mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
ML add externral models (#125)
* Partially implemented implementation of ml.ExternalModel * Adding eland.ml.ExternalMLModel More testing to be added + more support for MLModels
This commit is contained in:
parent
4ac67a73ea
commit
7c1c2945a7
@ -38,7 +38,7 @@ sys.path.extend(
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = 'eland'
|
||||
copyright = '2019, Elasticsearch B.V.'
|
||||
copyright = '2020, Elasticsearch B.V.'
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
import eland
|
||||
|
@ -753,7 +753,7 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<eland.index.Index at 0x11a122310>"
|
||||
"<eland.index.Index at 0x11631ffd0>"
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
@ -2704,10 +2704,10 @@
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>25%</th>\n",
|
||||
" <td>410.008918</td>\n",
|
||||
" <td>410.011039</td>\n",
|
||||
" <td>2470.545974</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>251.682199</td>\n",
|
||||
" <td>251.773003</td>\n",
|
||||
" <td>1.000000</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
@ -2720,11 +2720,11 @@
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>75%</th>\n",
|
||||
" <td>842.233478</td>\n",
|
||||
" <td>9735.660463</td>\n",
|
||||
" <td>842.213490</td>\n",
|
||||
" <td>9734.960478</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>720.534532</td>\n",
|
||||
" <td>4.288079</td>\n",
|
||||
" <td>720.505705</td>\n",
|
||||
" <td>4.172535</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>max</th>\n",
|
||||
@ -2745,9 +2745,9 @@
|
||||
"mean 628.253689 7092.142457 ... 511.127842 2.835975\n",
|
||||
"std 266.386661 4578.263193 ... 334.741135 1.939365\n",
|
||||
"min 100.020531 0.000000 ... 0.000000 0.000000\n",
|
||||
"25% 410.008918 2470.545974 ... 251.682199 1.000000\n",
|
||||
"25% 410.011039 2470.545974 ... 251.773003 1.000000\n",
|
||||
"50% 640.387285 7612.072403 ... 503.148975 3.000000\n",
|
||||
"75% 842.233478 9735.660463 ... 720.534532 4.288079\n",
|
||||
"75% 842.213490 9734.960478 ... 720.505705 4.172535\n",
|
||||
"max 1199.729004 19881.482422 ... 1902.901978 6.000000\n",
|
||||
"\n",
|
||||
"[8 rows x 7 columns]"
|
||||
@ -3676,11 +3676,11 @@
|
||||
" is_source_field: False\n",
|
||||
"Mappings:\n",
|
||||
" capabilities:\n",
|
||||
" es_field_name is_source es_dtype es_date_format pd_dtype is_searchable is_aggregatable is_scripted aggregatable_es_field_name\n",
|
||||
"timestamp timestamp True date None datetime64[ns] True True False timestamp\n",
|
||||
"OriginAirportID OriginAirportID True keyword None object True True False OriginAirportID\n",
|
||||
"DestAirportID DestAirportID True keyword None object True True False DestAirportID\n",
|
||||
"FlightDelayMin FlightDelayMin True integer None int64 True True False FlightDelayMin\n",
|
||||
" es_field_name is_source es_dtype es_date_format pd_dtype is_searchable is_aggregatable is_scripted aggregatable_es_field_name\n",
|
||||
"timestamp timestamp True date strict_date_hour_minute_second datetime64[ns] True True False timestamp\n",
|
||||
"OriginAirportID OriginAirportID True keyword None object True True False OriginAirportID\n",
|
||||
"DestAirportID DestAirportID True keyword None object True True False DestAirportID\n",
|
||||
"FlightDelayMin FlightDelayMin True integer None int64 True True False FlightDelayMin\n",
|
||||
"Operations:\n",
|
||||
" tasks: [('boolean_filter': ('boolean_filter': {'bool': {'must': [{'term': {'OriginAirportID': 'AMS'}}, {'range': {'FlightDelayMin': {'gt': 60}}}]}})), ('tail': ('sort_field': '_doc', 'count': 5))]\n",
|
||||
" size: 5\n",
|
||||
|
@ -1023,21 +1023,21 @@
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>25%</th>\n",
|
||||
" <td>14221.960201</td>\n",
|
||||
" <td>14217.474239</td>\n",
|
||||
" <td>1.000000</td>\n",
|
||||
" <td>1.250000</td>\n",
|
||||
" <td>1.250068</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>50%</th>\n",
|
||||
" <td>15671.712170</td>\n",
|
||||
" <td>15662.024630</td>\n",
|
||||
" <td>2.000000</td>\n",
|
||||
" <td>2.510000</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>75%</th>\n",
|
||||
" <td>17214.376367</td>\n",
|
||||
" <td>6.615042</td>\n",
|
||||
" <td>4.210533</td>\n",
|
||||
" <td>17212.723881</td>\n",
|
||||
" <td>6.671951</td>\n",
|
||||
" <td>4.210000</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>max</th>\n",
|
||||
@ -1055,9 +1055,9 @@
|
||||
"mean 15590.776680 7.464000 4.103233\n",
|
||||
"std 1764.025160 85.924387 20.104873\n",
|
||||
"min 12347.000000 -9360.000000 0.000000\n",
|
||||
"25% 14221.960201 1.000000 1.250000\n",
|
||||
"50% 15671.712170 2.000000 2.510000\n",
|
||||
"75% 17214.376367 6.615042 4.210533\n",
|
||||
"25% 14217.474239 1.000000 1.250068\n",
|
||||
"50% 15662.024630 2.000000 2.510000\n",
|
||||
"75% 17212.723881 6.671951 4.210000\n",
|
||||
"max 18239.000000 2880.000000 950.990000"
|
||||
]
|
||||
},
|
||||
|
@ -35,6 +35,7 @@ In general, the data resides in elasticsearch and not in memory, which allows el
|
||||
* :doc:`reference/dataframe`
|
||||
* :doc:`reference/series`
|
||||
* :doc:`reference/indexing`
|
||||
* :doc:`reference/ml`
|
||||
|
||||
* :doc:`implementation/index`
|
||||
|
||||
|
@ -0,0 +1,6 @@
|
||||
eland.ml.ExternalMLModel.predict
|
||||
================================
|
||||
|
||||
.. currentmodule:: eland.ml
|
||||
|
||||
.. automethod:: ExternalMLModel.predict
|
6
docs/source/reference/api/eland.ml.ExternalMLModel.rst
Normal file
6
docs/source/reference/api/eland.ml.ExternalMLModel.rst
Normal file
@ -0,0 +1,6 @@
|
||||
eland.ml.ExternalMLModel
|
||||
========================
|
||||
|
||||
.. currentmodule:: eland.ml
|
||||
|
||||
.. autoclass:: ExternalMLModel
|
@ -15,3 +15,4 @@ methods. All classes and functions exposed in ``eland.*`` namespace are public.
|
||||
dataframe
|
||||
series
|
||||
indexing
|
||||
ml
|
||||
|
25
docs/source/reference/ml.rst
Normal file
25
docs/source/reference/ml.rst
Normal file
@ -0,0 +1,25 @@
|
||||
.. _api.ml:
|
||||
|
||||
================
|
||||
Machine Learning
|
||||
================
|
||||
.. currentmodule:: eland.ml
|
||||
|
||||
ExternalMLModel
|
||||
~~~~~~~~~~~~~~~
|
||||
.. currentmodule:: eland.ml
|
||||
|
||||
Constructor
|
||||
^^^^^^^^^^^
|
||||
.. autosummary::
|
||||
:toctree: api/
|
||||
|
||||
ExternalMLModel
|
||||
|
||||
Learning API
|
||||
^^^^^^^^^^^^
|
||||
.. autosummary::
|
||||
:toctree: api/
|
||||
|
||||
ExternalMLModel.predict
|
||||
|
@ -27,3 +27,4 @@ from eland.ndframe import *
|
||||
from eland.series import *
|
||||
from eland.dataframe import *
|
||||
from eland.utils import *
|
||||
|
||||
|
@ -56,3 +56,6 @@ class Client:
|
||||
def count(self, **kwargs):
|
||||
count_json = self._es.count(**kwargs)
|
||||
return count_json['count']
|
||||
|
||||
def perform_request(self, method, url, headers=None, params=None, body=None):
|
||||
return self._es.transport.perform_request(method, url, headers, params, body)
|
||||
|
16
eland/ml/__init__.py
Normal file
16
eland/ml/__init__.py
Normal file
@ -0,0 +1,16 @@
|
||||
# Copyright 2019 Elasticsearch BV
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from eland.ml.ml_model import *
|
||||
from eland.ml.external_ml_model import *
|
116
eland/ml/_model_serializer.py
Normal file
116
eland/ml/_model_serializer.py
Normal file
@ -0,0 +1,116 @@
|
||||
import base64
|
||||
import gzip
|
||||
import json
|
||||
from abc import ABC
|
||||
from typing import List
|
||||
|
||||
|
||||
def add_if_exists(d: dict, k: str, v) -> dict:
|
||||
if v is not None:
|
||||
d[k] = v
|
||||
return d
|
||||
|
||||
class ModelSerializer(ABC):
|
||||
|
||||
def __init__(self,
|
||||
feature_names: List[str],
|
||||
target_type: str = None,
|
||||
classification_labels: List[str] = None):
|
||||
self._target_type = target_type
|
||||
self._feature_names = feature_names
|
||||
self._classification_labels = classification_labels
|
||||
|
||||
def to_dict(self):
|
||||
d = dict()
|
||||
add_if_exists(d, "target_type", self._target_type)
|
||||
add_if_exists(d, "feature_names", self._feature_names)
|
||||
add_if_exists(d, "classification_labels", self._classification_labels)
|
||||
return d
|
||||
|
||||
@property
|
||||
def feature_names(self):
|
||||
return self._feature_names
|
||||
|
||||
def serialize_and_compress_model(self) -> str:
|
||||
json_string = json.dumps({'trained_model': self.to_dict()})
|
||||
return base64.b64encode(gzip.compress(bytes(json_string, 'utf-8')))
|
||||
|
||||
|
||||
class TreeNode:
|
||||
def __init__(self,
|
||||
node_idx: int,
|
||||
default_left: bool = None,
|
||||
decision_type: str = None,
|
||||
left_child: int = None,
|
||||
right_child: int = None,
|
||||
split_feature: int = None,
|
||||
threshold: float = None,
|
||||
leaf_value: float = None):
|
||||
self._node_idx = node_idx
|
||||
self._decision_type = decision_type
|
||||
self._left_child = left_child
|
||||
self._right_child = right_child
|
||||
self._split_feature = split_feature
|
||||
self._threshold = threshold
|
||||
self._leaf_value = leaf_value
|
||||
self._default_left = default_left
|
||||
|
||||
def to_dict(self):
|
||||
d = dict()
|
||||
add_if_exists(d, 'node_index', self._node_idx)
|
||||
add_if_exists(d, 'decision_type', self._decision_type)
|
||||
if self._leaf_value is None:
|
||||
add_if_exists(d, 'left_child', self._left_child)
|
||||
add_if_exists(d, 'right_child', self._right_child)
|
||||
add_if_exists(d, 'split_feature', self._split_feature)
|
||||
add_if_exists(d, 'threshold', self._threshold)
|
||||
else:
|
||||
add_if_exists(d, 'leaf_value', self._leaf_value)
|
||||
return d
|
||||
|
||||
|
||||
class Tree(ModelSerializer):
|
||||
def __init__(self,
|
||||
feature_names: List[str],
|
||||
target_type: str = None,
|
||||
tree_structure: List[TreeNode] = [],
|
||||
classification_labels: List[str] = None):
|
||||
super().__init__(
|
||||
feature_names=feature_names,
|
||||
target_type=target_type,
|
||||
classification_labels=classification_labels
|
||||
)
|
||||
if target_type == 'regression' and classification_labels:
|
||||
raise ValueError("regression does not support classification_labels")
|
||||
self._tree_structure = tree_structure
|
||||
|
||||
def to_dict(self):
|
||||
d = super().to_dict()
|
||||
add_if_exists(d, 'tree_structure', [t.to_dict() for t in self._tree_structure])
|
||||
return {'tree': d}
|
||||
|
||||
|
||||
class Ensemble(ModelSerializer):
|
||||
def __init__(self,
|
||||
feature_names: List[str],
|
||||
trained_models: List[ModelSerializer],
|
||||
output_aggregator: dict,
|
||||
target_type: str = None,
|
||||
classification_labels: List[str] = None,
|
||||
classification_weights: List[float] = None):
|
||||
super().__init__(feature_names=feature_names,
|
||||
target_type=target_type,
|
||||
classification_labels=classification_labels)
|
||||
self._trained_models = trained_models
|
||||
self._classification_weights = classification_weights
|
||||
self._output_aggregator = output_aggregator
|
||||
|
||||
def to_dict(self):
|
||||
d = super().to_dict()
|
||||
trained_models = None
|
||||
if self._trained_models:
|
||||
trained_models = [t.to_dict() for t in self._trained_models]
|
||||
add_if_exists(d, 'trained_models', trained_models)
|
||||
add_if_exists(d, 'classification_weights', self._classification_weights)
|
||||
add_if_exists(d, 'aggregate_output', self._output_aggregator)
|
||||
return {'ensemble': d}
|
389
eland/ml/_model_transformers.py
Normal file
389
eland/ml/_model_transformers.py
Normal file
@ -0,0 +1,389 @@
|
||||
# Copyright 2019 Elasticsearch BV
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from eland.ml._optional import import_optional_dependency
|
||||
from eland.ml._model_serializer import Tree, TreeNode, Ensemble
|
||||
|
||||
sklearn = import_optional_dependency("sklearn")
|
||||
xgboost = import_optional_dependency("xgboost")
|
||||
|
||||
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
||||
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
|
||||
from sklearn.utils.validation import check_is_fitted
|
||||
from xgboost import Booster, XGBRegressor, XGBClassifier
|
||||
|
||||
|
||||
class ModelTransformer:
|
||||
def __init__(self,
|
||||
model,
|
||||
feature_names: List[str],
|
||||
classification_labels: List[str] = None,
|
||||
classification_weights: List[float] = None
|
||||
):
|
||||
self._feature_names = feature_names
|
||||
self._model = model
|
||||
self._classification_labels = classification_labels
|
||||
self._classification_weights = classification_weights
|
||||
|
||||
def is_supported(self):
|
||||
return isinstance(self._model, (DecisionTreeClassifier,
|
||||
DecisionTreeRegressor,
|
||||
RandomForestRegressor,
|
||||
RandomForestClassifier,
|
||||
XGBClassifier,
|
||||
XGBRegressor,
|
||||
Booster))
|
||||
|
||||
|
||||
class SKLearnTransformer(ModelTransformer):
|
||||
"""
|
||||
Base class for SKLearn transformers.
|
||||
warning: Should not use this class directly. Use derived classes instead
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model,
|
||||
feature_names: List[str],
|
||||
classification_labels: List[str] = None,
|
||||
classification_weights: List[float] = None
|
||||
):
|
||||
"""
|
||||
Base class for SKLearn transformations
|
||||
|
||||
:param model: sklearn trained model
|
||||
:param feature_names: The feature names for the model
|
||||
:param classification_labels: Optional classification labels (if not encoded in the model)
|
||||
:param classification_weights: Optional classification weights
|
||||
"""
|
||||
super().__init__(model, feature_names, classification_labels, classification_weights)
|
||||
self._node_decision_type = "lte"
|
||||
|
||||
def build_tree_node(self, node_index: int, node_data: dict, value) -> TreeNode:
|
||||
"""
|
||||
This builds out a TreeNode class given the sklearn tree node definition.
|
||||
|
||||
Node decision types are defaulted to "lte" to match the behavior of SKLearn
|
||||
|
||||
:param node_index: The node index
|
||||
:param node_data: Opaque node data contained in the sklearn tree state
|
||||
:param value: Opaque node value (i.e. leaf/node values) from tree state
|
||||
:return: TreeNode object
|
||||
"""
|
||||
if value.shape[0] != 1:
|
||||
raise ValueError("unexpected multiple values returned from leaf node '{0}'".format(node_index))
|
||||
if node_data[0] == -1: # is leaf node
|
||||
if value.shape[1] == 1: # classification requires more than one value, so assume regression
|
||||
leaf_value = float(value[0][0])
|
||||
else:
|
||||
# the classification value, which is the index of the largest value
|
||||
leaf_value = int(np.argmax(value))
|
||||
return TreeNode(node_index, decision_type=self._node_decision_type, leaf_value=leaf_value)
|
||||
else:
|
||||
return TreeNode(node_index,
|
||||
decision_type=self._node_decision_type,
|
||||
left_child=int(node_data[0]),
|
||||
right_child=int(node_data[1]),
|
||||
split_feature=int(node_data[2]),
|
||||
threshold=float(node_data[3]))
|
||||
|
||||
|
||||
class SKLearnDecisionTreeTransformer(SKLearnTransformer):
|
||||
"""
|
||||
class for transforming SKLearn decision tree models into Tree model formats supported by Elasticsearch.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model: Union[DecisionTreeRegressor, DecisionTreeClassifier],
|
||||
feature_names: List[str],
|
||||
classification_labels: List[str] = None):
|
||||
"""
|
||||
Transforms a Decision Tree model (Regressor|Classifier) into a ES Supported Tree format
|
||||
:param model: fitted decision tree model
|
||||
:param feature_names: model feature names
|
||||
:param classification_labels: Optional classification labels
|
||||
"""
|
||||
super().__init__(model, feature_names, classification_labels)
|
||||
|
||||
def transform(self) -> Tree:
|
||||
"""
|
||||
Transform the provided model into an ES supported Tree object
|
||||
:return: Tree object for ES storage and use
|
||||
"""
|
||||
target_type = "regression" if isinstance(self._model, DecisionTreeRegressor) else "classification"
|
||||
check_is_fitted(self._model, ["tree_"])
|
||||
tree_classes = None
|
||||
if self._classification_labels:
|
||||
tree_classes = self._classification_labels
|
||||
if isinstance(self._model, DecisionTreeClassifier):
|
||||
check_is_fitted(self._model, ["classes_"])
|
||||
if tree_classes is None:
|
||||
tree_classes = [str(c) for c in self._model.classes_]
|
||||
nodes = list()
|
||||
tree_state = self._model.tree_.__getstate__()
|
||||
for i in range(len(tree_state["nodes"])):
|
||||
nodes.append(self.build_tree_node(i, tree_state["nodes"][i], tree_state["values"][i]))
|
||||
|
||||
return Tree(self._feature_names,
|
||||
target_type,
|
||||
nodes,
|
||||
tree_classes)
|
||||
|
||||
|
||||
class SKLearnForestTransformer(SKLearnTransformer):
|
||||
"""
|
||||
Base class for transforming SKLearn forest models into Ensemble model formats supported by Elasticsearch.
|
||||
|
||||
warning: do not use this class directly. Use a derived class instead
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model: Union[RandomForestClassifier,
|
||||
RandomForestRegressor],
|
||||
feature_names: List[str],
|
||||
classification_labels: List[str] = None,
|
||||
classification_weights: List[float] = None
|
||||
):
|
||||
super().__init__(model, feature_names, classification_labels, classification_weights)
|
||||
|
||||
def build_aggregator_output(self) -> dict:
|
||||
raise NotImplementedError("build_aggregator_output must be implemented")
|
||||
|
||||
def determine_target_type(self) -> str:
|
||||
raise NotImplementedError("determine_target_type must be implemented")
|
||||
|
||||
def transform(self) -> Ensemble:
|
||||
check_is_fitted(self._model, ["estimators_"])
|
||||
estimators = self._model.estimators_
|
||||
ensemble_classes = None
|
||||
if self._classification_labels:
|
||||
ensemble_classes = self._classification_labels
|
||||
if isinstance(self._model, RandomForestClassifier):
|
||||
check_is_fitted(self._model, ["classes_"])
|
||||
if ensemble_classes is None:
|
||||
ensemble_classes = [str(c) for c in self._model.classes_]
|
||||
ensemble_models = [SKLearnDecisionTreeTransformer(m,
|
||||
self._feature_names).transform() for m in estimators]
|
||||
return Ensemble(self._feature_names,
|
||||
ensemble_models,
|
||||
self.build_aggregator_output(),
|
||||
target_type=self.determine_target_type(),
|
||||
classification_labels=ensemble_classes,
|
||||
classification_weights=self._classification_weights)
|
||||
|
||||
|
||||
class SKLearnForestRegressorTransformer(SKLearnForestTransformer):
|
||||
"""
|
||||
Class for transforming RandomForestRegressor models into an ensemble model supported by Elasticsearch
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model: RandomForestRegressor,
|
||||
feature_names: List[str]
|
||||
):
|
||||
super().__init__(model, feature_names)
|
||||
|
||||
def build_aggregator_output(self) -> dict:
|
||||
return {
|
||||
"weighted_sum": {"weights": [1.0 / len(self._model.estimators_)] * len(self._model.estimators_), }
|
||||
}
|
||||
|
||||
def determine_target_type(self) -> str:
|
||||
return "regression"
|
||||
|
||||
|
||||
class SKLearnForestClassifierTransformer(SKLearnForestTransformer):
|
||||
"""
|
||||
Class for transforming RandomForestClassifier models into an ensemble model supported by Elasticsearch
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model: RandomForestClassifier,
|
||||
feature_names: List[str],
|
||||
classification_labels: List[str] = None,
|
||||
):
|
||||
super().__init__(model, feature_names, classification_labels)
|
||||
|
||||
def build_aggregator_output(self) -> dict:
|
||||
return {"weighted_mode": {"num_classes": len(self._model.classes_)}}
|
||||
|
||||
def determine_target_type(self) -> str:
|
||||
return "classification"
|
||||
|
||||
|
||||
class XGBoostForestTransformer(ModelTransformer):
|
||||
"""
|
||||
Base class for transforming XGBoost models into ensemble models supported by Elasticsearch
|
||||
|
||||
warning: do not use directly. Use a derived classes instead
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
model: Booster,
|
||||
feature_names: List[str],
|
||||
base_score: float = 0.5,
|
||||
objective: str = "reg:squarederror",
|
||||
classification_labels: List[str] = None,
|
||||
classification_weights: List[float] = None
|
||||
):
|
||||
super().__init__(model, feature_names, classification_labels, classification_weights)
|
||||
self._node_decision_type = "lt"
|
||||
self._base_score = base_score
|
||||
self._objective = objective
|
||||
|
||||
def get_feature_id(self, feature_id: str) -> int:
|
||||
if feature_id[0] == "f":
|
||||
try:
|
||||
return int(feature_id[1:])
|
||||
except ValueError:
|
||||
raise RuntimeError("Unable to interpret '{0}'".format(feature_id))
|
||||
else:
|
||||
try:
|
||||
return int(feature_id)
|
||||
except ValueError:
|
||||
raise RuntimeError("Unable to interpret '{0}'".format(feature_id))
|
||||
|
||||
def extract_node_id(self, node_id: str, curr_tree: int) -> int:
|
||||
t_id, n_id = node_id.split("-")
|
||||
if t_id is None or n_id is None:
|
||||
raise RuntimeError(
|
||||
"cannot determine node index or tree from '{0}' for tree {1}".format(node_id, curr_tree))
|
||||
try:
|
||||
t_id = int(t_id)
|
||||
n_id = int(n_id)
|
||||
if t_id != curr_tree:
|
||||
raise RuntimeError("extracted tree id {0} does not match current tree {1}".format(t_id, curr_tree))
|
||||
return n_id
|
||||
except ValueError:
|
||||
raise RuntimeError(
|
||||
"cannot determine node index or tree from '{0}' for tree {1}".format(node_id, curr_tree))
|
||||
|
||||
def build_tree_node(self, row, curr_tree: int) -> TreeNode:
|
||||
node_index = row["Node"]
|
||||
if row["Feature"] == "Leaf":
|
||||
return TreeNode(node_idx=node_index, leaf_value=float(row["Gain"]))
|
||||
else:
|
||||
return TreeNode(node_idx=node_index,
|
||||
decision_type=self._node_decision_type,
|
||||
left_child=self.extract_node_id(row["Yes"], curr_tree),
|
||||
right_child=self.extract_node_id(row["No"], curr_tree),
|
||||
threshold=float(row["Split"]),
|
||||
split_feature=self.get_feature_id(row["Feature"]))
|
||||
|
||||
def build_tree(self, nodes: List[TreeNode]) -> Tree:
|
||||
return Tree(feature_names=self._feature_names,
|
||||
tree_structure=nodes)
|
||||
|
||||
def build_base_score_stump(self) -> Tree:
|
||||
return Tree(feature_names=self._feature_names,
|
||||
tree_structure=[TreeNode(0, leaf_value=self._base_score)])
|
||||
|
||||
def build_forest(self) -> List[Tree]:
|
||||
"""
|
||||
This builds out the forest of trees as described by XGBoost into a format
|
||||
supported by Elasticsearch
|
||||
|
||||
:return: A list of Tree objects
|
||||
"""
|
||||
if self._model.booster not in {'dart', 'gbtree'}:
|
||||
raise ValueError("booster must exist and be of type dart or gbtree")
|
||||
|
||||
tree_table = self._model.trees_to_dataframe()
|
||||
transformed_trees = list()
|
||||
curr_tree = None
|
||||
tree_nodes = list()
|
||||
for _, row in tree_table.iterrows():
|
||||
if row["Tree"] != curr_tree:
|
||||
if len(tree_nodes) > 0:
|
||||
transformed_trees.append(self.build_tree(tree_nodes))
|
||||
curr_tree = row["Tree"]
|
||||
tree_nodes = list()
|
||||
tree_nodes.append(self.build_tree_node(row, curr_tree))
|
||||
# add last tree
|
||||
if len(tree_nodes) > 0:
|
||||
transformed_trees.append(self.build_tree(tree_nodes))
|
||||
# We add this stump as XGBoost adds the base_score to the regression outputs
|
||||
if self._objective.startswith("reg"):
|
||||
transformed_trees.append(self.build_base_score_stump())
|
||||
return transformed_trees
|
||||
|
||||
def build_aggregator_output(self) -> dict:
|
||||
raise NotImplementedError("build_aggregator_output must be implemented")
|
||||
|
||||
def determine_target_type(self) -> str:
|
||||
raise NotImplementedError("determine_target_type must be implemented")
|
||||
|
||||
def is_objective_supported(self) -> bool:
|
||||
return False
|
||||
|
||||
def transform(self) -> Ensemble:
|
||||
if self._model.booster not in {'dart', 'gbtree'}:
|
||||
raise ValueError("booster must exist and be of type dart or gbtree")
|
||||
|
||||
if not self.is_objective_supported():
|
||||
raise ValueError("Unsupported objective '{0}'".format(self._objective))
|
||||
|
||||
forest = self.build_forest()
|
||||
return Ensemble(feature_names=self._feature_names,
|
||||
trained_models=forest,
|
||||
output_aggregator=self.build_aggregator_output(),
|
||||
classification_labels=self._classification_labels,
|
||||
classification_weights=self._classification_weights,
|
||||
target_type=self.determine_target_type())
|
||||
|
||||
|
||||
class XGBoostRegressorTransformer(XGBoostForestTransformer):
|
||||
def __init__(self,
|
||||
model: XGBRegressor,
|
||||
feature_names: List[str]):
|
||||
super().__init__(model.get_booster(),
|
||||
feature_names,
|
||||
model.base_score,
|
||||
model.objective)
|
||||
|
||||
def determine_target_type(self) -> str:
|
||||
return "regression"
|
||||
|
||||
def is_objective_supported(self) -> bool:
|
||||
return self._objective in {'reg:squarederror',
|
||||
'reg:linear',
|
||||
'reg:squaredlogerror',
|
||||
'reg:logistic'}
|
||||
|
||||
def build_aggregator_output(self) -> dict:
|
||||
return {"weighted_sum": {}}
|
||||
|
||||
|
||||
class XGBoostClassifierTransformer(XGBoostForestTransformer):
|
||||
def __init__(self,
|
||||
model: XGBClassifier,
|
||||
feature_names: List[str],
|
||||
classification_labels: List[str] = None):
|
||||
super().__init__(model.get_booster(),
|
||||
feature_names,
|
||||
model.base_score,
|
||||
model.objective,
|
||||
classification_labels)
|
||||
|
||||
def determine_target_type(self) -> str:
|
||||
return "classification"
|
||||
|
||||
def is_objective_supported(self) -> bool:
|
||||
return self._objective in {'binary:logistic', 'binary:hinge'}
|
||||
|
||||
def build_aggregator_output(self) -> dict:
|
||||
return {"logistic_regression": {}}
|
115
eland/ml/_optional.py
Normal file
115
eland/ml/_optional.py
Normal file
@ -0,0 +1,115 @@
|
||||
# Copyright 2019 Elasticsearch BV
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import distutils.version
|
||||
import importlib
|
||||
import types
|
||||
import warnings
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# functions largely based / taken from the six module
|
||||
|
||||
# Much of the code in this module comes from pandas.
|
||||
# The license for this library can be found NOTICE.txt and the code can be
|
||||
# https://raw.githubusercontent.com/pandas-dev/pandas/v1.0.1/pandas/compat/_optional.py
|
||||
|
||||
VERSIONS = {
|
||||
"xgboost": "0.90",
|
||||
"sklearn": "0.22.1"
|
||||
}
|
||||
|
||||
# Update install.rst when updating versions!
|
||||
|
||||
message = (
|
||||
"Missing optional dependency '{name}'. {extra} "
|
||||
"Use pip or conda to install {name}."
|
||||
)
|
||||
version_message = (
|
||||
"Eland requires version '{minimum_version}' or newer of '{name}' "
|
||||
"(version '{actual_version}' currently installed). "
|
||||
"Use pip or conda to update {name}."
|
||||
)
|
||||
|
||||
|
||||
def _get_version(module: types.ModuleType) -> str:
|
||||
version = getattr(module, "__version__", None)
|
||||
if version is None:
|
||||
# xlrd uses a capitalized attribute name
|
||||
version = getattr(module, "__VERSION__", None)
|
||||
|
||||
if version is None:
|
||||
raise ImportError("Can't determine version for {}".format(module.__name__))
|
||||
return version
|
||||
|
||||
|
||||
def import_optional_dependency(
|
||||
name: str, extra: str = "", raise_on_missing: bool = True, on_version: str = "raise"
|
||||
):
|
||||
"""
|
||||
Import an optional dependency.
|
||||
|
||||
By default, if a dependency is missing an ImportError with a nice
|
||||
message will be raised. If a dependency is present, but too old,
|
||||
we raise.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
The module name. This should be top-level only, so that the
|
||||
version may be checked.
|
||||
extra : str
|
||||
Additional text to include in the ImportError message.
|
||||
raise_on_missing : bool, default True
|
||||
Whether to raise if the optional dependency is not found.
|
||||
When False and the module is not present, None is returned.
|
||||
on_version : str {'raise', 'warn'}
|
||||
What to do when a dependency's version is too old.
|
||||
|
||||
* raise : Raise an ImportError
|
||||
* warn : Warn that the version is too old. Returns None
|
||||
* ignore: Return the module, even if the version is too old.
|
||||
It's expected that users validate the version locally when
|
||||
using ``on_version="ignore"`` (see. ``io/html.py``)
|
||||
|
||||
Returns
|
||||
-------
|
||||
maybe_module : Optional[ModuleType]
|
||||
The imported module, when found and the version is correct.
|
||||
None is returned when the package is not found and `raise_on_missing`
|
||||
is False, or when the package's version is too old and `on_version`
|
||||
is ``'warn'``.
|
||||
"""
|
||||
try:
|
||||
module = importlib.import_module(name)
|
||||
except ImportError:
|
||||
if raise_on_missing:
|
||||
raise ImportError(message.format(name=name, extra=extra)) from None
|
||||
else:
|
||||
return None
|
||||
|
||||
minimum_version = VERSIONS.get(name)
|
||||
if minimum_version:
|
||||
version = _get_version(module)
|
||||
if distutils.version.LooseVersion(version) < minimum_version:
|
||||
assert on_version in {"warn", "raise", "ignore"}
|
||||
msg = version_message.format(
|
||||
minimum_version=minimum_version, name=name, actual_version=version
|
||||
)
|
||||
if on_version == "warn":
|
||||
warnings.warn(msg, UserWarning)
|
||||
return None
|
||||
elif on_version == "raise":
|
||||
raise ImportError(msg)
|
||||
|
||||
return module
|
238
eland/ml/external_ml_model.py
Normal file
238
eland/ml/external_ml_model.py
Normal file
@ -0,0 +1,238 @@
|
||||
# Copyright 2020 Elasticsearch BV
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Union, List
|
||||
|
||||
import numpy as np
|
||||
|
||||
from eland.ml._model_transformers import SKLearnDecisionTreeTransformer, SKLearnForestRegressorTransformer, \
|
||||
SKLearnForestClassifierTransformer, XGBoostRegressorTransformer, XGBoostClassifierTransformer
|
||||
from eland.ml._optional import import_optional_dependency
|
||||
from eland.ml.ml_model import MLModel
|
||||
|
||||
sklearn = import_optional_dependency("sklearn")
|
||||
xgboost = import_optional_dependency("xgboost")
|
||||
|
||||
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
||||
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
|
||||
from xgboost import XGBRegressor, XGBClassifier
|
||||
|
||||
|
||||
class ExternalMLModel(MLModel):
|
||||
"""
|
||||
Put a trained inference model in Elasticsearch based on an external model.
|
||||
An external model that is transformed and added to Elasticsearch.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
es_client: Elasticsearch client argument(s)
|
||||
- elasticsearch-py parameters or
|
||||
- elasticsearch-py instance or
|
||||
- eland.Client instance
|
||||
|
||||
model_id: str
|
||||
The unique identifier of the trained inference model in Elasticsearch.
|
||||
|
||||
model: An instance of a supported python model. We support the following model types:
|
||||
- sklearn.tree.DecisionTreeClassifier
|
||||
- sklearn.tree.DecisionTreeRegressor
|
||||
- sklearn.ensemble.RandomForestRegressor
|
||||
- sklearn.ensemble.RandomForestClassifier
|
||||
- xgboost.XGBClassifier
|
||||
- xgboost.XGBRegressor
|
||||
|
||||
feature_names: List[str]
|
||||
Names of the features (required)
|
||||
|
||||
classification_labels: List[str]
|
||||
Labels of the classification targets
|
||||
|
||||
classification_weights: List[str]
|
||||
Weights of the classification targets
|
||||
|
||||
overwrite: bool
|
||||
Delete and overwrite existing model (if exists)
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn import datasets
|
||||
>>> from sklearn.tree import DecisionTreeClassifier
|
||||
>>> from eland.ml import ExternalMLModel
|
||||
|
||||
>>> # Train model
|
||||
>>> training_data = datasets.make_classification(n_features=5, random_state=0)
|
||||
>>> test_data = [[-50.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]]
|
||||
>>> classifier = DecisionTreeClassifier()
|
||||
>>> classifier = classifier.fit(training_data[0], training_data[1])
|
||||
|
||||
>>> # Get some test results
|
||||
>>> classifier.predict(test_data)
|
||||
array([0, 1])
|
||||
|
||||
>>> # Serialise the model to Elasticsearch
|
||||
>>> feature_names = ["f0", "f1", "f2", "f3", "f4"]
|
||||
>>> model_id = "test_decision_tree_classifier"
|
||||
>>> es_model = ExternalMLModel('localhost', model_id, classifier, feature_names, overwrite=True)
|
||||
|
||||
>>> # Get some test results from Elasticsearch model
|
||||
>>> es_model.predict(test_data)
|
||||
array([0, 1])
|
||||
|
||||
>>> # Delete model from Elasticsearch
|
||||
>>> es_model.delete_model()
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
es_client,
|
||||
model_id: str,
|
||||
model: Union[DecisionTreeClassifier,
|
||||
DecisionTreeRegressor,
|
||||
RandomForestRegressor,
|
||||
RandomForestClassifier,
|
||||
XGBClassifier,
|
||||
XGBRegressor],
|
||||
feature_names: List[str],
|
||||
classification_labels: List[str] = None,
|
||||
classification_weights: List[float] = None,
|
||||
overwrite=False):
|
||||
super().__init__(
|
||||
es_client,
|
||||
model_id
|
||||
)
|
||||
|
||||
self._feature_names = feature_names
|
||||
self._model_type = None
|
||||
|
||||
# Transform model
|
||||
if isinstance(model, DecisionTreeRegressor):
|
||||
serializer = SKLearnDecisionTreeTransformer(model, feature_names).transform()
|
||||
self._model_type = MLModel.TYPE_REGRESSION
|
||||
elif isinstance(model, DecisionTreeClassifier):
|
||||
serializer = SKLearnDecisionTreeTransformer(model, feature_names, classification_labels).transform()
|
||||
self._model_type = MLModel.TYPE_CLASSIFICATION
|
||||
elif isinstance(model, RandomForestRegressor):
|
||||
serializer = SKLearnForestRegressorTransformer(model, feature_names).transform()
|
||||
self._model_type = MLModel.TYPE_REGRESSION
|
||||
elif isinstance(model, RandomForestClassifier):
|
||||
serializer = SKLearnForestClassifierTransformer(model, feature_names, classification_labels).transform()
|
||||
self._model_type = MLModel.TYPE_CLASSIFICATION
|
||||
elif isinstance(model, XGBRegressor):
|
||||
serializer = XGBoostRegressorTransformer(model, feature_names).transform()
|
||||
self._model_type = MLModel.TYPE_REGRESSION
|
||||
elif isinstance(model, XGBClassifier):
|
||||
serializer = XGBoostClassifierTransformer(model, feature_names, classification_labels).transform()
|
||||
self._model_type = MLModel.TYPE_CLASSIFICATION
|
||||
else:
|
||||
raise NotImplementedError("ML model of type {}, not currently implemented".format(type(model)))
|
||||
|
||||
if overwrite:
|
||||
self.delete_model()
|
||||
|
||||
serialized_model = str(serializer.serialize_and_compress_model())[2:-1] # remove `b` and str quotes
|
||||
self._client.perform_request(
|
||||
"PUT", "/_ml/inference/" + self._model_id,
|
||||
body={
|
||||
"input": {
|
||||
"field_names": feature_names
|
||||
},
|
||||
"compressed_definition": serialized_model
|
||||
}
|
||||
)
|
||||
|
||||
def predict(self, X):
|
||||
"""
|
||||
Make a prediction using a trained inference model in Elasticsearch.
|
||||
|
||||
Parameters for this method are not fully compatible with standard sklearn.predict.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X: list or list of lists of type float
|
||||
Input feature vector - TODO support DataFrame and other formats
|
||||
|
||||
Returns
|
||||
-------
|
||||
y: np.ndarray of dtype float for regressors or int for classifiers
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from sklearn import datasets
|
||||
>>> from xgboost import XGBRegressor
|
||||
>>> from eland.ml import ExternalMLModel
|
||||
|
||||
>>> # Train model
|
||||
>>> training_data = datasets.make_classification(n_features=6, random_state=0)
|
||||
>>> test_data = [[-1, -2, -3, -4, -5, -6], [10, 20, 30, 40, 50, 60]]
|
||||
>>> regressor = XGBRegressor(objective='reg:squarederror')
|
||||
>>> regressor = regressor.fit(training_data[0], training_data[1])
|
||||
|
||||
>>> # Get some test results
|
||||
>>> regressor.predict(np.array(test_data))
|
||||
array([0.23733574, 1.1897984 ], dtype=float32)
|
||||
|
||||
>>> # Serialise the model to Elasticsearch
|
||||
>>> feature_names = ["f0", "f1", "f2", "f3", "f4", "f5"]
|
||||
>>> model_id = "test_xgb_regressor"
|
||||
>>> es_model = ExternalMLModel('localhost', model_id, regressor, feature_names, overwrite=True)
|
||||
|
||||
>>> # Get some test results from Elasticsearch model
|
||||
>>> es_model.predict(test_data)
|
||||
array([0.2373357, 1.1897984], dtype=float32)
|
||||
|
||||
>>> # Delete model from Elasticsearch
|
||||
>>> es_model.delete_model()
|
||||
|
||||
"""
|
||||
docs = []
|
||||
if isinstance(X, list):
|
||||
# Is it a list of lists?
|
||||
if all(isinstance(i, list) for i in X):
|
||||
for i in X:
|
||||
doc = dict()
|
||||
doc['_source'] = dict(zip(self._feature_names, i))
|
||||
docs.append(doc)
|
||||
|
||||
else: # single feature vector1
|
||||
doc = dict()
|
||||
doc['_source'] = dict(zip(self._feature_names, i))
|
||||
docs.append(doc)
|
||||
else:
|
||||
raise NotImplementedError("Prediction for type {}, not supported".format(type(X)))
|
||||
|
||||
results = self._client.perform_request(
|
||||
"POST",
|
||||
"/_ingest/pipeline/_simulate",
|
||||
body={
|
||||
"pipeline": {
|
||||
"processors": [
|
||||
{"inference": {
|
||||
"model_id": self._model_id,
|
||||
"inference_config": {self._model_type: {}},
|
||||
"field_mappings": {}
|
||||
}}
|
||||
]
|
||||
},
|
||||
"docs": docs
|
||||
})
|
||||
|
||||
y = [
|
||||
doc['doc']['_source']['ml']['inference']['predicted_value'] for doc in results['docs']
|
||||
]
|
||||
|
||||
# Return results as np.ndarray of float32 or int (consistent with sklearn/xgboost)
|
||||
if self._model_type == MLModel.TYPE_CLASSIFICATION:
|
||||
dt = np.int
|
||||
else:
|
||||
dt = np.float32
|
||||
return np.asarray(y, dtype=dt)
|
58
eland/ml/ml_model.py
Normal file
58
eland/ml/ml_model.py
Normal file
@ -0,0 +1,58 @@
|
||||
# Copyright 2019 Elasticsearch BV
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import elasticsearch
|
||||
|
||||
from eland import Client
|
||||
|
||||
class MLModel:
|
||||
"""
|
||||
A machine learning model managed by Elasticsearch.
|
||||
(See https://www.elastic.co/guide/en/elasticsearch/reference/master/put-inference.html)
|
||||
|
||||
These models can be created by Elastic ML, or transformed from supported python formats such as scikit-learn or
|
||||
xgboost and imported into Elasticsearch.
|
||||
|
||||
The methods for this class attempt to mirror standard python classes.
|
||||
"""
|
||||
TYPE_CLASSIFICATION = "classification"
|
||||
TYPE_REGRESSION = "regression"
|
||||
|
||||
def __init__(self,
|
||||
es_client,
|
||||
model_id: str):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
es_client: Elasticsearch client argument(s)
|
||||
- elasticsearch-py parameters or
|
||||
- elasticsearch-py instance or
|
||||
- eland.Client instance
|
||||
|
||||
model_id: str
|
||||
The unique identifier of the trained inference model in Elasticsearch.
|
||||
"""
|
||||
self._client = Client(es_client)
|
||||
self._model_id = model_id
|
||||
|
||||
def delete_model(self):
|
||||
"""
|
||||
Delete an inference model saved in Elasticsearch
|
||||
|
||||
If model doesn't exist, ignore failure.
|
||||
"""
|
||||
try:
|
||||
self._client.perform_request("DELETE", "/_ml/inference/" + self._model_id)
|
||||
except elasticsearch.exceptions.NotFoundError:
|
||||
pass
|
@ -13,28 +13,29 @@
|
||||
# limitations under the License.
|
||||
|
||||
# File called _pytest for PyCharm compatability
|
||||
from elasticsearch import Elasticsearch
|
||||
import elasticsearch
|
||||
import pytest
|
||||
|
||||
import eland as ed
|
||||
from eland.tests import ES_TEST_CLIENT
|
||||
from eland.tests.common import TestData
|
||||
|
||||
|
||||
class TestClientEq(TestData):
|
||||
|
||||
def test_self_eq(self):
|
||||
es = Elasticsearch('localhost')
|
||||
def test_perform_request(self):
|
||||
client = ed.Client(ES_TEST_CLIENT)
|
||||
|
||||
client = ed.Client(es)
|
||||
response = client.perform_request("GET", "/_cat/indices/flights")
|
||||
|
||||
assert client != es
|
||||
# yellow open flights TNUv0iysQSi7F-N5ykWfWQ 1 1 13059 0 5.7mb 5.7mb
|
||||
tokens = response.split(' ')
|
||||
|
||||
assert client == client
|
||||
assert tokens[2] == 'flights'
|
||||
assert tokens[6] == '13059'
|
||||
|
||||
def test_non_self_ne(self):
|
||||
es1 = Elasticsearch('localhost')
|
||||
es2 = Elasticsearch('localhost')
|
||||
def test_bad_perform_request(self):
|
||||
client = ed.Client(ES_TEST_CLIENT)
|
||||
|
||||
client1 = ed.Client(es1)
|
||||
client2 = ed.Client(es2)
|
||||
|
||||
assert client1 != client2
|
||||
with pytest.raises(elasticsearch.exceptions.NotFoundError):
|
||||
response = client.perform_request("GET", "/_cat/indices/non_existant_index")
|
157
eland/tests/ml/test_external_ml_model_pytest.py
Normal file
157
eland/tests/ml/test_external_ml_model_pytest.py
Normal file
@ -0,0 +1,157 @@
|
||||
# Copyright 2020 Elasticsearch BV
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import numpy as np
|
||||
from sklearn import datasets
|
||||
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
|
||||
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
|
||||
from xgboost import XGBRegressor, XGBClassifier
|
||||
|
||||
from eland.ml import ExternalMLModel
|
||||
from eland.tests import ES_TEST_CLIENT
|
||||
|
||||
|
||||
class TestExternalMLModel:
|
||||
|
||||
def test_decision_tree_classifier(self):
|
||||
# Train model
|
||||
training_data = datasets.make_classification(n_features=5)
|
||||
classifier = DecisionTreeClassifier()
|
||||
classifier.fit(training_data[0], training_data[1])
|
||||
|
||||
# Get some test results
|
||||
test_data = [[0.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]]
|
||||
test_results = classifier.predict(test_data)
|
||||
|
||||
# Serialise the models to Elasticsearch
|
||||
feature_names = ["f0", "f1", "f2", "f3", "f4"]
|
||||
model_id = "test_decision_tree_classifier"
|
||||
|
||||
es_model = ExternalMLModel(ES_TEST_CLIENT, model_id, classifier, feature_names, overwrite=True)
|
||||
es_results = es_model.predict(test_data)
|
||||
|
||||
np.testing.assert_almost_equal(test_results, es_results, decimal=4)
|
||||
|
||||
# Clean up
|
||||
es_model.delete_model()
|
||||
|
||||
def test_decision_tree_regressor(self):
|
||||
# Train model
|
||||
training_data = datasets.make_regression(n_features=5)
|
||||
regressor = DecisionTreeRegressor()
|
||||
regressor.fit(training_data[0], training_data[1])
|
||||
|
||||
# Get some test results
|
||||
test_data = [[0.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]]
|
||||
test_results = regressor.predict(test_data)
|
||||
|
||||
# Serialise the models to Elasticsearch
|
||||
feature_names = ["f0", "f1", "f2", "f3", "f4"]
|
||||
model_id = "test_decision_tree_regressor"
|
||||
|
||||
es_model = ExternalMLModel(ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=True)
|
||||
es_results = es_model.predict(test_data)
|
||||
|
||||
np.testing.assert_almost_equal(test_results, es_results, decimal=4)
|
||||
|
||||
# Clean up
|
||||
es_model.delete_model()
|
||||
|
||||
def test_random_forest_classifier(self):
|
||||
# Train model
|
||||
training_data = datasets.make_classification(n_features=5)
|
||||
classifier = RandomForestClassifier()
|
||||
classifier.fit(training_data[0], training_data[1])
|
||||
|
||||
# Get some test results
|
||||
test_data = [[0.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]]
|
||||
test_results = classifier.predict(test_data)
|
||||
|
||||
# Serialise the models to Elasticsearch
|
||||
feature_names = ["f0", "f1", "f2", "f3", "f4"]
|
||||
model_id = "test_random_forest_classifier"
|
||||
|
||||
es_model = ExternalMLModel(ES_TEST_CLIENT, model_id, classifier, feature_names, overwrite=True)
|
||||
es_results = es_model.predict(test_data)
|
||||
|
||||
np.testing.assert_almost_equal(test_results, es_results, decimal=4)
|
||||
|
||||
# Clean up
|
||||
es_model.delete_model()
|
||||
|
||||
def test_random_forest_regressor(self):
|
||||
# Train model
|
||||
training_data = datasets.make_regression(n_features=5)
|
||||
regressor = RandomForestRegressor()
|
||||
regressor.fit(training_data[0], training_data[1])
|
||||
|
||||
# Get some test results
|
||||
test_data = [[0.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]]
|
||||
test_results = regressor.predict(test_data)
|
||||
|
||||
# Serialise the models to Elasticsearch
|
||||
feature_names = ["f0", "f1", "f2", "f3", "f4"]
|
||||
model_id = "test_random_forest_regressor"
|
||||
|
||||
es_model = ExternalMLModel(ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=True)
|
||||
es_results = es_model.predict(test_data)
|
||||
|
||||
np.testing.assert_almost_equal(test_results, es_results, decimal=4)
|
||||
|
||||
# Clean up
|
||||
es_model.delete_model()
|
||||
|
||||
def test_xgb_classifier(self):
|
||||
# Train model
|
||||
training_data = datasets.make_classification(n_features=5)
|
||||
classifier = XGBClassifier()
|
||||
classifier.fit(training_data[0], training_data[1])
|
||||
|
||||
# Get some test results
|
||||
test_data = [[0.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]]
|
||||
test_results = classifier.predict(test_data)
|
||||
|
||||
# Serialise the models to Elasticsearch
|
||||
feature_names = ["f0", "f1", "f2", "f3", "f4"]
|
||||
model_id = "test_xgb_classifier"
|
||||
|
||||
es_model = ExternalMLModel(ES_TEST_CLIENT, model_id, classifier, feature_names, overwrite=True)
|
||||
es_results = es_model.predict(test_data)
|
||||
|
||||
np.testing.assert_almost_equal(test_results, es_results, decimal=4)
|
||||
|
||||
# Clean up
|
||||
es_model.delete_model()
|
||||
|
||||
def test_xgb_regressor(self):
|
||||
# Train model
|
||||
training_data = datasets.make_regression(n_features=5)
|
||||
regressor = XGBRegressor()
|
||||
regressor.fit(training_data[0], training_data[1])
|
||||
|
||||
# Get some test results
|
||||
test_data = [[0.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]]
|
||||
test_results = regressor.predict(test_data)
|
||||
|
||||
# Serialise the models to Elasticsearch
|
||||
feature_names = ["f0", "f1", "f2", "f3", "f4"]
|
||||
model_id = "test_xgb_regressor"
|
||||
|
||||
es_model = ExternalMLModel(ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=True)
|
||||
es_results = es_model.predict(test_data)
|
||||
|
||||
np.testing.assert_almost_equal(test_results, es_results, decimal=4)
|
||||
|
||||
# Clean up
|
||||
es_model.delete_model()
|
64
eland/tests/ml/test_optional_dependency_pytest.py
Normal file
64
eland/tests/ml/test_optional_dependency_pytest.py
Normal file
@ -0,0 +1,64 @@
|
||||
# Copyright 2019 Elasticsearch BV
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import sys
|
||||
import types
|
||||
|
||||
import pytest
|
||||
|
||||
from eland.ml._optional import VERSIONS, import_optional_dependency
|
||||
|
||||
|
||||
def test_import_optional():
|
||||
match = "Missing .*notapackage.* pip .* conda .* notapackage"
|
||||
with pytest.raises(ImportError, match=match):
|
||||
import_optional_dependency("notapackage")
|
||||
|
||||
result = import_optional_dependency("notapackage", raise_on_missing=False)
|
||||
assert result is None
|
||||
|
||||
|
||||
def test_xlrd_version_fallback():
|
||||
pytest.importorskip("xlrd")
|
||||
import_optional_dependency("xlrd")
|
||||
|
||||
|
||||
def test_bad_version():
|
||||
name = "fakemodule"
|
||||
module = types.ModuleType(name)
|
||||
module.__version__ = "0.9.0"
|
||||
sys.modules[name] = module
|
||||
VERSIONS[name] = "1.0.0"
|
||||
|
||||
match = "Eland requires .*1.0.0.* of .fakemodule.*'0.9.0'"
|
||||
with pytest.raises(ImportError, match=match):
|
||||
import_optional_dependency("fakemodule")
|
||||
|
||||
with pytest.warns(UserWarning):
|
||||
result = import_optional_dependency("fakemodule", on_version="warn")
|
||||
assert result is None
|
||||
|
||||
module.__version__ = "1.0.0" # exact match is OK
|
||||
result = import_optional_dependency("fakemodule")
|
||||
assert result is module
|
||||
|
||||
|
||||
def test_no_version_raises():
|
||||
name = "fakemodule"
|
||||
module = types.ModuleType(name)
|
||||
sys.modules[name] = module
|
||||
VERSIONS[name] = "1.0.0"
|
||||
|
||||
with pytest.raises(ImportError, match="Can't determine .* fakemodule"):
|
||||
import_optional_dependency(name)
|
@ -2,8 +2,8 @@
|
||||
|
||||
python setup.py install
|
||||
|
||||
jupyter nbconvert --to notebook --inplace --execute docs/source/examples/demo_notebook.ipynb
|
||||
jupyter nbconvert --to notebook --inplace --execute docs/source/examples/online_retail_analysis.ipynb
|
||||
#jupyter nbconvert --to notebook --inplace --execute docs/source/examples/demo_notebook.ipynb
|
||||
#jupyter nbconvert --to notebook --inplace --execute docs/source/examples/online_retail_analysis.ipynb
|
||||
|
||||
cd docs
|
||||
|
||||
|
@ -4,3 +4,5 @@ matplotlib
|
||||
pytest>=5.2.1
|
||||
nbval
|
||||
numpydoc>=0.9.0
|
||||
scikit-learn>=0.22.1
|
||||
xgboost>=0.90
|
||||
|
Loading…
x
Reference in New Issue
Block a user