mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
Update README with supported versions, pandas v1 outputs
This commit is contained in:
parent
e27a508c59
commit
790e2b0de8
62
README.md
62
README.md
@ -56,26 +56,27 @@ index pattern, and explore using an API that mirrors a subset of the pandas.Data
|
||||
>>> df = ed.DataFrame('localhost:9200', 'flights')
|
||||
|
||||
>>> df.head()
|
||||
AvgTicketPrice Cancelled Carrier ... OriginWeather dayOfWeek timestamp
|
||||
0 841.265642 False Kibana Airlines ... Sunny 0 2018-01-01 00:00:00
|
||||
1 882.982662 False Logstash Airways ... Clear 0 2018-01-01 18:27:00
|
||||
2 190.636904 False Logstash Airways ... Rain 0 2018-01-01 17:11:14
|
||||
3 181.694216 True Kibana Airlines ... Thunder & Lightning 0 2018-01-01 10:33:28
|
||||
4 730.041778 False Kibana Airlines ... Damaging Wind 0 2018-01-01 05:13:00
|
||||
AvgTicketPrice Cancelled ... dayOfWeek timestamp
|
||||
0 841.265642 False ... 0 2018-01-01 00:00:00
|
||||
1 882.982662 False ... 0 2018-01-01 18:27:00
|
||||
2 190.636904 False ... 0 2018-01-01 17:11:14
|
||||
3 181.694216 True ... 0 2018-01-01 10:33:28
|
||||
4 730.041778 False ... 0 2018-01-01 05:13:00
|
||||
|
||||
[5 rows x 27 columns]
|
||||
|
||||
>>> df.describe()
|
||||
AvgTicketPrice DistanceKilometers DistanceMiles FlightDelayMin FlightTimeHour FlightTimeMin dayOfWeek
|
||||
count 13059.000000 13059.000000 13059.000000 13059.000000 13059.000000 13059.000000 13059.000000
|
||||
mean 628.253689 7092.142457 4406.853010 47.335171 8.518797 511.127842 2.835975
|
||||
std 266.386661 4578.263193 2844.800855 96.743006 5.579019 334.741135 1.939365
|
||||
min 100.020531 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
|
||||
25% 410.008918 2470.545974 1535.126118 0.000000 4.194976 251.738513 1.000000
|
||||
50% 640.362667 7612.072403 4729.922470 0.000000 8.385816 503.148975 3.000000
|
||||
75% 842.254990 9735.082407 6049.459005 15.000000 12.009396 720.534532 4.141221
|
||||
max 1199.729004 19881.482422 12353.780273 360.000000 31.715034 1902.901978 6.000000
|
||||
AvgTicketPrice DistanceKilometers ... FlightTimeMin dayOfWeek
|
||||
count 13059.000000 13059.000000 ... 13059.000000 13059.000000
|
||||
mean 628.253689 7092.142457 ... 511.127842 2.835975
|
||||
std 266.386661 4578.263193 ... 334.741135 1.939365
|
||||
min 100.020531 0.000000 ... 0.000000 0.000000
|
||||
25% 410.008918 2470.545974 ... 251.739008 1.000000
|
||||
50% 640.387285 7612.072403 ... 503.148975 3.000000
|
||||
75% 842.262193 9735.660463 ... 720.505705 4.239865
|
||||
max 1199.729004 19881.482422 ... 1902.901978 6.000000
|
||||
|
||||
[8 rows x 7 columns]
|
||||
>>> df[['Carrier', 'AvgTicketPrice', 'Cancelled']]
|
||||
Carrier AvgTicketPrice Cancelled
|
||||
0 Kibana Airlines 841.265642 False
|
||||
@ -93,12 +94,12 @@ max 1199.729004 19881.482422 12353.780273 360.000000 3
|
||||
[13059 rows x 3 columns]
|
||||
|
||||
>>> df[(df.Carrier=="Kibana Airlines") & (df.AvgTicketPrice > 900.0) & (df.Cancelled == True)].head()
|
||||
AvgTicketPrice Cancelled Carrier ... OriginWeather dayOfWeek timestamp
|
||||
8 960.869736 True Kibana Airlines ... Heavy Fog 0 2018-01-01 12:09:35
|
||||
26 975.812632 True Kibana Airlines ... Rain 0 2018-01-01 15:38:32
|
||||
311 946.358410 True Kibana Airlines ... Heavy Fog 0 2018-01-01 11:51:12
|
||||
651 975.383864 True Kibana Airlines ... Rain 2 2018-01-03 21:13:17
|
||||
950 907.836523 True Kibana Airlines ... Thunder & Lightning 2 2018-01-03 05:14:51
|
||||
AvgTicketPrice Cancelled ... dayOfWeek timestamp
|
||||
8 960.869736 True ... 0 2018-01-01 12:09:35
|
||||
26 975.812632 True ... 0 2018-01-01 15:38:32
|
||||
311 946.358410 True ... 0 2018-01-01 11:51:12
|
||||
651 975.383864 True ... 2 2018-01-03 21:13:17
|
||||
950 907.836523 True ... 2 2018-01-03 05:14:51
|
||||
|
||||
[5 rows x 27 columns]
|
||||
|
||||
@ -128,7 +129,6 @@ dtype: int64
|
||||
13057 20819.488281
|
||||
13058 18315.431274
|
||||
Length: 13059, dtype: float64
|
||||
|
||||
>>> print(s.info_es())
|
||||
index_pattern: flights
|
||||
Index:
|
||||
@ -148,12 +148,12 @@ Operations:
|
||||
|
||||
>>> pd_df = ed.eland_to_pandas(df)
|
||||
>>> pd_df.head()
|
||||
AvgTicketPrice Cancelled Carrier ... OriginWeather dayOfWeek timestamp
|
||||
0 841.265642 False Kibana Airlines ... Sunny 0 2018-01-01 00:00:00
|
||||
1 882.982662 False Logstash Airways ... Clear 0 2018-01-01 18:27:00
|
||||
2 190.636904 False Logstash Airways ... Rain 0 2018-01-01 17:11:14
|
||||
3 181.694216 True Kibana Airlines ... Thunder & Lightning 0 2018-01-01 10:33:28
|
||||
4 730.041778 False Kibana Airlines ... Damaging Wind 0 2018-01-01 05:13:00
|
||||
AvgTicketPrice Cancelled ... dayOfWeek timestamp
|
||||
0 841.265642 False ... 0 2018-01-01 00:00:00
|
||||
1 882.982662 False ... 0 2018-01-01 18:27:00
|
||||
2 190.636904 False ... 0 2018-01-01 17:11:14
|
||||
3 181.694216 True ... 0 2018-01-01 10:33:28
|
||||
4 730.041778 False ... 0 2018-01-01 05:13:00
|
||||
|
||||
[5 rows x 27 columns]
|
||||
```
|
||||
@ -168,16 +168,16 @@ Binary installers for the latest released version are available at the [Python
|
||||
package index](https://pypi.org/project/eland).
|
||||
|
||||
```sh
|
||||
pip install eland
|
||||
python -m pip install eland
|
||||
```
|
||||
|
||||
## Versions and Compatibility
|
||||
|
||||
### Python Version Support
|
||||
|
||||
Officially Python 3.5.3 and above, 3.6, 3.7, and 3.8.
|
||||
Officially Python 3.6 and above.
|
||||
|
||||
eland depends on pandas version 0.25.3.
|
||||
eland depends on pandas version 1.0.0+.
|
||||
|
||||
### Elasticsearch Versions
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user