mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
Remove deprecated code in XGBoost and test suite
This commit is contained in:
parent
e9c0b897f5
commit
7e8520a8ef
@ -196,7 +196,7 @@ class MLModel:
|
||||
|
||||
# Return results as np.ndarray of float32 or int (consistent with sklearn/xgboost)
|
||||
if self.model_type == TYPE_CLASSIFICATION:
|
||||
dt = np.int
|
||||
dt = np.int_
|
||||
else:
|
||||
dt = np.float32
|
||||
return np.asarray(y, dtype=dt)
|
||||
|
@ -94,7 +94,7 @@ class TestDataFrameAggs(TestData):
|
||||
# Eland returns all float values for all metric aggs, pandas can return int
|
||||
# TODO - investigate this more
|
||||
pd_aggs = pd_aggs.astype("float64")
|
||||
assert_frame_equal(pd_aggs, ed_aggs, check_exact=False, check_less_precise=2)
|
||||
assert_frame_equal(pd_aggs, ed_aggs, check_exact=False, rtol=2)
|
||||
|
||||
# If Aggregate is given a string then series is returned.
|
||||
@pytest.mark.parametrize("agg", ["mean", "min", "max"])
|
||||
|
@ -34,7 +34,7 @@ class TestDataFrameDescribe(TestData):
|
||||
pd_describe.drop(["25%", "50%", "75%"], axis="index"),
|
||||
ed_describe.drop(["25%", "50%", "75%"], axis="index"),
|
||||
check_exact=False,
|
||||
check_less_precise=True,
|
||||
rtol=True,
|
||||
)
|
||||
|
||||
# TODO - this fails for percentile fields as ES aggregations are approximate
|
||||
|
@ -263,10 +263,12 @@ class TestMLModel:
|
||||
training_data = datasets.make_classification(
|
||||
n_features=5, n_classes=3, n_informative=3
|
||||
)
|
||||
classifier = XGBClassifier(booster="gbtree", objective="multi:softmax")
|
||||
classifier = XGBClassifier(
|
||||
booster="gbtree", objective="multi:softmax", use_label_encoder=False
|
||||
)
|
||||
else:
|
||||
training_data = datasets.make_classification(n_features=5)
|
||||
classifier = XGBClassifier(booster="gbtree")
|
||||
classifier = XGBClassifier(booster="gbtree", use_label_encoder=False)
|
||||
|
||||
# Train model
|
||||
classifier.fit(training_data[0], training_data[1])
|
||||
@ -303,10 +305,14 @@ class TestMLModel:
|
||||
training_data = datasets.make_classification(
|
||||
n_features=5, n_classes=3, n_informative=3
|
||||
)
|
||||
classifier = XGBClassifier(booster=booster, objective=objective)
|
||||
classifier = XGBClassifier(
|
||||
booster=booster, objective=objective, use_label_encoder=False
|
||||
)
|
||||
else:
|
||||
training_data = datasets.make_classification(n_features=5)
|
||||
classifier = XGBClassifier(booster=booster, objective=objective)
|
||||
classifier = XGBClassifier(
|
||||
booster=booster, objective=objective, use_label_encoder=False
|
||||
)
|
||||
|
||||
# Train model
|
||||
classifier.fit(training_data[0], training_data[1])
|
||||
|
@ -50,7 +50,7 @@ class TestSeriesArithmetics(TestData):
|
||||
+ ed_df["total_quantity"]
|
||||
)
|
||||
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, check_less_precise=True)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
def test_ecommerce_series_simple_integer_addition(self):
|
||||
pd_df = self.pd_ecommerce().head(100)
|
||||
@ -59,7 +59,7 @@ class TestSeriesArithmetics(TestData):
|
||||
pd_series = pd_df["taxful_total_price"] + 5
|
||||
ed_series = ed_df["taxful_total_price"] + 5
|
||||
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, check_less_precise=True)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
def test_ecommerce_series_simple_series_addition(self):
|
||||
pd_df = self.pd_ecommerce().head(100)
|
||||
@ -68,7 +68,7 @@ class TestSeriesArithmetics(TestData):
|
||||
pd_series = pd_df["taxful_total_price"] + pd_df["total_quantity"]
|
||||
ed_series = ed_df["taxful_total_price"] + ed_df["total_quantity"]
|
||||
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, check_less_precise=True)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
def test_ecommerce_series_basic_arithmetics(self):
|
||||
pd_df = self.pd_ecommerce().head(100)
|
||||
@ -98,27 +98,19 @@ class TestSeriesArithmetics(TestData):
|
||||
ed_series = getattr(ed_df["taxful_total_price"], op)(
|
||||
ed_df["total_quantity"]
|
||||
)
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
pd_series = getattr(pd_df["taxful_total_price"], op)(10.56)
|
||||
ed_series = getattr(ed_df["taxful_total_price"], op)(10.56)
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
pd_series = getattr(pd_df["taxful_total_price"], op)(np.float32(1.879))
|
||||
ed_series = getattr(ed_df["taxful_total_price"], op)(np.float32(1.879))
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
pd_series = getattr(pd_df["taxful_total_price"], op)(int(8))
|
||||
ed_series = getattr(ed_df["taxful_total_price"], op)(int(8))
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
def test_supported_series_dtypes_ops(self):
|
||||
pd_df = self.pd_ecommerce().head(100)
|
||||
@ -153,9 +145,7 @@ class TestSeriesArithmetics(TestData):
|
||||
ed_series = getattr(ed_df["taxful_total_price"], op)(
|
||||
ed_df["taxless_total_price"]
|
||||
)
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
# int op float
|
||||
for op in numeric_ops:
|
||||
@ -165,9 +155,7 @@ class TestSeriesArithmetics(TestData):
|
||||
ed_series = getattr(ed_df["total_quantity"], op)(
|
||||
ed_df["taxless_total_price"]
|
||||
)
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
# float op int
|
||||
for op in numeric_ops:
|
||||
@ -177,9 +165,7 @@ class TestSeriesArithmetics(TestData):
|
||||
ed_series = getattr(ed_df["taxful_total_price"], op)(
|
||||
ed_df["total_quantity"]
|
||||
)
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
# str op int (throws)
|
||||
for op in non_string_numeric_ops:
|
||||
@ -227,27 +213,19 @@ class TestSeriesArithmetics(TestData):
|
||||
ed_series = getattr(ed_df["taxful_total_price"], op)(
|
||||
ed_df["total_quantity"]
|
||||
)
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
pd_series = getattr(pd_df["taxful_total_price"], op)(3.141)
|
||||
ed_series = getattr(ed_df["taxful_total_price"], op)(3.141)
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
pd_series = getattr(pd_df["taxful_total_price"], op)(np.float32(2.879))
|
||||
ed_series = getattr(ed_df["taxful_total_price"], op)(np.float32(2.879))
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
pd_series = getattr(pd_df["taxful_total_price"], op)(int(6))
|
||||
ed_series = getattr(ed_df["taxful_total_price"], op)(int(6))
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
def test_supported_series_dtypes_rops(self):
|
||||
pd_df = self.pd_ecommerce().head(100)
|
||||
@ -282,9 +260,7 @@ class TestSeriesArithmetics(TestData):
|
||||
ed_series = getattr(ed_df["taxful_total_price"], op)(
|
||||
ed_df["taxless_total_price"]
|
||||
)
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
# int op float
|
||||
for op in numeric_ops:
|
||||
@ -294,9 +270,7 @@ class TestSeriesArithmetics(TestData):
|
||||
ed_series = getattr(ed_df["total_quantity"], op)(
|
||||
ed_df["taxless_total_price"]
|
||||
)
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
# float op int
|
||||
for op in numeric_ops:
|
||||
@ -306,9 +280,7 @@ class TestSeriesArithmetics(TestData):
|
||||
ed_series = getattr(ed_df["taxful_total_price"], op)(
|
||||
ed_df["total_quantity"]
|
||||
)
|
||||
assert_pandas_eland_series_equal(
|
||||
pd_series, ed_series, check_less_precise=True
|
||||
)
|
||||
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
||||
|
||||
# str op int (throws)
|
||||
for op in non_string_numeric_ops:
|
||||
|
Loading…
x
Reference in New Issue
Block a user