMapper:
|
||||
def __init__(self,
|
||||
field_to_display_names=None,
|
||||
|
@ -20,7 +20,6 @@ import warnings
|
||||
from io import StringIO
|
||||
|
||||
import numpy as np
|
||||
|
||||
import pandas as pd
|
||||
from pandas.io.common import _expand_user, _stringify_path
|
||||
|
||||
@ -43,7 +42,7 @@ class Series(NDFrame):
|
||||
A reference to a Elasticsearch python client
|
||||
|
||||
index_pattern : str
|
||||
An Elasticsearch index pattern. This can contain wildcards (e.g. filebeat-\*\).
|
||||
An Elasticsearch index pattern. This can contain wildcards.
|
||||
|
||||
index_field : str
|
||||
The field to base the series on
|
||||
@ -201,7 +200,8 @@ class Series(NDFrame):
|
||||
"""
|
||||
Return the value counts for the specified field.
|
||||
|
||||
**Note we can only do this for aggregatable Elasticsearch fields - (in general) numeric and keyword rather than text fields**
|
||||
**Note we can only do this for aggregatable Elasticsearch fields - (in general) numeric and keyword
|
||||
rather than text fields**
|
||||
|
||||
TODO - implement remainder of pandas arguments
|
||||
|
||||
@ -506,7 +506,6 @@ class Series(NDFrame):
|
||||
"""
|
||||
return self._numeric_op(right, _get_method_name())
|
||||
|
||||
|
||||
def __truediv__(self, right):
|
||||
"""
|
||||
Return floating division of series and right, element-wise (binary operator truediv).
|
||||
@ -704,7 +703,7 @@ class Series(NDFrame):
|
||||
|
||||
def __pow__(self, right):
|
||||
"""
|
||||
Return exponential power of series and right, element-wise (binary operator pow \**\).
|
||||
Return exponential power of series and right, element-wise (binary operator pow).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@ -772,6 +771,7 @@ class Series(NDFrame):
|
||||
Name: taxful_total_price, dtype: float64
|
||||
"""
|
||||
return self._numeric_rop(left, _get_method_name())
|
||||
|
||||
def __rtruediv__(self, left):
|
||||
"""
|
||||
Return division of series and left, element-wise (binary operator div).
|
||||
@ -803,6 +803,7 @@ class Series(NDFrame):
|
||||
Name: taxful_total_price, dtype: float64
|
||||
"""
|
||||
return self._numeric_rop(left, _get_method_name())
|
||||
|
||||
def __rfloordiv__(self, left):
|
||||
"""
|
||||
Return integer division of series and left, element-wise (binary operator floordiv //).
|
||||
@ -834,6 +835,7 @@ class Series(NDFrame):
|
||||
Name: taxful_total_price, dtype: float64
|
||||
"""
|
||||
return self._numeric_rop(left, _get_method_name())
|
||||
|
||||
def __rmod__(self, left):
|
||||
"""
|
||||
Return modulo of series and left, element-wise (binary operator mod %).
|
||||
@ -865,6 +867,7 @@ class Series(NDFrame):
|
||||
Name: taxful_total_price, dtype: float64
|
||||
"""
|
||||
return self._numeric_rop(left, _get_method_name())
|
||||
|
||||
def __rmul__(self, left):
|
||||
"""
|
||||
Return multiplication of series and left, element-wise (binary operator mul).
|
||||
@ -896,9 +899,10 @@ class Series(NDFrame):
|
||||
Name: taxful_total_price, dtype: float64
|
||||
"""
|
||||
return self._numeric_rop(left, _get_method_name())
|
||||
|
||||
def __rpow__(self, left):
|
||||
"""
|
||||
Return exponential power of series and left, element-wise (binary operator pow \**\).
|
||||
Return exponential power of series and left, element-wise (binary operator pow).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@ -927,6 +931,7 @@ class Series(NDFrame):
|
||||
Name: total_quantity, dtype: float64
|
||||
"""
|
||||
return self._numeric_rop(left, _get_method_name())
|
||||
|
||||
def __rsub__(self, left):
|
||||
"""
|
||||
Return subtraction of series and left, element-wise (binary operator sub).
|
||||
|
@ -1,23 +0,0 @@
|
||||
https://docs.google.com/presentation/d/1A3S5aIJC8SuEbi80PhEzyxTUNMjWJ7-_Om92yU9p3yo/edit#slide=id.g5f8a4bcb09_0_3
|
||||
https://www.kaggle.com/pmarcelino/comprehensive-data-exploration-with-python
|
||||
https://nbviewer.jupyter.org/github/parente/nbestimate/blob/master/estimate.ipynb
|
||||
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
|
||||
https://github.com/elastic/eland
|
||||
http://localhost:8889/notebooks/eland/tests/demo_day_20190815.ipynb
|
||||
http://localhost:5601/app/kibana#/dev_tools/console?_g=()
|
||||
|
||||
|
||||
devtool console:
|
||||
```
|
||||
GET _cat/indices
|
||||
|
||||
# Clean demo
|
||||
DELETE ed_jetbeats_routes
|
||||
|
||||
# Demo day schema
|
||||
GET flights
|
||||
GET flights/_search
|
||||
|
||||
GET ed_jetbeats_routes
|
||||
GET ed_jetbeats_routes/_search
|
||||
```
|
@ -4,8 +4,6 @@ from elasticsearch import Elasticsearch
|
||||
import eland as ed
|
||||
from eland.tests.common import TestData
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
class TestClientEq(TestData):
|
||||
|
||||
|
@ -4,7 +4,6 @@ from pandas.util.testing import assert_series_equal
|
||||
|
||||
from eland.tests.common import TestData
|
||||
|
||||
import pandas as pd
|
||||
|
||||
class TestDataFrameCount(TestData):
|
||||
|
||||
|
@ -1,7 +1,6 @@
|
||||
# File called _pytest for PyCharm compatability
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas.util.testing import assert_series_equal
|
||||
|
||||
from eland.tests.common import TestData
|
||||
@ -17,7 +16,7 @@ class TestDataFrameDtypes(TestData):
|
||||
assert_series_equal(pd_flights.dtypes, ed_flights.dtypes)
|
||||
|
||||
for i in range(0, len(pd_flights.dtypes) - 1):
|
||||
assert type(pd_flights.dtypes[i]) == type(ed_flights.dtypes[i])
|
||||
assert isinstance(pd_flights.dtypes[i], type(ed_flights.dtypes[i]))
|
||||
|
||||
def test_flights_select_dtypes(self):
|
||||
ed_flights = self.ed_flights_small()
|
||||
|
@ -1,12 +1,12 @@
|
||||
# File called _pytest for PyCharm compatability
|
||||
|
||||
import eland as ed
|
||||
|
||||
import pytest
|
||||
|
||||
import eland as ed
|
||||
from eland.tests import ELASTICSEARCH_HOST
|
||||
from eland.tests import FLIGHTS_INDEX_NAME
|
||||
|
||||
|
||||
class TestDataFrameInit:
|
||||
|
||||
def test_init(self):
|
||||
@ -28,4 +28,3 @@ class TestDataFrameInit:
|
||||
|
||||
qc = ed.ElandQueryCompiler(client=ELASTICSEARCH_HOST, index_pattern=FLIGHTS_INDEX_NAME)
|
||||
df2 = ed.DataFrame(query_compiler=qc)
|
||||
|
||||
|
@ -1,9 +1,9 @@
|
||||
# File called _pytest for PyCharm compatability
|
||||
|
||||
from eland.tests.common import TestData
|
||||
|
||||
from pandas.testing import assert_index_equal
|
||||
|
||||
from eland.tests.common import TestData
|
||||
|
||||
|
||||
class TestDataFrameKeys(TestData):
|
||||
|
||||
|
@ -4,11 +4,8 @@ from pandas.util.testing import assert_series_equal
|
||||
|
||||
from eland.tests.common import TestData
|
||||
|
||||
import eland as ed
|
||||
|
||||
|
||||
class TestDataFrameMetrics(TestData):
|
||||
|
||||
funcs = ['max', 'min', 'mean', 'sum']
|
||||
|
||||
def test_flights_metrics(self):
|
||||
@ -29,7 +26,8 @@ class TestDataFrameMetrics(TestData):
|
||||
ed_ecommerce = self.ed_ecommerce()[columns]
|
||||
|
||||
for func in self.funcs:
|
||||
assert_series_equal(getattr(pd_ecommerce, func)(numeric_only=True), getattr(ed_ecommerce, func)(numeric_only=True),
|
||||
assert_series_equal(getattr(pd_ecommerce, func)(numeric_only=True),
|
||||
getattr(ed_ecommerce, func)(numeric_only=True),
|
||||
check_less_precise=True)
|
||||
|
||||
def test_ecommerce_selected_mixed_numeric_source_fields(self):
|
||||
@ -41,10 +39,10 @@ class TestDataFrameMetrics(TestData):
|
||||
ed_ecommerce = self.ed_ecommerce()[columns]
|
||||
|
||||
for func in self.funcs:
|
||||
assert_series_equal(getattr(pd_ecommerce, func)(numeric_only=True), getattr(ed_ecommerce, func)(numeric_only=True),
|
||||
assert_series_equal(getattr(pd_ecommerce, func)(numeric_only=True),
|
||||
getattr(ed_ecommerce, func)(numeric_only=True),
|
||||
check_less_precise=True)
|
||||
|
||||
|
||||
def test_ecommerce_selected_all_numeric_source_fields(self):
|
||||
# All of these are numeric
|
||||
columns = ['total_quantity', 'taxful_total_price', 'taxless_total_price']
|
||||
@ -53,5 +51,6 @@ class TestDataFrameMetrics(TestData):
|
||||
ed_ecommerce = self.ed_ecommerce()[columns]
|
||||
|
||||
for func in self.funcs:
|
||||
assert_series_equal(getattr(pd_ecommerce, func)(numeric_only=True), getattr(ed_ecommerce, func)(numeric_only=True),
|
||||
assert_series_equal(getattr(pd_ecommerce, func)(numeric_only=True),
|
||||
getattr(ed_ecommerce, func)(numeric_only=True),
|
||||
check_less_precise=True)
|
||||
|
@ -1,5 +1,4 @@
|
||||
# File called _pytest for PyCharm compatability
|
||||
import pandas as pd
|
||||
|
||||
from pandas.util.testing import assert_series_equal
|
||||
|
||||
|
@ -47,8 +47,7 @@ class TestDataFrameQuery(TestData):
|
||||
ed_flights = self.ed_flights()
|
||||
pd_flights = self.pd_flights()
|
||||
|
||||
assert pd_flights.query('FlightDelayMin > 60').shape == \
|
||||
ed_flights.query('FlightDelayMin > 60').shape
|
||||
assert pd_flights.query('FlightDelayMin > 60').shape == ed_flights.query('FlightDelayMin > 60').shape
|
||||
|
||||
def test_isin_query(self):
|
||||
ed_flights = self.ed_flights()
|
||||
|
@ -1,12 +1,10 @@
|
||||
# File called _pytest for PyCharm compatability
|
||||
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from eland.tests.common import TestData
|
||||
|
||||
from eland.dataframe import DEFAULT_NUM_ROWS_DISPLAYED
|
||||
from eland.tests.common import TestData
|
||||
|
||||
|
||||
class TestDataFrameRepr(TestData):
|
||||
@ -19,6 +17,7 @@ class TestDataFrameRepr(TestData):
|
||||
"""
|
||||
to_string
|
||||
"""
|
||||
|
||||
def test_num_rows_to_string(self):
|
||||
# check setup works
|
||||
assert pd.get_option('display.max_rows') == 60
|
||||
@ -64,6 +63,7 @@ class TestDataFrameRepr(TestData):
|
||||
"""
|
||||
repr
|
||||
"""
|
||||
|
||||
def test_num_rows_repr(self):
|
||||
ed_flights = self.ed_flights()
|
||||
pd_flights = self.pd_flights()
|
||||
@ -103,6 +103,7 @@ class TestDataFrameRepr(TestData):
|
||||
"""
|
||||
to_html
|
||||
"""
|
||||
|
||||
def test_num_rows_to_html(self):
|
||||
# check setup works
|
||||
assert pd.get_option('display.max_rows') == 60
|
||||
@ -145,10 +146,10 @@ class TestDataFrameRepr(TestData):
|
||||
|
||||
assert ed_ecom_h == pd_ecom_h
|
||||
|
||||
|
||||
"""
|
||||
_repr_html_
|
||||
"""
|
||||
|
||||
def test_num_rows_repr_html(self):
|
||||
# check setup works
|
||||
assert pd.get_option('display.max_rows') == 60
|
||||
@ -186,7 +187,6 @@ class TestDataFrameRepr(TestData):
|
||||
assert pd_head_str == ed_head_str
|
||||
|
||||
def test_empty_dataframe_repr_html(self):
|
||||
|
||||
# TODO - there is a bug in 'show_dimensions' as it gets added after the last </div>
|
||||
# For now test without this
|
||||
show_dimensions = pd.get_option('display.show_dimensions')
|
||||
|
@ -3,20 +3,15 @@
|
||||
import ast
|
||||
import time
|
||||
|
||||
import eland as ed
|
||||
|
||||
from elasticsearch import Elasticsearch
|
||||
|
||||
import pandas as pd
|
||||
from elasticsearch import Elasticsearch
|
||||
from pandas.util.testing import assert_frame_equal
|
||||
|
||||
from eland.tests.common import ROOT_DIR
|
||||
from eland.tests.common import TestData
|
||||
|
||||
import eland as ed
|
||||
from eland.tests import ELASTICSEARCH_HOST
|
||||
from eland.tests import FLIGHTS_INDEX_NAME
|
||||
|
||||
from eland.tests.common import assert_pandas_eland_frame_equal
|
||||
from eland.tests.common import ROOT_DIR
|
||||
from eland.tests.common import TestData
|
||||
|
||||
|
||||
class TestDataFrameToCSV(TestData):
|
||||
|
File diff suppressed because one or more lines are too long
@ -2,8 +2,6 @@
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas.util.testing import assert_series_equal
|
||||
|
||||
from eland.tests.common import TestData
|
||||
|
||||
|
||||
@ -32,7 +30,8 @@ class TestMappingsNumericSourceFields(TestData):
|
||||
ed_ecommerce = self.ed_ecommerce()[field_names]
|
||||
pd_ecommerce = self.pd_ecommerce()[field_names]
|
||||
|
||||
ed_numeric = ed_ecommerce._query_compiler._mappings.numeric_source_fields(field_names=field_names, include_bool=False)
|
||||
ed_numeric = ed_ecommerce._query_compiler._mappings.numeric_source_fields(field_names=field_names,
|
||||
include_bool=False)
|
||||
pd_numeric = pd_ecommerce.select_dtypes(include=np.number)
|
||||
|
||||
assert pd_numeric.columns.to_list() == ed_numeric
|
||||
@ -53,7 +52,8 @@ class TestMappingsNumericSourceFields(TestData):
|
||||
ed_ecommerce = self.ed_ecommerce()[field_names]
|
||||
pd_ecommerce = self.pd_ecommerce()[field_names]
|
||||
|
||||
ed_numeric = ed_ecommerce._query_compiler._mappings.numeric_source_fields(field_names=field_names, include_bool=False)
|
||||
ed_numeric = ed_ecommerce._query_compiler._mappings.numeric_source_fields(field_names=field_names,
|
||||
include_bool=False)
|
||||
pd_numeric = pd_ecommerce.select_dtypes(include=np.number)
|
||||
|
||||
assert pd_numeric.columns.to_list() == ed_numeric
|
||||
@ -71,7 +71,8 @@ class TestMappingsNumericSourceFields(TestData):
|
||||
ed_ecommerce = self.ed_ecommerce()[field_names]
|
||||
pd_ecommerce = self.pd_ecommerce()[field_names]
|
||||
|
||||
ed_numeric = ed_ecommerce._query_compiler._mappings.numeric_source_fields(field_names=field_names, include_bool=False)
|
||||
ed_numeric = ed_ecommerce._query_compiler._mappings.numeric_source_fields(field_names=field_names,
|
||||
include_bool=False)
|
||||
pd_numeric = pd_ecommerce.select_dtypes(include=np.number)
|
||||
|
||||
assert pd_numeric.columns.to_list() == ed_numeric
|
||||
|
@ -2,7 +2,7 @@
|
||||
from eland.filter import *
|
||||
|
||||
|
||||
class TestOperators():
|
||||
class TestOperators:
|
||||
def test_leaf_boolean_filter(self):
|
||||
assert GreaterEqual('a', 2).build() == {"range": {"a": {"gte": 2}}}
|
||||
assert LessEqual('a', 2).build() == {"range": {"a": {"lte": 2}}}
|
||||
|
@ -1,7 +1,6 @@
|
||||
# File called _pytest for PyCharm compatability
|
||||
|
||||
import pytest
|
||||
|
||||
from matplotlib.testing.decorators import check_figures_equal
|
||||
|
||||
from eland.tests.common import TestData
|
||||
@ -14,12 +13,14 @@ def test_plot_hist(fig_test, fig_ref):
|
||||
pd_flights = test_data.pd_flights()[['DistanceKilometers', 'DistanceMiles', 'FlightDelayMin', 'FlightTimeHour']]
|
||||
ed_flights = test_data.ed_flights()[['DistanceKilometers', 'DistanceMiles', 'FlightDelayMin', 'FlightTimeHour']]
|
||||
|
||||
# This throws a userwarning (https://github.com/pandas-dev/pandas/blob/171c71611886aab8549a8620c5b0071a129ad685/pandas/plotting/_matplotlib/tools.py#L222)
|
||||
# This throws a userwarning
|
||||
# (https://github.com/pandas-dev/pandas/blob/171c71611886aab8549a8620c5b0071a129ad685/pandas/plotting/_matplotlib/tools.py#L222)
|
||||
with pytest.warns(UserWarning):
|
||||
pd_ax = fig_ref.subplots()
|
||||
pd_flights.hist(ax=pd_ax)
|
||||
|
||||
# This throws a userwarning (https://github.com/pandas-dev/pandas/blob/171c71611886aab8549a8620c5b0071a129ad685/pandas/plotting/_matplotlib/tools.py#L222)
|
||||
# This throws a userwarning
|
||||
# (https://github.com/pandas-dev/pandas/blob/171c71611886aab8549a8620c5b0071a129ad685/pandas/plotting/_matplotlib/tools.py#L222)
|
||||
with pytest.warns(UserWarning):
|
||||
ed_ax = fig_test.subplots()
|
||||
ed_flights.hist(ax=ed_ax)
|
||||
|
@ -1,7 +1,4 @@
|
||||
# File called _pytest for PyCharm compatability
|
||||
import pandas as pd
|
||||
|
||||
from pandas.util.testing import assert_series_equal
|
||||
|
||||
from eland import ElandQueryCompiler
|
||||
from eland.tests.common import TestData
|
||||
|
@ -1,7 +1,6 @@
|
||||
# File called _pytest for PyCharm compatability
|
||||
import pytest
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from eland.tests.common import TestData, assert_pandas_eland_series_equal
|
||||
|
||||
|
@ -1,11 +1,7 @@
|
||||
# File called _pytest for PyCharm compatability
|
||||
|
||||
from pandas.util.testing import assert_almost_equal
|
||||
|
||||
from eland.tests.common import TestData
|
||||
|
||||
import eland as ed
|
||||
|
||||
|
||||
class TestSeriesInfoEs(TestData):
|
||||
|
||||
@ -14,4 +10,3 @@ class TestSeriesInfoEs(TestData):
|
||||
|
||||
# No assertion, just test it can be called
|
||||
info_es = ed_flights.info_es()
|
||||
|
||||
|
@ -4,11 +4,8 @@ from pandas.util.testing import assert_almost_equal
|
||||
|
||||
from eland.tests.common import TestData
|
||||
|
||||
import eland as ed
|
||||
|
||||
|
||||
class TestSeriesMetrics(TestData):
|
||||
|
||||
funcs = ['max', 'min', 'mean', 'sum']
|
||||
|
||||
def test_flights_metrics(self):
|
||||
@ -30,7 +27,6 @@ class TestSeriesMetrics(TestData):
|
||||
ed_metric = getattr(ed_ecommerce, func)()
|
||||
assert ed_metric.empty
|
||||
|
||||
|
||||
def test_ecommerce_selected_all_numeric_source_fields(self):
|
||||
# All of these are numeric
|
||||
columns = ['total_quantity', 'taxful_total_price', 'taxless_total_price']
|
||||
|
@ -27,6 +27,3 @@ class TestSeriesName(TestData):
|
||||
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series)
|
||||
assert ed_series.name == pd_series.name
|
||||
|
||||
|
||||
|
||||
|
@ -18,6 +18,3 @@ class TestSeriesRename(TestData):
|
||||
ed_renamed = ed_carrier.rename("renamed")
|
||||
|
||||
assert_pandas_eland_series_equal(pd_renamed, ed_renamed)
|
||||
|
||||
|
||||
|
||||
|
@ -1,8 +1,7 @@
|
||||
# File called _pytest for PyCharm compatability
|
||||
import eland as ed
|
||||
import pandas as pd
|
||||
from eland.tests import ELASTICSEARCH_HOST
|
||||
from eland.tests import FLIGHTS_INDEX_NAME, ECOMMERCE_INDEX_NAME
|
||||
from eland.tests import FLIGHTS_INDEX_NAME
|
||||
from eland.tests.common import TestData
|
||||
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
# File called _pytest for PyCharm compatability
|
||||
import eland as ed
|
||||
from eland.tests.common import TestData
|
||||
from pandas.util.testing import assert_series_equal
|
||||
import pytest
|
||||
from pandas.util.testing import assert_series_equal
|
||||
|
||||
from eland.tests.common import TestData
|
||||
|
||||
|
||||
class TestSeriesValueCounts(TestData):
|
||||
|
@ -1,9 +1,8 @@
|
||||
import pandas as pd
|
||||
import csv
|
||||
|
||||
import pandas as pd
|
||||
from pandas.io.parsers import _c_parser_defaults
|
||||
|
||||
|
||||
from eland import Client
|
||||
from eland import DataFrame
|
||||
from eland import Mappings
|
||||
@ -339,4 +338,3 @@ def read_csv(filepath_or_buffer,
|
||||
ed_df = DataFrame(client, es_dest_index)
|
||||
|
||||
return ed_df
|
||||
|
||||
|
@ -4,6 +4,7 @@ import csv
|
||||
from elasticsearch import Elasticsearch, helpers
|
||||
from elasticsearch.exceptions import TransportError
|
||||
|
||||
|
||||
def create_index(es, index):
|
||||
mapping = {
|
||||
"mappings": {
|
||||
@ -30,6 +31,7 @@ def create_index(es, index):
|
||||
else:
|
||||
raise
|
||||
|
||||
|
||||
def parse_date(date):
|
||||
"""
|
||||
we need to convert dates to conform to the mapping in the following way:
|
||||
@ -55,6 +57,7 @@ def parse_date(date):
|
||||
|
||||
return date
|
||||
|
||||
|
||||
def parse_line(line):
|
||||
"""
|
||||
creates the document to be indexed
|
||||
@ -72,6 +75,7 @@ def parse_line(line):
|
||||
|
||||
return obj
|
||||
|
||||
|
||||
def load_data(es):
|
||||
"""
|
||||
generate one document per line of online-retail.csv
|
||||
|
Loading…
x
Reference in New Issue
Block a user