mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
Merge branch 'master' into feature/pep8ify
This commit is contained in:
commit
9c61a71a81
17
.gitignore
vendored
Normal file
17
.gitignore
vendored
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
# Compiled python modules.
|
||||||
|
*.pyc
|
||||||
|
|
||||||
|
# Setuptools distribution folder.
|
||||||
|
/dist/
|
||||||
|
|
||||||
|
# Python egg metadata, regenerated from source files by setuptools.
|
||||||
|
/*.egg-info
|
||||||
|
|
||||||
|
# PyCharm files
|
||||||
|
.idea/
|
||||||
|
|
||||||
|
# pytest files
|
||||||
|
.pytest_cache/
|
||||||
|
|
||||||
|
# Ignore MacOSX files
|
||||||
|
.DS_Store
|
360
LICENSE
360
LICENSE
@ -1,201 +1,223 @@
|
|||||||
Apache License
|
ELASTIC LICENSE AGREEMENT
|
||||||
Version 2.0, January 2004
|
|
||||||
http://www.apache.org/licenses/
|
|
||||||
|
|
||||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
PLEASE READ CAREFULLY THIS ELASTIC LICENSE AGREEMENT (THIS "AGREEMENT"), WHICH
|
||||||
|
CONSTITUTES A LEGALLY BINDING AGREEMENT AND GOVERNS ALL OF YOUR USE OF ALL OF
|
||||||
|
THE ELASTIC SOFTWARE WITH WHICH THIS AGREEMENT IS INCLUDED ("ELASTIC SOFTWARE")
|
||||||
|
THAT IS PROVIDED IN OBJECT CODE FORMAT, AND, IN ACCORDANCE WITH SECTION 2 BELOW,
|
||||||
|
CERTAIN OF THE ELASTIC SOFTWARE THAT IS PROVIDED IN SOURCE CODE FORMAT. BY
|
||||||
|
INSTALLING OR USING ANY OF THE ELASTIC SOFTWARE GOVERNED BY THIS AGREEMENT, YOU
|
||||||
|
ARE ASSENTING TO THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE
|
||||||
|
WITH SUCH TERMS AND CONDITIONS, YOU MAY NOT INSTALL OR USE THE ELASTIC SOFTWARE
|
||||||
|
GOVERNED BY THIS AGREEMENT. IF YOU ARE INSTALLING OR USING THE SOFTWARE ON
|
||||||
|
BEHALF OF A LEGAL ENTITY, YOU REPRESENT AND WARRANT THAT YOU HAVE THE ACTUAL
|
||||||
|
AUTHORITY TO AGREE TO THE TERMS AND CONDITIONS OF THIS AGREEMENT ON BEHALF OF
|
||||||
|
SUCH ENTITY.
|
||||||
|
|
||||||
1. Definitions.
|
Posted Date: April 20, 2018
|
||||||
|
|
||||||
"License" shall mean the terms and conditions for use, reproduction,
|
This Agreement is entered into by and between Elasticsearch BV ("Elastic") and
|
||||||
and distribution as defined by Sections 1 through 9 of this document.
|
You, or the legal entity on behalf of whom You are acting (as applicable,
|
||||||
|
"You").
|
||||||
|
|
||||||
"Licensor" shall mean the copyright owner or entity authorized by
|
1. OBJECT CODE END USER LICENSES, RESTRICTIONS AND THIRD PARTY OPEN SOURCE
|
||||||
the copyright owner that is granting the License.
|
SOFTWARE
|
||||||
|
|
||||||
"Legal Entity" shall mean the union of the acting entity and all
|
1.1 Object Code End User License. Subject to the terms and conditions of
|
||||||
other entities that control, are controlled by, or are under common
|
Section 1.2 of this Agreement, Elastic hereby grants to You, AT NO CHARGE and
|
||||||
control with that entity. For the purposes of this definition,
|
for so long as you are not in breach of any provision of this Agreement, a
|
||||||
"control" means (i) the power, direct or indirect, to cause the
|
License to the Basic Features and Functions of the Elastic Software.
|
||||||
direction or management of such entity, whether by contract or
|
|
||||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
||||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
||||||
|
|
||||||
"You" (or "Your") shall mean an individual or Legal Entity
|
1.2 Reservation of Rights; Restrictions. As between Elastic and You, Elastic
|
||||||
exercising permissions granted by this License.
|
and its licensors own all right, title and interest in and to the Elastic
|
||||||
|
Software, and except as expressly set forth in Sections 1.1, and 2.1 of this
|
||||||
|
Agreement, no other license to the Elastic Software is granted to You under
|
||||||
|
this Agreement, by implication, estoppel or otherwise. You agree not to: (i)
|
||||||
|
reverse engineer or decompile, decrypt, disassemble or otherwise reduce any
|
||||||
|
Elastic Software provided to You in Object Code, or any portion thereof, to
|
||||||
|
Source Code, except and only to the extent any such restriction is prohibited
|
||||||
|
by applicable law, (ii) except as expressly permitted in this Agreement,
|
||||||
|
prepare derivative works from, modify, copy or use the Elastic Software Object
|
||||||
|
Code or the Commercial Software Source Code in any manner; (iii) except as
|
||||||
|
expressly permitted in Section 1.1 above, transfer, sell, rent, lease,
|
||||||
|
distribute, sublicense, loan or otherwise transfer, Elastic Software Object
|
||||||
|
Code, in whole or in part, to any third party; (iv) use Elastic Software
|
||||||
|
Object Code for providing time-sharing services, any software-as-a-service,
|
||||||
|
service bureau services or as part of an application services provider or
|
||||||
|
other service offering (collectively, "SaaS Offering") where obtaining access
|
||||||
|
to the Elastic Software or the features and functions of the Elastic Software
|
||||||
|
is a primary reason or substantial motivation for users of the SaaS Offering
|
||||||
|
to access and/or use the SaaS Offering ("Prohibited SaaS Offering"); (v)
|
||||||
|
circumvent the limitations on use of Elastic Software provided to You in
|
||||||
|
Object Code format that are imposed or preserved by any License Key, or (vi)
|
||||||
|
alter or remove any Marks and Notices in the Elastic Software. If You have any
|
||||||
|
question as to whether a specific SaaS Offering constitutes a Prohibited SaaS
|
||||||
|
Offering, or are interested in obtaining Elastic's permission to engage in
|
||||||
|
commercial or non-commercial distribution of the Elastic Software, please
|
||||||
|
contact elastic_license@elastic.co.
|
||||||
|
|
||||||
"Source" form shall mean the preferred form for making modifications,
|
1.3 Third Party Open Source Software. The Commercial Software may contain or
|
||||||
including but not limited to software source code, documentation
|
be provided with third party open source libraries, components, utilities and
|
||||||
source, and configuration files.
|
other open source software (collectively, "Open Source Software"), which Open
|
||||||
|
Source Software may have applicable license terms as identified on a website
|
||||||
|
designated by Elastic. Notwithstanding anything to the contrary herein, use of
|
||||||
|
the Open Source Software shall be subject to the license terms and conditions
|
||||||
|
applicable to such Open Source Software, to the extent required by the
|
||||||
|
applicable licensor (which terms shall not restrict the license rights granted
|
||||||
|
to You hereunder, but may contain additional rights). To the extent any
|
||||||
|
condition of this Agreement conflicts with any license to the Open Source
|
||||||
|
Software, the Open Source Software license will govern with respect to such
|
||||||
|
Open Source Software only. Elastic may also separately provide you with
|
||||||
|
certain open source software that is licensed by Elastic. Your use of such
|
||||||
|
Elastic open source software will not be governed by this Agreement, but by
|
||||||
|
the applicable open source license terms.
|
||||||
|
|
||||||
"Object" form shall mean any form resulting from mechanical
|
2. COMMERCIAL SOFTWARE SOURCE CODE
|
||||||
transformation or translation of a Source form, including but
|
|
||||||
not limited to compiled object code, generated documentation,
|
|
||||||
and conversions to other media types.
|
|
||||||
|
|
||||||
"Work" shall mean the work of authorship, whether in Source or
|
2.1 Limited License. Subject to the terms and conditions of Section 2.2 of
|
||||||
Object form, made available under the License, as indicated by a
|
this Agreement, Elastic hereby grants to You, AT NO CHARGE and for so long as
|
||||||
copyright notice that is included in or attached to the work
|
you are not in breach of any provision of this Agreement, a limited,
|
||||||
(an example is provided in the Appendix below).
|
non-exclusive, non-transferable, fully paid up royalty free right and license
|
||||||
|
to the Commercial Software in Source Code format, without the right to grant
|
||||||
|
or authorize sublicenses, to prepare Derivative Works of the Commercial
|
||||||
|
Software, provided You (i) do not hack the licensing mechanism, or otherwise
|
||||||
|
circumvent the intended limitations on the use of Elastic Software to enable
|
||||||
|
features other than Basic Features and Functions or those features You are
|
||||||
|
entitled to as part of a Subscription, and (ii) use the resulting object code
|
||||||
|
only for reasonable testing purposes.
|
||||||
|
|
||||||
"Derivative Works" shall mean any work, whether in Source or Object
|
2.2 Restrictions. Nothing in Section 2.1 grants You the right to (i) use the
|
||||||
form, that is based on (or derived from) the Work and for which the
|
Commercial Software Source Code other than in accordance with Section 2.1
|
||||||
editorial revisions, annotations, elaborations, or other modifications
|
above, (ii) use a Derivative Work of the Commercial Software outside of a
|
||||||
represent, as a whole, an original work of authorship. For the purposes
|
Non-production Environment, in any production capacity, on a temporary or
|
||||||
of this License, Derivative Works shall not include works that remain
|
permanent basis, or (iii) transfer, sell, rent, lease, distribute, sublicense,
|
||||||
separable from, or merely link (or bind by name) to the interfaces of,
|
loan or otherwise make available the Commercial Software Source Code, in whole
|
||||||
the Work and Derivative Works thereof.
|
or in part, to any third party. Notwithstanding the foregoing, You may
|
||||||
|
maintain a copy of the repository in which the Source Code of the Commercial
|
||||||
|
Software resides and that copy may be publicly accessible, provided that you
|
||||||
|
include this Agreement with Your copy of the repository.
|
||||||
|
|
||||||
"Contribution" shall mean any work of authorship, including
|
3. TERMINATION
|
||||||
the original version of the Work and any modifications or additions
|
|
||||||
to that Work or Derivative Works thereof, that is intentionally
|
|
||||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
||||||
or by an individual or Legal Entity authorized to submit on behalf of
|
|
||||||
the copyright owner. For the purposes of this definition, "submitted"
|
|
||||||
means any form of electronic, verbal, or written communication sent
|
|
||||||
to the Licensor or its representatives, including but not limited to
|
|
||||||
communication on electronic mailing lists, source code control systems,
|
|
||||||
and issue tracking systems that are managed by, or on behalf of, the
|
|
||||||
Licensor for the purpose of discussing and improving the Work, but
|
|
||||||
excluding communication that is conspicuously marked or otherwise
|
|
||||||
designated in writing by the copyright owner as "Not a Contribution."
|
|
||||||
|
|
||||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
3.1 Termination. This Agreement will automatically terminate, whether or not
|
||||||
on behalf of whom a Contribution has been received by Licensor and
|
You receive notice of such Termination from Elastic, if You breach any of its
|
||||||
subsequently incorporated within the Work.
|
provisions.
|
||||||
|
|
||||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
3.2 Post Termination. Upon any termination of this Agreement, for any reason,
|
||||||
this License, each Contributor hereby grants to You a perpetual,
|
You shall promptly cease the use of the Elastic Software in Object Code format
|
||||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
and cease use of the Commercial Software in Source Code format. For the
|
||||||
copyright license to reproduce, prepare Derivative Works of,
|
avoidance of doubt, termination of this Agreement will not affect Your right
|
||||||
publicly display, publicly perform, sublicense, and distribute the
|
to use Elastic Software, in either Object Code or Source Code formats, made
|
||||||
Work and such Derivative Works in Source or Object form.
|
available under the Apache License Version 2.0.
|
||||||
|
|
||||||
3. Grant of Patent License. Subject to the terms and conditions of
|
3.3 Survival. Sections 1.2, 2.2. 3.3, 4 and 5 shall survive any termination or
|
||||||
this License, each Contributor hereby grants to You a perpetual,
|
expiration of this Agreement.
|
||||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
||||||
(except as stated in this section) patent license to make, have made,
|
|
||||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
||||||
where such license applies only to those patent claims licensable
|
|
||||||
by such Contributor that are necessarily infringed by their
|
|
||||||
Contribution(s) alone or by combination of their Contribution(s)
|
|
||||||
with the Work to which such Contribution(s) was submitted. If You
|
|
||||||
institute patent litigation against any entity (including a
|
|
||||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
||||||
or a Contribution incorporated within the Work constitutes direct
|
|
||||||
or contributory patent infringement, then any patent licenses
|
|
||||||
granted to You under this License for that Work shall terminate
|
|
||||||
as of the date such litigation is filed.
|
|
||||||
|
|
||||||
4. Redistribution. You may reproduce and distribute copies of the
|
4. DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITY
|
||||||
Work or Derivative Works thereof in any medium, with or without
|
|
||||||
modifications, and in Source or Object form, provided that You
|
|
||||||
meet the following conditions:
|
|
||||||
|
|
||||||
(a) You must give any other recipients of the Work or
|
4.1 Disclaimer of Warranties. TO THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE
|
||||||
Derivative Works a copy of this License; and
|
LAW, THE ELASTIC SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
|
||||||
|
AND ELASTIC AND ITS LICENSORS MAKE NO WARRANTIES WHETHER EXPRESSED, IMPLIED OR
|
||||||
|
STATUTORY REGARDING OR RELATING TO THE ELASTIC SOFTWARE. TO THE MAXIMUM EXTENT
|
||||||
|
PERMITTED UNDER APPLICABLE LAW, ELASTIC AND ITS LICENSORS SPECIFICALLY
|
||||||
|
DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
||||||
|
PURPOSE AND NON-INFRINGEMENT WITH RESPECT TO THE ELASTIC SOFTWARE, AND WITH
|
||||||
|
RESPECT TO THE USE OF THE FOREGOING. FURTHER, ELASTIC DOES NOT WARRANT RESULTS
|
||||||
|
OF USE OR THAT THE ELASTIC SOFTWARE WILL BE ERROR FREE OR THAT THE USE OF THE
|
||||||
|
ELASTIC SOFTWARE WILL BE UNINTERRUPTED.
|
||||||
|
|
||||||
(b) You must cause any modified files to carry prominent notices
|
4.2 Limitation of Liability. IN NO EVENT SHALL ELASTIC OR ITS LICENSORS BE
|
||||||
stating that You changed the files; and
|
LIABLE TO YOU OR ANY THIRD PARTY FOR ANY DIRECT OR INDIRECT DAMAGES,
|
||||||
|
INCLUDING, WITHOUT LIMITATION, FOR ANY LOSS OF PROFITS, LOSS OF USE, BUSINESS
|
||||||
|
INTERRUPTION, LOSS OF DATA, COST OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY
|
||||||
|
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONNECTION WITH
|
||||||
|
OR ARISING OUT OF THE USE OR INABILITY TO USE THE ELASTIC SOFTWARE, OR THE
|
||||||
|
PERFORMANCE OF OR FAILURE TO PERFORM THIS AGREEMENT, WHETHER ALLEGED AS A
|
||||||
|
BREACH OF CONTRACT OR TORTIOUS CONDUCT, INCLUDING NEGLIGENCE, EVEN IF ELASTIC
|
||||||
|
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
|
||||||
|
|
||||||
(c) You must retain, in the Source form of any Derivative Works
|
5. MISCELLANEOUS
|
||||||
that You distribute, all copyright, patent, trademark, and
|
|
||||||
attribution notices from the Source form of the Work,
|
|
||||||
excluding those notices that do not pertain to any part of
|
|
||||||
the Derivative Works; and
|
|
||||||
|
|
||||||
(d) If the Work includes a "NOTICE" text file as part of its
|
This Agreement completely and exclusively states the entire agreement of the
|
||||||
distribution, then any Derivative Works that You distribute must
|
parties regarding the subject matter herein, and it supersedes, and its terms
|
||||||
include a readable copy of the attribution notices contained
|
govern, all prior proposals, agreements, or other communications between the
|
||||||
within such NOTICE file, excluding those notices that do not
|
parties, oral or written, regarding such subject matter. This Agreement may be
|
||||||
pertain to any part of the Derivative Works, in at least one
|
modified by Elastic from time to time, and any such modifications will be
|
||||||
of the following places: within a NOTICE text file distributed
|
effective upon the "Posted Date" set forth at the top of the modified
|
||||||
as part of the Derivative Works; within the Source form or
|
Agreement. If any provision hereof is held unenforceable, this Agreement will
|
||||||
documentation, if provided along with the Derivative Works; or,
|
continue without said provision and be interpreted to reflect the original
|
||||||
within a display generated by the Derivative Works, if and
|
intent of the parties. This Agreement and any non-contractual obligation
|
||||||
wherever such third-party notices normally appear. The contents
|
arising out of or in connection with it, is governed exclusively by Dutch law.
|
||||||
of the NOTICE file are for informational purposes only and
|
This Agreement shall not be governed by the 1980 UN Convention on Contracts
|
||||||
do not modify the License. You may add Your own attribution
|
for the International Sale of Goods. All disputes arising out of or in
|
||||||
notices within Derivative Works that You distribute, alongside
|
connection with this Agreement, including its existence and validity, shall be
|
||||||
or as an addendum to the NOTICE text from the Work, provided
|
resolved by the courts with jurisdiction in Amsterdam, The Netherlands, except
|
||||||
that such additional attribution notices cannot be construed
|
where mandatory law provides for the courts at another location in The
|
||||||
as modifying the License.
|
Netherlands to have jurisdiction. The parties hereby irrevocably waive any and
|
||||||
|
all claims and defenses either might otherwise have in any such action or
|
||||||
|
proceeding in any of such courts based upon any alleged lack of personal
|
||||||
|
jurisdiction, improper venue, forum non conveniens or any similar claim or
|
||||||
|
defense. A breach or threatened breach, by You of Section 2 may cause
|
||||||
|
irreparable harm for which damages at law may not provide adequate relief, and
|
||||||
|
therefore Elastic shall be entitled to seek injunctive relief without being
|
||||||
|
required to post a bond. You may not assign this Agreement (including by
|
||||||
|
operation of law in connection with a merger or acquisition), in whole or in
|
||||||
|
part to any third party without the prior written consent of Elastic, which
|
||||||
|
may be withheld or granted by Elastic in its sole and absolute discretion.
|
||||||
|
Any assignment in violation of the preceding sentence is void. Notices to
|
||||||
|
Elastic may also be sent to legal@elastic.co.
|
||||||
|
|
||||||
You may add Your own copyright statement to Your modifications and
|
6. DEFINITIONS
|
||||||
may provide additional or different license terms and conditions
|
|
||||||
for use, reproduction, or distribution of Your modifications, or
|
|
||||||
for any such Derivative Works as a whole, provided Your use,
|
|
||||||
reproduction, and distribution of the Work otherwise complies with
|
|
||||||
the conditions stated in this License.
|
|
||||||
|
|
||||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
The following terms have the meanings ascribed:
|
||||||
any Contribution intentionally submitted for inclusion in the Work
|
|
||||||
by You to the Licensor shall be under the terms and conditions of
|
|
||||||
this License, without any additional terms or conditions.
|
|
||||||
Notwithstanding the above, nothing herein shall supersede or modify
|
|
||||||
the terms of any separate license agreement you may have executed
|
|
||||||
with Licensor regarding such Contributions.
|
|
||||||
|
|
||||||
6. Trademarks. This License does not grant permission to use the trade
|
6.1 "Affiliate" means, with respect to a party, any entity that controls, is
|
||||||
names, trademarks, service marks, or product names of the Licensor,
|
controlled by, or which is under common control with, such party, where
|
||||||
except as required for reasonable and customary use in describing the
|
"control" means ownership of at least fifty percent (50%) of the outstanding
|
||||||
origin of the Work and reproducing the content of the NOTICE file.
|
voting shares of the entity, or the contractual right to establish policy for,
|
||||||
|
and manage the operations of, the entity.
|
||||||
|
|
||||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
6.2 "Basic Features and Functions" means those features and functions of the
|
||||||
agreed to in writing, Licensor provides the Work (and each
|
Elastic Software that are eligible for use under a Basic license, as set forth
|
||||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
at https://www.elastic.co/subscriptions, as may be modified by Elastic from
|
||||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
time to time.
|
||||||
implied, including, without limitation, any warranties or conditions
|
|
||||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
||||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
||||||
appropriateness of using or redistributing the Work and assume any
|
|
||||||
risks associated with Your exercise of permissions under this License.
|
|
||||||
|
|
||||||
8. Limitation of Liability. In no event and under no legal theory,
|
6.3 "Commercial Software" means the Elastic Software Source Code in any file
|
||||||
whether in tort (including negligence), contract, or otherwise,
|
containing a header stating the contents are subject to the Elastic License or
|
||||||
unless required by applicable law (such as deliberate and grossly
|
which is contained in the repository folder labeled "x-pack", unless a LICENSE
|
||||||
negligent acts) or agreed to in writing, shall any Contributor be
|
file present in the directory subtree declares a different license.
|
||||||
liable to You for damages, including any direct, indirect, special,
|
|
||||||
incidental, or consequential damages of any character arising as a
|
|
||||||
result of this License or out of the use or inability to use the
|
|
||||||
Work (including but not limited to damages for loss of goodwill,
|
|
||||||
work stoppage, computer failure or malfunction, or any and all
|
|
||||||
other commercial damages or losses), even if such Contributor
|
|
||||||
has been advised of the possibility of such damages.
|
|
||||||
|
|
||||||
9. Accepting Warranty or Additional Liability. While redistributing
|
6.4 "Derivative Work of the Commercial Software" means, for purposes of this
|
||||||
the Work or Derivative Works thereof, You may choose to offer,
|
Agreement, any modification(s) or enhancement(s) to the Commercial Software,
|
||||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
which represent, as a whole, an original work of authorship.
|
||||||
or other liability obligations and/or rights consistent with this
|
|
||||||
License. However, in accepting such obligations, You may act only
|
|
||||||
on Your own behalf and on Your sole responsibility, not on behalf
|
|
||||||
of any other Contributor, and only if You agree to indemnify,
|
|
||||||
defend, and hold each Contributor harmless for any liability
|
|
||||||
incurred by, or claims asserted against, such Contributor by reason
|
|
||||||
of your accepting any such warranty or additional liability.
|
|
||||||
|
|
||||||
END OF TERMS AND CONDITIONS
|
6.5 "License" means a limited, non-exclusive, non-transferable, fully paid up,
|
||||||
|
royalty free, right and license, without the right to grant or authorize
|
||||||
|
sublicenses, solely for Your internal business operations to (i) install and
|
||||||
|
use the applicable Features and Functions of the Elastic Software in Object
|
||||||
|
Code, and (ii) permit Contractors and Your Affiliates to use the Elastic
|
||||||
|
software as set forth in (i) above, provided that such use by Contractors must
|
||||||
|
be solely for Your benefit and/or the benefit of Your Affiliates, and You
|
||||||
|
shall be responsible for all acts and omissions of such Contractors and
|
||||||
|
Affiliates in connection with their use of the Elastic software that are
|
||||||
|
contrary to the terms and conditions of this Agreement.
|
||||||
|
|
||||||
APPENDIX: How to apply the Apache License to your work.
|
6.6 "License Key" means a sequence of bytes, including but not limited to a
|
||||||
|
JSON blob, that is used to enable certain features and functions of the
|
||||||
|
Elastic Software.
|
||||||
|
|
||||||
To apply the Apache License to your work, attach the following
|
6.7 "Marks and Notices" means all Elastic trademarks, trade names, logos and
|
||||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
notices present on the Documentation as originally provided by Elastic.
|
||||||
replaced with your own identifying information. (Don't include
|
|
||||||
the brackets!) The text should be enclosed in the appropriate
|
|
||||||
comment syntax for the file format. We also recommend that a
|
|
||||||
file or class name and description of purpose be included on the
|
|
||||||
same "printed page" as the copyright notice for easier
|
|
||||||
identification within third-party archives.
|
|
||||||
|
|
||||||
Copyright [yyyy] [name of copyright owner]
|
6.8 "Non-production Environment" means an environment for development, testing
|
||||||
|
or quality assurance, where software is not used for production purposes.
|
||||||
|
|
||||||
Licensed under the Apache License, Version 2.0 (the "License");
|
6.9 "Object Code" means any form resulting from mechanical transformation or
|
||||||
you may not use this file except in compliance with the License.
|
translation of Source Code form, including but not limited to compiled object
|
||||||
You may obtain a copy of the License at
|
code, generated documentation, and conversions to other media types.
|
||||||
|
|
||||||
http://www.apache.org/licenses/LICENSE-2.0
|
6.10 "Source Code" means the preferred form of computer software for making
|
||||||
|
modifications, including but not limited to software source code,
|
||||||
|
documentation source, and configuration files.
|
||||||
|
|
||||||
Unless required by applicable law or agreed to in writing, software
|
6.11 "Subscription" means the right to receive Support Services and a License
|
||||||
distributed under the License is distributed on an "AS IS" BASIS,
|
to the Commercial Software.
|
||||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
See the License for the specific language governing permissions and
|
|
||||||
limitations under the License.
|
|
||||||
|
1
MANIFEST.in
Normal file
1
MANIFEST.in
Normal file
@ -0,0 +1 @@
|
|||||||
|
include README.rst
|
@ -1,3 +1,4 @@
|
|||||||
from .utils import *
|
from .utils import *
|
||||||
from .dataframe import *
|
from .frame import *
|
||||||
from .client import *
|
from .client import *
|
||||||
|
from .mappings import *
|
@ -1,8 +1,9 @@
|
|||||||
from elasticsearch import Elasticsearch
|
from elasticsearch import Elasticsearch
|
||||||
|
|
||||||
# eland client - implement as facade to control access to Elasticsearch methods
|
class Client():
|
||||||
class Client(object):
|
"""
|
||||||
|
eland client - implemented as facade to control access to Elasticsearch methods
|
||||||
|
"""
|
||||||
def __init__(self, es=None):
|
def __init__(self, es=None):
|
||||||
if isinstance(es, Elasticsearch):
|
if isinstance(es, Elasticsearch):
|
||||||
self.es = es
|
self.es = es
|
||||||
@ -17,3 +18,6 @@ class Client(object):
|
|||||||
|
|
||||||
def search(self, **kwargs):
|
def search(self, **kwargs):
|
||||||
return self.es.search(**kwargs)
|
return self.es.search(**kwargs)
|
||||||
|
|
||||||
|
def field_caps(self, **kwargs):
|
||||||
|
return self.es.field_caps(**kwargs)
|
||||||
|
253
eland/frame.py
Normal file
253
eland/frame.py
Normal file
@ -0,0 +1,253 @@
|
|||||||
|
"""
|
||||||
|
DataFrame
|
||||||
|
---------
|
||||||
|
An efficient 2D container for potentially mixed-type time series or other
|
||||||
|
labeled data series.
|
||||||
|
|
||||||
|
The underlying data resides in Elasticsearch and the API aligns as much as
|
||||||
|
possible with pandas.DataFrame API.
|
||||||
|
|
||||||
|
This allows the eland.DataFrame to access large datasets stored in Elasticsearch,
|
||||||
|
without storing the dataset in local memory.
|
||||||
|
|
||||||
|
Implementation Details
|
||||||
|
----------------------
|
||||||
|
|
||||||
|
Elasticsearch indexes can be configured in many different ways, and these indexes
|
||||||
|
utilise different data structures to pandas.DataFrame.
|
||||||
|
|
||||||
|
eland.DataFrame operations that return individual rows (e.g. df.head()) return
|
||||||
|
_source data. If _source is not enabled, this data is not accessible.
|
||||||
|
|
||||||
|
Similarly, only Elasticsearch searchable fields can be searched or filtered, and
|
||||||
|
only Elasticsearch aggregatable fields can be aggregated or grouped.
|
||||||
|
|
||||||
|
"""
|
||||||
|
import eland as ed
|
||||||
|
|
||||||
|
from elasticsearch import Elasticsearch
|
||||||
|
from elasticsearch_dsl import Search
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class DataFrame():
|
||||||
|
"""
|
||||||
|
pandas.DataFrame like API that proxies into Elasticsearch index(es).
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
client : eland.Client
|
||||||
|
A reference to a Elasticsearch python client
|
||||||
|
|
||||||
|
index_pattern : str
|
||||||
|
An Elasticsearch index pattern. This can contain wildcards (e.g. filebeat-*).
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
|
||||||
|
import eland as ed
|
||||||
|
client = ed.Client(Elasticsearch())
|
||||||
|
df = ed.DataFrame(client, 'reviews')
|
||||||
|
df.head()
|
||||||
|
reviewerId vendorId rating date
|
||||||
|
0 0 0 5 2006-04-07 17:08
|
||||||
|
1 1 1 5 2006-05-04 12:16
|
||||||
|
2 2 2 4 2006-04-21 12:26
|
||||||
|
3 3 3 5 2006-04-18 15:48
|
||||||
|
4 3 4 5 2006-04-18 15:49
|
||||||
|
|
||||||
|
Notice that the types are based on Elasticsearch mappings
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
If the Elasticsearch index is deleted or index mappings are changed after this
|
||||||
|
object is created, the object is not rebuilt and so inconsistencies can occur.
|
||||||
|
|
||||||
|
"""
|
||||||
|
def __init__(self, client, index_pattern):
|
||||||
|
self.client = ed.Client(client)
|
||||||
|
self.index_pattern = index_pattern
|
||||||
|
|
||||||
|
# Get and persist mappings, this allows us to correctly
|
||||||
|
# map returned types from Elasticsearch to pandas datatypes
|
||||||
|
self.mappings = ed.Mappings(self.client, self.index_pattern)
|
||||||
|
|
||||||
|
def _es_results_to_pandas(self, results):
|
||||||
|
"""
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
results: dict
|
||||||
|
Elasticsearch results from self.client.search
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
df: pandas.DataFrame
|
||||||
|
_source values extracted from results and mapped to pandas DataFrame
|
||||||
|
dtypes are mapped via Mapping object
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
|
Fields containing lists in Elasticsearch don't map easily to pandas.DataFrame
|
||||||
|
For example, an index with mapping:
|
||||||
|
```
|
||||||
|
"mappings" : {
|
||||||
|
"properties" : {
|
||||||
|
"group" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"user" : {
|
||||||
|
"type" : "nested",
|
||||||
|
"properties" : {
|
||||||
|
"first" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"last" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
Adding a document:
|
||||||
|
```
|
||||||
|
"_source" : {
|
||||||
|
"group" : "amsterdam",
|
||||||
|
"user" : [
|
||||||
|
{
|
||||||
|
"first" : "John",
|
||||||
|
"last" : "Smith"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"first" : "Alice",
|
||||||
|
"last" : "White"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
(https://www.elastic.co/guide/en/elasticsearch/reference/current/nested.html)
|
||||||
|
this would be transformed internally (in Elasticsearch) into a document that looks more like this:
|
||||||
|
```
|
||||||
|
{
|
||||||
|
"group" : "amsterdam",
|
||||||
|
"user.first" : [ "alice", "john" ],
|
||||||
|
"user.last" : [ "smith", "white" ]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
When mapping this a pandas data frame we mimic this transformation.
|
||||||
|
|
||||||
|
Similarly, if a list is added to Elasticsearch:
|
||||||
|
```
|
||||||
|
PUT my_index/_doc/1
|
||||||
|
{
|
||||||
|
"list" : [
|
||||||
|
0, 1, 2
|
||||||
|
]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
The mapping is:
|
||||||
|
```
|
||||||
|
"mappings" : {
|
||||||
|
"properties" : {
|
||||||
|
"user" : {
|
||||||
|
"type" : "long"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
TODO - explain how lists are handled (https://www.elastic.co/guide/en/elasticsearch/reference/current/array.html)
|
||||||
|
TODO - an option here is to use Elasticsearch's multi-field matching instead of pandas treatment of lists (which isn't great)
|
||||||
|
NOTE - using this lists is generally not a good way to use this API
|
||||||
|
"""
|
||||||
|
def flatten_dict(y):
|
||||||
|
out = {}
|
||||||
|
|
||||||
|
def flatten(x, name=''):
|
||||||
|
# We flatten into source fields e.g. if type=geo_point
|
||||||
|
# location: {lat=52.38, lon=4.90}
|
||||||
|
if name == '':
|
||||||
|
is_source_field = False
|
||||||
|
pd_dtype = 'object'
|
||||||
|
else:
|
||||||
|
is_source_field, pd_dtype = self.mappings.is_source_field(name[:-1])
|
||||||
|
|
||||||
|
if not is_source_field and type(x) is dict:
|
||||||
|
for a in x:
|
||||||
|
flatten(x[a], name + a + '.')
|
||||||
|
elif not is_source_field and type(x) is list:
|
||||||
|
for a in x:
|
||||||
|
flatten(a, name)
|
||||||
|
else:
|
||||||
|
field_name = name[:-1]
|
||||||
|
|
||||||
|
# Coerce types - for now just datetime
|
||||||
|
if pd_dtype == 'datetime64[ns]':
|
||||||
|
x = pd.to_datetime(x)
|
||||||
|
|
||||||
|
# Elasticsearch can have multiple values for a field. These are represented as lists, so
|
||||||
|
# create lists for this pivot (see notes above)
|
||||||
|
if field_name in out:
|
||||||
|
if type(out[field_name]) is not list:
|
||||||
|
l = [out[field_name]]
|
||||||
|
out[field_name] = l
|
||||||
|
out[field_name].append(x)
|
||||||
|
else:
|
||||||
|
out[field_name] = x
|
||||||
|
|
||||||
|
flatten(y)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
rows = []
|
||||||
|
for hit in results['hits']['hits']:
|
||||||
|
row = hit['_source']
|
||||||
|
|
||||||
|
# flatten row to map correctly to 2D DataFrame
|
||||||
|
rows.append(flatten_dict(row))
|
||||||
|
|
||||||
|
# Create pandas DataFrame
|
||||||
|
df = pd.DataFrame(data=rows)
|
||||||
|
|
||||||
|
return df
|
||||||
|
|
||||||
|
def head(self, n=5):
|
||||||
|
results = self.client.search(index=self.index_pattern, size=n)
|
||||||
|
|
||||||
|
return self._es_results_to_pandas(results)
|
||||||
|
|
||||||
|
def describe(self):
|
||||||
|
numeric_source_fields = self.mappings.numeric_source_fields()
|
||||||
|
|
||||||
|
# for each field we compute:
|
||||||
|
# count, mean, std, min, 25%, 50%, 75%, max
|
||||||
|
search = Search(using=self.client, index=self.index_pattern).extra(size=0)
|
||||||
|
|
||||||
|
for field in numeric_source_fields:
|
||||||
|
search.aggs.metric('extended_stats_'+field, 'extended_stats', field=field)
|
||||||
|
search.aggs.metric('percentiles_'+field, 'percentiles', field=field)
|
||||||
|
|
||||||
|
response = search.execute()
|
||||||
|
|
||||||
|
results = {}
|
||||||
|
|
||||||
|
for field in numeric_source_fields:
|
||||||
|
values = []
|
||||||
|
values.append(response.aggregations['extended_stats_'+field]['count'])
|
||||||
|
values.append(response.aggregations['extended_stats_'+field]['avg'])
|
||||||
|
values.append(response.aggregations['extended_stats_'+field]['std_deviation'])
|
||||||
|
values.append(response.aggregations['extended_stats_'+field]['min'])
|
||||||
|
values.append(response.aggregations['percentiles_'+field]['values']['25.0'])
|
||||||
|
values.append(response.aggregations['percentiles_'+field]['values']['50.0'])
|
||||||
|
values.append(response.aggregations['percentiles_'+field]['values']['75.0'])
|
||||||
|
values.append(response.aggregations['extended_stats_'+field]['max'])
|
||||||
|
|
||||||
|
# if not None
|
||||||
|
if (values.count(None) < len(values)):
|
||||||
|
results[field] = values
|
||||||
|
|
||||||
|
df = pd.DataFrame(data=results, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'])
|
||||||
|
|
||||||
|
return df
|
300
eland/mappings.py
Normal file
300
eland/mappings.py
Normal file
@ -0,0 +1,300 @@
|
|||||||
|
import warnings
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class Mappings():
|
||||||
|
"""
|
||||||
|
General purpose to manage Elasticsearch to/from pandas mappings
|
||||||
|
|
||||||
|
Attributes
|
||||||
|
----------
|
||||||
|
|
||||||
|
mappings_capabilities: pandas.DataFrame
|
||||||
|
A data frame summarising the capabilities of the index mapping
|
||||||
|
|
||||||
|
_source - is top level field (i.e. not a multi-field sub-field)
|
||||||
|
es_dtype - Elasticsearch field datatype
|
||||||
|
pd_dtype - Pandas datatype
|
||||||
|
searchable - is the field searchable?
|
||||||
|
aggregatable- is the field aggregatable?
|
||||||
|
_source es_dtype pd_dtype searchable aggregatable
|
||||||
|
maps-telemetry.min True long int64 True True
|
||||||
|
maps-telemetry.avg True float float64 True True
|
||||||
|
city True text object True False
|
||||||
|
user_name True keyword object True True
|
||||||
|
origin_location.lat.keyword False keyword object True True
|
||||||
|
type True keyword object True True
|
||||||
|
origin_location.lat True text object True False
|
||||||
|
|
||||||
|
"""
|
||||||
|
def __init__(self, client, index_pattern):
|
||||||
|
"""
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
client: eland.Client
|
||||||
|
Elasticsearch client
|
||||||
|
|
||||||
|
index_pattern: str
|
||||||
|
Elasticsearch index pattern
|
||||||
|
"""
|
||||||
|
# persist index_pattern for debugging
|
||||||
|
self.index_pattern = index_pattern
|
||||||
|
|
||||||
|
mappings = client.indices().get_mapping(index=index_pattern)
|
||||||
|
|
||||||
|
# Get all fields (including all nested) and then field_caps
|
||||||
|
# for these names (fields=* doesn't appear to work effectively...)
|
||||||
|
all_fields = Mappings._extract_fields_from_mapping(mappings)
|
||||||
|
all_fields_caps = client.field_caps(index=index_pattern, fields=list(all_fields.keys()))
|
||||||
|
|
||||||
|
# Get top level (not sub-field multifield) mappings
|
||||||
|
source_fields = Mappings._extract_fields_from_mapping(mappings, source_only=True)
|
||||||
|
|
||||||
|
# Populate capability matrix of fields
|
||||||
|
# field_name, es_dtype, pd_dtype, is_searchable, is_aggregtable, is_source
|
||||||
|
self.mappings_capabilities = Mappings._create_capability_matrix(all_fields, source_fields, all_fields_caps)
|
||||||
|
|
||||||
|
# Cache source field types for efficient lookup
|
||||||
|
# (this massively improves performance of DataFrame.flatten)
|
||||||
|
self.source_field_pd_dtypes = {}
|
||||||
|
|
||||||
|
for field_name in source_fields:
|
||||||
|
pd_dtype = self.mappings_capabilities.loc[field_name]['pd_dtype']
|
||||||
|
self.source_field_pd_dtypes[field_name] = pd_dtype
|
||||||
|
|
||||||
|
def _extract_fields_from_mapping(mappings, source_only=False):
|
||||||
|
"""
|
||||||
|
Extract all field names and types from a mapping.
|
||||||
|
```
|
||||||
|
{
|
||||||
|
"my_index": {
|
||||||
|
"mappings": {
|
||||||
|
"properties": {
|
||||||
|
"city": {
|
||||||
|
"type": "text",
|
||||||
|
"fields": {
|
||||||
|
"keyword": {
|
||||||
|
"type": "keyword"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
if source_only == False:
|
||||||
|
return {'city': 'text', 'city.keyword': 'keyword'}
|
||||||
|
else:
|
||||||
|
return {'city': 'text'}
|
||||||
|
|
||||||
|
Note: first field name type wins. E.g.
|
||||||
|
|
||||||
|
```
|
||||||
|
PUT my_index1 {"mappings":{"properties":{"city":{"type":"text"}}}}
|
||||||
|
PUT my_index2 {"mappings":{"properties":{"city":{"type":"long"}}}}
|
||||||
|
|
||||||
|
Returns {'city': 'text'}
|
||||||
|
```
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
mappings: dict
|
||||||
|
Return from get_mapping
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
fields: dict
|
||||||
|
Dict of field names and types
|
||||||
|
|
||||||
|
"""
|
||||||
|
fields = {}
|
||||||
|
|
||||||
|
# Recurse until we get a 'type: xxx'
|
||||||
|
def flatten(x, name=''):
|
||||||
|
if type(x) is dict:
|
||||||
|
for a in x:
|
||||||
|
if a == 'type' and type(x[a]) is str: # 'type' can be a name of a field
|
||||||
|
field_name = name[:-1]
|
||||||
|
field_type = x[a]
|
||||||
|
|
||||||
|
# If there is a conflicting type, warn - first values added wins
|
||||||
|
if field_name in fields and fields[field_name] != field_type:
|
||||||
|
warnings.warn("Field {} has conflicting types {} != {}".
|
||||||
|
format(field_name, fields[field_name], field_type),
|
||||||
|
UserWarning)
|
||||||
|
else:
|
||||||
|
fields[field_name] = field_type
|
||||||
|
elif a == 'properties' or (not source_only and a == 'fields'):
|
||||||
|
flatten(x[a], name)
|
||||||
|
elif not (source_only and a == 'fields'): # ignore multi-field fields for source_only
|
||||||
|
flatten(x[a], name + a + '.')
|
||||||
|
|
||||||
|
for index in mappings:
|
||||||
|
if 'properties' in mappings[index]['mappings']:
|
||||||
|
properties = mappings[index]['mappings']['properties']
|
||||||
|
|
||||||
|
flatten(properties)
|
||||||
|
|
||||||
|
return fields
|
||||||
|
|
||||||
|
def _create_capability_matrix(all_fields, source_fields, all_fields_caps):
|
||||||
|
"""
|
||||||
|
{
|
||||||
|
"fields": {
|
||||||
|
"rating": {
|
||||||
|
"long": {
|
||||||
|
"searchable": true,
|
||||||
|
"aggregatable": false,
|
||||||
|
"indices": ["index1", "index2"],
|
||||||
|
"non_aggregatable_indices": ["index1"]
|
||||||
|
},
|
||||||
|
"keyword": {
|
||||||
|
"searchable": false,
|
||||||
|
"aggregatable": true,
|
||||||
|
"indices": ["index3", "index4"],
|
||||||
|
"non_searchable_indices": ["index4"]
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"title": {
|
||||||
|
"text": {
|
||||||
|
"searchable": true,
|
||||||
|
"aggregatable": false
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
all_fields_caps_fields = all_fields_caps['fields']
|
||||||
|
|
||||||
|
columns = ['_source', 'es_dtype', 'pd_dtype', 'searchable', 'aggregatable']
|
||||||
|
capability_matrix = {}
|
||||||
|
|
||||||
|
for field, field_caps in all_fields_caps_fields.items():
|
||||||
|
if field in all_fields:
|
||||||
|
# v = {'long': {'type': 'long', 'searchable': True, 'aggregatable': True}}
|
||||||
|
for kk, vv in field_caps.items():
|
||||||
|
_source = (field in source_fields)
|
||||||
|
es_dtype = vv['type']
|
||||||
|
pd_dtype = Mappings._es_dtype_to_pd_dtype(vv['type'])
|
||||||
|
searchable = vv['searchable']
|
||||||
|
aggregatable = vv['aggregatable']
|
||||||
|
|
||||||
|
caps = [_source, es_dtype, pd_dtype, searchable, aggregatable]
|
||||||
|
|
||||||
|
capability_matrix[field] = caps
|
||||||
|
|
||||||
|
if 'non_aggregatable_indices' in vv:
|
||||||
|
warnings.warn("Field {} has conflicting aggregatable fields across indexes {}",
|
||||||
|
format(field_name, vv['non_aggregatable_indices']),
|
||||||
|
UserWarning)
|
||||||
|
if 'non_searchable_indices' in vv:
|
||||||
|
warnings.warn("Field {} has conflicting searchable fields across indexes {}",
|
||||||
|
format(field_name, vv['non_searchable_indices']),
|
||||||
|
UserWarning)
|
||||||
|
|
||||||
|
capability_matrix_df = pd.DataFrame.from_dict(capability_matrix, orient='index', columns=columns)
|
||||||
|
|
||||||
|
return capability_matrix_df.sort_index()
|
||||||
|
|
||||||
|
def _es_dtype_to_pd_dtype(es_dtype):
|
||||||
|
"""
|
||||||
|
Mapping Elasticsearch types to pandas dtypes
|
||||||
|
--------------------------------------------
|
||||||
|
|
||||||
|
Elasticsearch field datatype | Pandas dtype
|
||||||
|
--
|
||||||
|
text | object
|
||||||
|
keyword | object
|
||||||
|
long, integer, short, byte, binary | int64
|
||||||
|
double, float, half_float, scaled_float | float64
|
||||||
|
date, date_nanos | datetime64
|
||||||
|
boolean | bool
|
||||||
|
TODO - add additional mapping types
|
||||||
|
"""
|
||||||
|
es_dtype_to_pd_dtype = {
|
||||||
|
'text': 'object',
|
||||||
|
'keyword': 'object',
|
||||||
|
|
||||||
|
'long': 'int64',
|
||||||
|
'integer': 'int64',
|
||||||
|
'short': 'int64',
|
||||||
|
'byte': 'int64',
|
||||||
|
'binary': 'int64',
|
||||||
|
|
||||||
|
'double': 'float64',
|
||||||
|
'float': 'float64',
|
||||||
|
'half_float': 'float64',
|
||||||
|
'scaled_float': 'float64',
|
||||||
|
|
||||||
|
'date': 'datetime64[ns]',
|
||||||
|
'date_nanos': 'datetime64[ns]',
|
||||||
|
|
||||||
|
'boolean': 'bool'
|
||||||
|
}
|
||||||
|
|
||||||
|
if es_dtype in es_dtype_to_pd_dtype:
|
||||||
|
return es_dtype_to_pd_dtype[es_dtype]
|
||||||
|
|
||||||
|
# Return 'object' for all unsupported TODO - investigate how different types could be supported
|
||||||
|
return 'object'
|
||||||
|
|
||||||
|
def all_fields(self):
|
||||||
|
"""
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
all_fields: list
|
||||||
|
All typed fields in the index mapping
|
||||||
|
"""
|
||||||
|
return self.mappings_capabilities.index.tolist()
|
||||||
|
|
||||||
|
"""
|
||||||
|
def pd_dtypes_groupby_source_fields(self):
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
groups: dict
|
||||||
|
Calls pandas.core.groupby.GroupBy.groups for _source fields
|
||||||
|
E.g.
|
||||||
|
{
|
||||||
|
'bool': Index(['Cancelled', 'FlightDelay'], dtype='object'),
|
||||||
|
'datetime64[ns]': Index(['timestamp'], dtype='object'),
|
||||||
|
'float64': Index(['AvgTicketPrice', 'DistanceKilometers', 'DistanceMiles',...
|
||||||
|
}
|
||||||
|
return self.mappings_capabilities[self.mappings_capabilities._source == True].groupby('pd_dtype').groups
|
||||||
|
|
||||||
|
def pd_dtype
|
||||||
|
"""
|
||||||
|
|
||||||
|
def is_source_field(self, field_name):
|
||||||
|
"""
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
field_name: str
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
is_source_field: bool
|
||||||
|
Is this field name a top-level source field?
|
||||||
|
pd_dtype: str
|
||||||
|
The pandas data type we map to
|
||||||
|
"""
|
||||||
|
pd_dtype = 'object'
|
||||||
|
is_source_field = False
|
||||||
|
|
||||||
|
if field_name in self.source_field_pd_dtypes:
|
||||||
|
is_source_field = True
|
||||||
|
pd_dtype = self.source_field_pd_dtypes[field_name]
|
||||||
|
|
||||||
|
return is_source_field, pd_dtype
|
||||||
|
|
||||||
|
def numeric_source_fields(self):
|
||||||
|
"""
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
numeric_source_fields: list of str
|
||||||
|
List of source fields where pd_dtype == (int64 or float64)
|
||||||
|
"""
|
||||||
|
return self.mappings_capabilities[(self.mappings_capabilities._source == True) &
|
||||||
|
((self.mappings_capabilities.pd_dtype == 'int64') |
|
||||||
|
(self.mappings_capabilities.pd_dtype == 'float64'))].index.tolist()
|
||||||
|
|
481
eland/tests/__init__.py
Normal file
481
eland/tests/__init__.py
Normal file
@ -0,0 +1,481 @@
|
|||||||
|
import os
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
|
||||||
|
# Define test files and indices
|
||||||
|
ELASTICSEARCH_HOST = 'localhost' # TODO externalise this
|
||||||
|
|
||||||
|
FLIGHTS_INDEX_NAME = 'flights'
|
||||||
|
FLIGHTS_MAPPING = { "mappings" : {
|
||||||
|
"properties" : {
|
||||||
|
"AvgTicketPrice" : {
|
||||||
|
"type" : "float"
|
||||||
|
},
|
||||||
|
"Cancelled" : {
|
||||||
|
"type" : "boolean"
|
||||||
|
},
|
||||||
|
"Carrier" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"Dest" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"DestAirportID" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"DestCityName" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"DestCountry" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"DestLocation" : {
|
||||||
|
"type" : "geo_point"
|
||||||
|
},
|
||||||
|
"DestRegion" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"DestWeather" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"DistanceKilometers" : {
|
||||||
|
"type" : "float"
|
||||||
|
},
|
||||||
|
"DistanceMiles" : {
|
||||||
|
"type" : "float"
|
||||||
|
},
|
||||||
|
"FlightDelay" : {
|
||||||
|
"type" : "boolean"
|
||||||
|
},
|
||||||
|
"FlightDelayMin" : {
|
||||||
|
"type" : "integer"
|
||||||
|
},
|
||||||
|
"FlightDelayType" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"FlightNum" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"FlightTimeHour" : {
|
||||||
|
"type" : "float"
|
||||||
|
},
|
||||||
|
"FlightTimeMin" : {
|
||||||
|
"type" : "float"
|
||||||
|
},
|
||||||
|
"Origin" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"OriginAirportID" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"OriginCityName" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"OriginCountry" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"OriginLocation" : {
|
||||||
|
"type" : "geo_point"
|
||||||
|
},
|
||||||
|
"OriginRegion" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"OriginWeather" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"dayOfWeek" : {
|
||||||
|
"type" : "integer"
|
||||||
|
},
|
||||||
|
"timestamp" : {
|
||||||
|
"type" : "date"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} }
|
||||||
|
FLIGHTS_FILE_NAME = ROOT_DIR + '/flights.json.gz'
|
||||||
|
FLIGHTS_DF_FILE_NAME = ROOT_DIR + '/flights_df.json.gz'
|
||||||
|
|
||||||
|
ECOMMERCE_INDEX_NAME = 'ecommerce'
|
||||||
|
ECOMMERCE_MAPPING = { "mappings" : {
|
||||||
|
"properties" : {
|
||||||
|
"category" : {
|
||||||
|
"type" : "text",
|
||||||
|
"fields" : {
|
||||||
|
"keyword" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"currency" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"customer_birth_date" : {
|
||||||
|
"type" : "date"
|
||||||
|
},
|
||||||
|
"customer_first_name" : {
|
||||||
|
"type" : "text",
|
||||||
|
"fields" : {
|
||||||
|
"keyword" : {
|
||||||
|
"type" : "keyword",
|
||||||
|
"ignore_above" : 256
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"customer_full_name" : {
|
||||||
|
"type" : "text",
|
||||||
|
"fields" : {
|
||||||
|
"keyword" : {
|
||||||
|
"type" : "keyword",
|
||||||
|
"ignore_above" : 256
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"customer_gender" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"customer_id" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"customer_last_name" : {
|
||||||
|
"type" : "text",
|
||||||
|
"fields" : {
|
||||||
|
"keyword" : {
|
||||||
|
"type" : "keyword",
|
||||||
|
"ignore_above" : 256
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"customer_phone" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"day_of_week" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"day_of_week_i" : {
|
||||||
|
"type" : "integer"
|
||||||
|
},
|
||||||
|
"email" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"geoip" : {
|
||||||
|
"properties" : {
|
||||||
|
"city_name" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"continent_name" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"country_iso_code" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"location" : {
|
||||||
|
"type" : "geo_point"
|
||||||
|
},
|
||||||
|
"region_name" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"manufacturer" : {
|
||||||
|
"type" : "text",
|
||||||
|
"fields" : {
|
||||||
|
"keyword" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"order_date" : {
|
||||||
|
"type" : "date"
|
||||||
|
},
|
||||||
|
"order_id" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"products" : {
|
||||||
|
"properties" : {
|
||||||
|
"_id" : {
|
||||||
|
"type" : "text",
|
||||||
|
"fields" : {
|
||||||
|
"keyword" : {
|
||||||
|
"type" : "keyword",
|
||||||
|
"ignore_above" : 256
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"base_price" : {
|
||||||
|
"type" : "half_float"
|
||||||
|
},
|
||||||
|
"base_unit_price" : {
|
||||||
|
"type" : "half_float"
|
||||||
|
},
|
||||||
|
"category" : {
|
||||||
|
"type" : "text",
|
||||||
|
"fields" : {
|
||||||
|
"keyword" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"created_on" : {
|
||||||
|
"type" : "date"
|
||||||
|
},
|
||||||
|
"discount_amount" : {
|
||||||
|
"type" : "half_float"
|
||||||
|
},
|
||||||
|
"discount_percentage" : {
|
||||||
|
"type" : "half_float"
|
||||||
|
},
|
||||||
|
"manufacturer" : {
|
||||||
|
"type" : "text",
|
||||||
|
"fields" : {
|
||||||
|
"keyword" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"min_price" : {
|
||||||
|
"type" : "half_float"
|
||||||
|
},
|
||||||
|
"price" : {
|
||||||
|
"type" : "half_float"
|
||||||
|
},
|
||||||
|
"product_id" : {
|
||||||
|
"type" : "long"
|
||||||
|
},
|
||||||
|
"product_name" : {
|
||||||
|
"type" : "text",
|
||||||
|
"fields" : {
|
||||||
|
"keyword" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"analyzer" : "english"
|
||||||
|
},
|
||||||
|
"quantity" : {
|
||||||
|
"type" : "integer"
|
||||||
|
},
|
||||||
|
"sku" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"tax_amount" : {
|
||||||
|
"type" : "half_float"
|
||||||
|
},
|
||||||
|
"taxful_price" : {
|
||||||
|
"type" : "half_float"
|
||||||
|
},
|
||||||
|
"taxless_price" : {
|
||||||
|
"type" : "half_float"
|
||||||
|
},
|
||||||
|
"unit_discount_amount" : {
|
||||||
|
"type" : "half_float"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"sku" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"taxful_total_price" : {
|
||||||
|
"type" : "half_float"
|
||||||
|
},
|
||||||
|
"taxless_total_price" : {
|
||||||
|
"type" : "half_float"
|
||||||
|
},
|
||||||
|
"total_quantity" : {
|
||||||
|
"type" : "integer"
|
||||||
|
},
|
||||||
|
"total_unique_products" : {
|
||||||
|
"type" : "integer"
|
||||||
|
},
|
||||||
|
"type" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
},
|
||||||
|
"user" : {
|
||||||
|
"type" : "keyword"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} }
|
||||||
|
ECOMMERCE_FILE_NAME = ROOT_DIR + '/ecommerce.json.gz'
|
||||||
|
ECOMMERCE_DF_FILE_NAME = ROOT_DIR + '/ecommerce_df.json.gz'
|
||||||
|
|
||||||
|
TEST_MAPPING1 = {
|
||||||
|
'mappings': {
|
||||||
|
'properties': {
|
||||||
|
'city': {
|
||||||
|
'type': 'text',
|
||||||
|
'fields': {
|
||||||
|
'raw': {
|
||||||
|
'type': 'keyword'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
'text': {
|
||||||
|
'type': 'text',
|
||||||
|
'fields': {
|
||||||
|
'english': {
|
||||||
|
'type': 'text',
|
||||||
|
'analyzer': 'english'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
'origin_location': {
|
||||||
|
'properties': {
|
||||||
|
'lat': {
|
||||||
|
'type': 'text',
|
||||||
|
'index_prefixes': {},
|
||||||
|
'fields': {
|
||||||
|
'keyword': {
|
||||||
|
'type': 'keyword',
|
||||||
|
'ignore_above': 256
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
'lon': {
|
||||||
|
'type': 'text',
|
||||||
|
'fields': {
|
||||||
|
'keyword': {
|
||||||
|
'type': 'keyword',
|
||||||
|
'ignore_above': 256
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
'maps-telemetry': {
|
||||||
|
'properties': {
|
||||||
|
'attributesPerMap': {
|
||||||
|
'properties': {
|
||||||
|
'dataSourcesCount': {
|
||||||
|
'properties': {
|
||||||
|
'avg': {
|
||||||
|
'type': 'long'
|
||||||
|
},
|
||||||
|
'max': {
|
||||||
|
'type': 'long'
|
||||||
|
},
|
||||||
|
'min': {
|
||||||
|
'type': 'long'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
'emsVectorLayersCount': {
|
||||||
|
'dynamic': 'true',
|
||||||
|
'properties': {
|
||||||
|
'france_departments': {
|
||||||
|
'properties': {
|
||||||
|
'avg': {
|
||||||
|
'type': 'float'
|
||||||
|
},
|
||||||
|
'max': {
|
||||||
|
'type': 'long'
|
||||||
|
},
|
||||||
|
'min': {
|
||||||
|
'type': 'long'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
'type': {
|
||||||
|
'type': 'keyword'
|
||||||
|
},
|
||||||
|
'name': {
|
||||||
|
'type': 'text'
|
||||||
|
},
|
||||||
|
'user_name': {
|
||||||
|
'type': 'keyword'
|
||||||
|
},
|
||||||
|
'email': {
|
||||||
|
'type': 'keyword'
|
||||||
|
},
|
||||||
|
'content': {
|
||||||
|
'type': 'text'
|
||||||
|
},
|
||||||
|
'tweeted_at': {
|
||||||
|
'type': 'date'
|
||||||
|
},
|
||||||
|
'dest_location': {
|
||||||
|
'type': 'geo_point'
|
||||||
|
},
|
||||||
|
'my_join_field': {
|
||||||
|
'type': 'join',
|
||||||
|
'relations': {
|
||||||
|
'question': ['answer', 'comment'],
|
||||||
|
'answer': 'vote'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_MAPPING1_INDEX_NAME = 'mapping1'
|
||||||
|
|
||||||
|
TEST_MAPPING1_EXPECTED = {
|
||||||
|
'city': 'text',
|
||||||
|
'city.raw': 'keyword',
|
||||||
|
'content': 'text',
|
||||||
|
'dest_location': 'geo_point',
|
||||||
|
'email': 'keyword',
|
||||||
|
'maps-telemetry.attributesPerMap.dataSourcesCount.avg': 'long',
|
||||||
|
'maps-telemetry.attributesPerMap.dataSourcesCount.max': 'long',
|
||||||
|
'maps-telemetry.attributesPerMap.dataSourcesCount.min': 'long',
|
||||||
|
'maps-telemetry.attributesPerMap.emsVectorLayersCount.france_departments.avg': 'float',
|
||||||
|
'maps-telemetry.attributesPerMap.emsVectorLayersCount.france_departments.max': 'long',
|
||||||
|
'maps-telemetry.attributesPerMap.emsVectorLayersCount.france_departments.min': 'long',
|
||||||
|
'my_join_field': 'join',
|
||||||
|
'name': 'text',
|
||||||
|
'origin_location.lat': 'text',
|
||||||
|
'origin_location.lat.keyword': 'keyword',
|
||||||
|
'origin_location.lon': 'text',
|
||||||
|
'origin_location.lon.keyword': 'keyword',
|
||||||
|
'text': 'text',
|
||||||
|
'text.english': 'text',
|
||||||
|
'tweeted_at': 'date',
|
||||||
|
'type': 'keyword',
|
||||||
|
'user_name': 'keyword'
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_MAPPING1_EXPECTED_DF = pd.DataFrame.from_dict(data=TEST_MAPPING1_EXPECTED, orient='index', columns=['es_dtype'])
|
||||||
|
|
||||||
|
TEST_NESTED_USER_GROUP_INDEX_NAME = 'nested_user_group'
|
||||||
|
TEST_NESTED_USER_GROUP_MAPPING = {
|
||||||
|
'mappings': {
|
||||||
|
'properties': {
|
||||||
|
'group': {
|
||||||
|
'type': 'keyword'
|
||||||
|
},
|
||||||
|
'user': {
|
||||||
|
'properties': {
|
||||||
|
'first': {
|
||||||
|
'type': 'keyword'
|
||||||
|
},
|
||||||
|
'last': {
|
||||||
|
'type': 'keyword'
|
||||||
|
},
|
||||||
|
'address' : {
|
||||||
|
'type' : 'keyword'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_NESTED_USER_GROUP_DOCS = [
|
||||||
|
{'_index':TEST_NESTED_USER_GROUP_INDEX_NAME,
|
||||||
|
'_source':
|
||||||
|
{'group':'amsterdam','user':[
|
||||||
|
{'first':'Manke','last':'Nelis','address':['Elandsgracht', 'Amsterdam']},
|
||||||
|
{'first':'Johnny','last':'Jordaan','address':['Elandsstraat', 'Amsterdam']}]}},
|
||||||
|
{'_index':TEST_NESTED_USER_GROUP_INDEX_NAME,
|
||||||
|
'_source':
|
||||||
|
{'group':'london','user':[
|
||||||
|
{'first':'Alice','last':'Monkton'},
|
||||||
|
{'first':'Jimmy','last':'White','address':['London']}]}},
|
||||||
|
{'_index':TEST_NESTED_USER_GROUP_INDEX_NAME,
|
||||||
|
'_source':{'group':'new york','user':[
|
||||||
|
{'first':'Bill','last':'Jones'}]}}
|
||||||
|
]
|
||||||
|
|
0
eland/tests/client/__init__.py
Normal file
0
eland/tests/client/__init__.py
Normal file
22
eland/tests/client/test_mappings_pytest.py
Normal file
22
eland/tests/client/test_mappings_pytest.py
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
# File called _pytest for PyCharm compatability
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from eland.tests import *
|
||||||
|
|
||||||
|
from pandas.util.testing import (
|
||||||
|
assert_almost_equal, assert_frame_equal, assert_series_equal)
|
||||||
|
|
||||||
|
import eland as ed
|
||||||
|
|
||||||
|
class TestMapping():
|
||||||
|
|
||||||
|
# Requires 'setup_tests.py' to be run prior to this
|
||||||
|
def test_mapping(self):
|
||||||
|
mapping = ed.Mappings(ed.Client(ELASTICSEARCH_HOST), TEST_MAPPING1_INDEX_NAME)
|
||||||
|
|
||||||
|
assert mapping.all_fields() == TEST_MAPPING1_EXPECTED_DF.index.tolist()
|
||||||
|
|
||||||
|
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mapping.mappings_capabilities['es_dtype']))
|
||||||
|
|
||||||
|
|
||||||
|
|
BIN
eland/tests/ecommerce.json.gz
Normal file
BIN
eland/tests/ecommerce.json.gz
Normal file
Binary file not shown.
BIN
eland/tests/ecommerce_df.json.gz
Normal file
BIN
eland/tests/ecommerce_df.json.gz
Normal file
Binary file not shown.
Binary file not shown.
BIN
eland/tests/flights_df.json.gz
Normal file
BIN
eland/tests/flights_df.json.gz
Normal file
Binary file not shown.
0
eland/tests/frame/__init__.py
Normal file
0
eland/tests/frame/__init__.py
Normal file
40
eland/tests/frame/common.py
Normal file
40
eland/tests/frame/common.py
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
import pytest
|
||||||
|
|
||||||
|
import eland as ed
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
|
||||||
|
# Create pandas and eland data frames
|
||||||
|
from eland.tests import ELASTICSEARCH_HOST
|
||||||
|
from eland.tests import FLIGHTS_DF_FILE_NAME, FLIGHTS_INDEX_NAME,\
|
||||||
|
ECOMMERCE_DF_FILE_NAME, ECOMMERCE_INDEX_NAME
|
||||||
|
|
||||||
|
_pd_flights = pd.read_json(FLIGHTS_DF_FILE_NAME).sort_index()
|
||||||
|
_pd_flights['timestamp'] = \
|
||||||
|
pd.to_datetime(_pd_flights['timestamp'])
|
||||||
|
_ed_flights = ed.read_es(ELASTICSEARCH_HOST, FLIGHTS_INDEX_NAME)
|
||||||
|
|
||||||
|
_pd_ecommerce = pd.read_json(ECOMMERCE_DF_FILE_NAME).sort_index()
|
||||||
|
_pd_ecommerce['order_date'] = \
|
||||||
|
pd.to_datetime(_pd_ecommerce['order_date'])
|
||||||
|
_pd_ecommerce['products.created_on'] = \
|
||||||
|
_pd_ecommerce['products.created_on'].apply(lambda x: pd.to_datetime(x))
|
||||||
|
_ed_ecommerce = ed.read_es(ELASTICSEARCH_HOST, ECOMMERCE_INDEX_NAME)
|
||||||
|
|
||||||
|
class TestData:
|
||||||
|
|
||||||
|
def pd_flights(self):
|
||||||
|
return _pd_flights
|
||||||
|
|
||||||
|
def ed_flights(self):
|
||||||
|
return _ed_flights
|
||||||
|
|
||||||
|
def pd_ecommerce(self):
|
||||||
|
return _pd_ecommerce
|
||||||
|
|
||||||
|
def ed_ecommerce(self):
|
||||||
|
return _ed_ecommerce
|
54
eland/tests/frame/test_indexing_pytest.py
Normal file
54
eland/tests/frame/test_indexing_pytest.py
Normal file
@ -0,0 +1,54 @@
|
|||||||
|
# File called _pytest for PyCharm compatability
|
||||||
|
from eland.tests.frame.common import TestData
|
||||||
|
from eland.tests import *
|
||||||
|
|
||||||
|
import eland as ed
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
from pandas.util.testing import (
|
||||||
|
assert_almost_equal, assert_frame_equal, assert_series_equal)
|
||||||
|
|
||||||
|
class TestDataFrameIndexing(TestData):
|
||||||
|
|
||||||
|
def test_mapping(self):
|
||||||
|
ed_flights_mappings = pd.DataFrame(self.ed_flights().mappings.mappings_capabilities
|
||||||
|
[self.ed_flights().mappings.mappings_capabilities._source==True]
|
||||||
|
['pd_dtype'])
|
||||||
|
pd_flights_mappings = pd.DataFrame(self.pd_flights().dtypes, columns = ['pd_dtype'])
|
||||||
|
|
||||||
|
assert_frame_equal(pd_flights_mappings, ed_flights_mappings)
|
||||||
|
|
||||||
|
# We don't compare ecommerce here as the default dtypes in pandas from read_json
|
||||||
|
# don't match the mapping types. This is mainly because the products field is
|
||||||
|
# nested and so can be treated as a multi-field in ES, but not in pandas
|
||||||
|
|
||||||
|
def test_head(self):
|
||||||
|
pd_flights_head = self.pd_flights().head()
|
||||||
|
ed_flights_head = self.ed_flights().head()
|
||||||
|
|
||||||
|
assert_frame_equal(pd_flights_head, ed_flights_head)
|
||||||
|
|
||||||
|
pd_ecommerce_head = self.pd_ecommerce().head()
|
||||||
|
ed_ecommerce_head = self.ed_ecommerce().head()
|
||||||
|
|
||||||
|
assert_frame_equal(pd_ecommerce_head, ed_ecommerce_head)
|
||||||
|
|
||||||
|
def test_describe(self):
|
||||||
|
pd_flights_describe = self.pd_flights().describe()
|
||||||
|
ed_flights_describe = self.ed_flights().describe()
|
||||||
|
|
||||||
|
# TODO - this fails now as ES aggregations are approximate
|
||||||
|
# if ES percentile agg uses
|
||||||
|
# "hdr": {
|
||||||
|
# "number_of_significant_value_digits": 3
|
||||||
|
# }
|
||||||
|
# this works
|
||||||
|
#assert_almost_equal(pd_flights_describe, ed_flights_describe)
|
||||||
|
|
||||||
|
pd_ecommerce_describe = self.pd_ecommerce().describe()
|
||||||
|
ed_ecommerce_describe = self.ed_ecommerce().describe()
|
||||||
|
|
||||||
|
# We don't compare ecommerce here as the default dtypes in pandas from read_json
|
||||||
|
# don't match the mapping types. This is mainly because the products field is
|
||||||
|
# nested and so can be treated as a multi-field in ES, but not in pandas
|
||||||
|
|
68
eland/tests/setup_tests.py
Normal file
68
eland/tests/setup_tests.py
Normal file
@ -0,0 +1,68 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from elasticsearch import Elasticsearch
|
||||||
|
from elasticsearch import helpers
|
||||||
|
|
||||||
|
from eland.tests import *
|
||||||
|
|
||||||
|
DATA_LIST = [
|
||||||
|
(FLIGHTS_FILE_NAME, FLIGHTS_INDEX_NAME, FLIGHTS_MAPPING),
|
||||||
|
(ECOMMERCE_FILE_NAME, ECOMMERCE_INDEX_NAME, ECOMMERCE_MAPPING)
|
||||||
|
]
|
||||||
|
|
||||||
|
def _setup_data(es):
|
||||||
|
# Read json file and index records into Elasticsearch
|
||||||
|
for data in DATA_LIST:
|
||||||
|
json_file_name = data[0]
|
||||||
|
index_name = data[1]
|
||||||
|
mapping = data[2]
|
||||||
|
|
||||||
|
# Delete index
|
||||||
|
print("Deleting index:", index_name)
|
||||||
|
es.indices.delete(index=index_name, ignore=[400, 404])
|
||||||
|
print("Creating index:", index_name)
|
||||||
|
es.indices.create(index=index_name, body=mapping)
|
||||||
|
|
||||||
|
df = pd.read_json(json_file_name, lines=True)
|
||||||
|
|
||||||
|
actions = []
|
||||||
|
n = 0
|
||||||
|
|
||||||
|
print("Adding", df.shape[0], "items to index:", index_name)
|
||||||
|
for index, row in df.iterrows():
|
||||||
|
values = row.to_dict()
|
||||||
|
# make timestamp datetime 2018-01-01T12:09:35
|
||||||
|
#values['timestamp'] = datetime.strptime(values['timestamp'], '%Y-%m-%dT%H:%M:%S')
|
||||||
|
|
||||||
|
action = {'_index': index_name, '_source': values}
|
||||||
|
|
||||||
|
actions.append(action)
|
||||||
|
|
||||||
|
n = n + 1
|
||||||
|
|
||||||
|
if n % 10000 == 0:
|
||||||
|
helpers.bulk(es, actions)
|
||||||
|
actions = []
|
||||||
|
|
||||||
|
helpers.bulk(es, actions)
|
||||||
|
actions = []
|
||||||
|
|
||||||
|
print("Done", index_name)
|
||||||
|
|
||||||
|
def _setup_test_mappings(es):
|
||||||
|
# Create a complex mapping containing many Elasticsearch features
|
||||||
|
es.indices.delete(index=TEST_MAPPING1_INDEX_NAME, ignore=[400, 404])
|
||||||
|
es.indices.create(index=TEST_MAPPING1_INDEX_NAME, body=TEST_MAPPING1)
|
||||||
|
|
||||||
|
def _setup_test_nested(es):
|
||||||
|
es.indices.delete(index=TEST_NESTED_USER_GROUP_INDEX_NAME, ignore=[400, 404])
|
||||||
|
es.indices.create(index=TEST_NESTED_USER_GROUP_INDEX_NAME, body=TEST_NESTED_USER_GROUP_MAPPING)
|
||||||
|
|
||||||
|
helpers.bulk(es, TEST_NESTED_USER_GROUP_DOCS)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Create connection to Elasticsearch - use defaults
|
||||||
|
es = Elasticsearch(ELASTICSEARCH_HOST)
|
||||||
|
|
||||||
|
_setup_data(es)
|
||||||
|
_setup_test_mappings(es)
|
||||||
|
_setup_test_nested(es)
|
@ -10,7 +10,11 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 1,
|
"execution_count": 1,
|
||||||
"metadata": {},
|
"metadata": {
|
||||||
|
"pycharm": {
|
||||||
|
"is_executing": false
|
||||||
|
}
|
||||||
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import pandas as pd"
|
"import pandas as pd"
|
||||||
@ -442,7 +446,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"ed_df = ed.read_es('localhost', 'kibana_sample_data_flights')"
|
"ed_df = ed.read_es('localhost', 'flights')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -519,7 +523,7 @@
|
|||||||
" <td>DE-HE</td>\n",
|
" <td>DE-HE</td>\n",
|
||||||
" <td>Sunny</td>\n",
|
" <td>Sunny</td>\n",
|
||||||
" <td>0</td>\n",
|
" <td>0</td>\n",
|
||||||
" <td>2019-05-27T00:00:00</td>\n",
|
" <td>2018-01-01 00:00:00</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>1</th>\n",
|
" <th>1</th>\n",
|
||||||
@ -543,7 +547,7 @@
|
|||||||
" <td>SE-BD</td>\n",
|
" <td>SE-BD</td>\n",
|
||||||
" <td>Clear</td>\n",
|
" <td>Clear</td>\n",
|
||||||
" <td>0</td>\n",
|
" <td>0</td>\n",
|
||||||
" <td>2019-05-27T18:27:00</td>\n",
|
" <td>2018-01-01 18:27:00</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>2</th>\n",
|
" <th>2</th>\n",
|
||||||
@ -567,7 +571,7 @@
|
|||||||
" <td>IT-34</td>\n",
|
" <td>IT-34</td>\n",
|
||||||
" <td>Rain</td>\n",
|
" <td>Rain</td>\n",
|
||||||
" <td>0</td>\n",
|
" <td>0</td>\n",
|
||||||
" <td>2019-05-27T17:11:14</td>\n",
|
" <td>2018-01-01 17:11:14</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>3</th>\n",
|
" <th>3</th>\n",
|
||||||
@ -591,7 +595,7 @@
|
|||||||
" <td>IT-72</td>\n",
|
" <td>IT-72</td>\n",
|
||||||
" <td>Thunder & Lightning</td>\n",
|
" <td>Thunder & Lightning</td>\n",
|
||||||
" <td>0</td>\n",
|
" <td>0</td>\n",
|
||||||
" <td>2019-05-27T10:33:28</td>\n",
|
" <td>2018-01-01 10:33:28</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>4</th>\n",
|
" <th>4</th>\n",
|
||||||
@ -615,7 +619,7 @@
|
|||||||
" <td>MX-DIF</td>\n",
|
" <td>MX-DIF</td>\n",
|
||||||
" <td>Damaging Wind</td>\n",
|
" <td>Damaging Wind</td>\n",
|
||||||
" <td>0</td>\n",
|
" <td>0</td>\n",
|
||||||
" <td>2019-05-27T05:13:00</td>\n",
|
" <td>2018-01-01 05:13:00</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" </tbody>\n",
|
" </tbody>\n",
|
||||||
"</table>\n",
|
"</table>\n",
|
||||||
@ -673,11 +677,11 @@
|
|||||||
"4 {'lat': '19.4363', 'lon': '-99.072098'} MX-DIF \n",
|
"4 {'lat': '19.4363', 'lon': '-99.072098'} MX-DIF \n",
|
||||||
"\n",
|
"\n",
|
||||||
" OriginWeather dayOfWeek timestamp \n",
|
" OriginWeather dayOfWeek timestamp \n",
|
||||||
"0 Sunny 0 2019-05-27T00:00:00 \n",
|
"0 Sunny 0 2018-01-01 00:00:00 \n",
|
||||||
"1 Clear 0 2019-05-27T18:27:00 \n",
|
"1 Clear 0 2018-01-01 18:27:00 \n",
|
||||||
"2 Rain 0 2019-05-27T17:11:14 \n",
|
"2 Rain 0 2018-01-01 17:11:14 \n",
|
||||||
"3 Thunder & Lightning 0 2019-05-27T10:33:28 \n",
|
"3 Thunder & Lightning 0 2018-01-01 10:33:28 \n",
|
||||||
"4 Damaging Wind 0 2019-05-27T05:13:00 \n",
|
"4 Damaging Wind 0 2018-01-01 05:13:00 \n",
|
||||||
"\n",
|
"\n",
|
||||||
"[5 rows x 27 columns]"
|
"[5 rows x 27 columns]"
|
||||||
]
|
]
|
||||||
@ -768,12 +772,12 @@
|
|||||||
" <td>2470.545974</td>\n",
|
" <td>2470.545974</td>\n",
|
||||||
" <td>1535.126118</td>\n",
|
" <td>1535.126118</td>\n",
|
||||||
" <td>0.000000</td>\n",
|
" <td>0.000000</td>\n",
|
||||||
" <td>252.064162</td>\n",
|
" <td>251.834931</td>\n",
|
||||||
" <td>1.000000</td>\n",
|
" <td>1.000000</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>50%</th>\n",
|
" <th>50%</th>\n",
|
||||||
" <td>640.387285</td>\n",
|
" <td>640.362667</td>\n",
|
||||||
" <td>7612.072403</td>\n",
|
" <td>7612.072403</td>\n",
|
||||||
" <td>4729.922470</td>\n",
|
" <td>4729.922470</td>\n",
|
||||||
" <td>0.000000</td>\n",
|
" <td>0.000000</td>\n",
|
||||||
@ -782,12 +786,12 @@
|
|||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>75%</th>\n",
|
" <th>75%</th>\n",
|
||||||
" <td>842.259390</td>\n",
|
" <td>842.262193</td>\n",
|
||||||
" <td>9735.660463</td>\n",
|
" <td>9735.210895</td>\n",
|
||||||
" <td>6049.583389</td>\n",
|
" <td>6049.600045</td>\n",
|
||||||
" <td>15.000000</td>\n",
|
" <td>12.521186</td>\n",
|
||||||
" <td>720.505705</td>\n",
|
" <td>720.505705</td>\n",
|
||||||
" <td>4.068000</td>\n",
|
" <td>4.109848</td>\n",
|
||||||
" </tr>\n",
|
" </tr>\n",
|
||||||
" <tr>\n",
|
" <tr>\n",
|
||||||
" <th>max</th>\n",
|
" <th>max</th>\n",
|
||||||
@ -809,8 +813,8 @@
|
|||||||
"std 266.386661 4578.263193 2844.800855 96.743006 \n",
|
"std 266.386661 4578.263193 2844.800855 96.743006 \n",
|
||||||
"min 100.020531 0.000000 0.000000 0.000000 \n",
|
"min 100.020531 0.000000 0.000000 0.000000 \n",
|
||||||
"25% 410.008918 2470.545974 1535.126118 0.000000 \n",
|
"25% 410.008918 2470.545974 1535.126118 0.000000 \n",
|
||||||
"50% 640.387285 7612.072403 4729.922470 0.000000 \n",
|
"50% 640.362667 7612.072403 4729.922470 0.000000 \n",
|
||||||
"75% 842.259390 9735.660463 6049.583389 15.000000 \n",
|
"75% 842.262193 9735.210895 6049.600045 12.521186 \n",
|
||||||
"max 1199.729004 19881.482422 12353.780273 360.000000 \n",
|
"max 1199.729004 19881.482422 12353.780273 360.000000 \n",
|
||||||
"\n",
|
"\n",
|
||||||
" FlightTimeMin dayOfWeek \n",
|
" FlightTimeMin dayOfWeek \n",
|
||||||
@ -818,9 +822,9 @@
|
|||||||
"mean 511.127842 2.835975 \n",
|
"mean 511.127842 2.835975 \n",
|
||||||
"std 334.741135 1.939365 \n",
|
"std 334.741135 1.939365 \n",
|
||||||
"min 0.000000 0.000000 \n",
|
"min 0.000000 0.000000 \n",
|
||||||
"25% 252.064162 1.000000 \n",
|
"25% 251.834931 1.000000 \n",
|
||||||
"50% 503.148975 3.000000 \n",
|
"50% 503.148975 3.000000 \n",
|
||||||
"75% 720.505705 4.068000 \n",
|
"75% 720.505705 4.109848 \n",
|
||||||
"max 1902.901978 6.000000 "
|
"max 1902.901978 6.000000 "
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -832,6 +836,89 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"ed_df.describe()"
|
"ed_df.describe()"
|
||||||
]
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 9,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"d = {'col1': [1.2, 20], 'col2': [int(1), int(30)], 'col3': ['2019-02-01 03:04:05', '2018-02-01 01:03:04'], 'col4': ['2019-02-01 03:04:05', '2018-02-01 01:03:04']}\n",
|
||||||
|
"df = pd.DataFrame(data=d)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 10,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<div>\n",
|
||||||
|
"<style scoped>\n",
|
||||||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||||||
|
" vertical-align: middle;\n",
|
||||||
|
" }\n",
|
||||||
|
"\n",
|
||||||
|
" .dataframe tbody tr th {\n",
|
||||||
|
" vertical-align: top;\n",
|
||||||
|
" }\n",
|
||||||
|
"\n",
|
||||||
|
" .dataframe thead th {\n",
|
||||||
|
" text-align: right;\n",
|
||||||
|
" }\n",
|
||||||
|
"</style>\n",
|
||||||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||||||
|
" <thead>\n",
|
||||||
|
" <tr style=\"text-align: right;\">\n",
|
||||||
|
" <th></th>\n",
|
||||||
|
" <th>col1</th>\n",
|
||||||
|
" <th>col2</th>\n",
|
||||||
|
" <th>col3</th>\n",
|
||||||
|
" <th>col4</th>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" </thead>\n",
|
||||||
|
" <tbody>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>0</th>\n",
|
||||||
|
" <td>1.2</td>\n",
|
||||||
|
" <td>1</td>\n",
|
||||||
|
" <td>2019-02-01 03:04:05</td>\n",
|
||||||
|
" <td>2019-02-01 03:04:05</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>1</th>\n",
|
||||||
|
" <td>20.0</td>\n",
|
||||||
|
" <td>30</td>\n",
|
||||||
|
" <td>2018-02-01 01:03:04</td>\n",
|
||||||
|
" <td>2018-02-01 01:03:04</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" </tbody>\n",
|
||||||
|
"</table>\n",
|
||||||
|
"</div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
" col1 col2 col3 col4\n",
|
||||||
|
"0 1.2 1 2019-02-01 03:04:05 2019-02-01 03:04:05\n",
|
||||||
|
"1 20.0 30 2018-02-01 01:03:04 2018-02-01 01:03:04"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 10,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"df"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
@ -850,7 +937,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.6.8"
|
"version": "3.7.3"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
20
setup.py
Normal file
20
setup.py
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
from setuptools import setup
|
||||||
|
|
||||||
|
def readme():
|
||||||
|
with open('README.rst') as f:
|
||||||
|
return f.read()
|
||||||
|
|
||||||
|
setup(name='eland',
|
||||||
|
version='0.1',
|
||||||
|
description='Python elasticsearch client to analyse, explore and manipulate data that resides in elasticsearch',
|
||||||
|
url='http://github.com/elastic/eland',
|
||||||
|
author='Stephen Dodson',
|
||||||
|
author_email='sjd171@gmail.com',
|
||||||
|
license='ELASTIC LICENSE',
|
||||||
|
packages=['eland'],
|
||||||
|
install_requires=[
|
||||||
|
'elasticsearch',
|
||||||
|
'elasticsearch_dsl',
|
||||||
|
'pandas'
|
||||||
|
],
|
||||||
|
zip_safe=False)
|
Loading…
x
Reference in New Issue
Block a user