[DOCS] Adds NLP with PyTorch section to ML-related page in Eland docs

This commit is contained in:
István Zoltán Szabó 2022-01-11 16:08:00 +01:00 committed by GitHub
parent 72856e2c3f
commit 9206941659
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,9 +1,13 @@
[[machine-learning]]
== Machine Learning
[discrete]
[[ml-trained-models]]
=== Trained models
Eland allows transforming trained models from scikit-learn, XGBoost,
and LightGBM libraries to be serialized and used as an inference
model in Elasticsearch
model in {es}.
[source,python]
------------------------
@ -29,3 +33,48 @@ model in Elasticsearch
>>> es_model.predict(training_data[0])
[0 1 1 0 1 0 0 0 1 0]
------------------------
[discrete]
[[ml-nlp-pytorch]]
=== Natural language processing (NLP) with PyTorch
For NLP tasks, Eland enables you to import PyTorch trained BERT models into {es}.
Models can be either plain PyTorch models, or supported
https://huggingface.co/transformers[transformers] models from the
https://huggingface.co/models[Hugging Face model hub].
[source,bash]
------------------------
$ eland_import_hub_model \
--url http://localhost:9200/ \
--hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \
--task-type ner \
--start
------------------------
[source,python]
------------------------
>>> import elasticsearch
>>> from pathlib import Path
>>> from eland.ml.pytorch import PyTorchModel
>>> from eland.ml.pytorch.transformers import TransformerModel
# Load a Hugging Face transformers model directly from the model hub
>>> tm = TransformerModel("elastic/distilbert-base-cased-finetuned-conll03-english", "ner")
Downloading: 100%|██████████| 257/257 [00:00<00:00, 108kB/s]
Downloading: 100%|██████████| 954/954 [00:00<00:00, 372kB/s]
Downloading: 100%|██████████| 208k/208k [00:00<00:00, 668kB/s]
Downloading: 100%|██████████| 112/112 [00:00<00:00, 43.9kB/s]
Downloading: 100%|██████████| 249M/249M [00:23<00:00, 11.2MB/s]
# Export the model in a TorchScrpt representation which Elasticsearch uses
>>> tmp_path = "models"
>>> Path(tmp_path).mkdir(parents=True, exist_ok=True)
>>> model_path, config_path, vocab_path = tm.save(tmp_path)
# Import model into Elasticsearch
>>> es = elasticsearch.Elasticsearch("http://elastic:mlqa_admin@localhost:9200", timeout=300) # 5 minute timeout
>>> ptm = PyTorchModel(es, tm.elasticsearch_model_id())
>>> ptm.import_model(model_path, config_path, vocab_path)
100%|██████████| 63/63 [00:12<00:00, 5.02it/s]
------------------------