[docs] Migrate docs from AsciiDoc to Markdown (#762)

Co-authored-by: István Zoltán Szabó <szabosteve@gmail.com>
This commit is contained in:
Colleen McGinnis 2025-02-26 10:48:16 -06:00 committed by GitHub
parent 6692251d9e
commit ca64672fd7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 760 additions and 322 deletions

485
docs/docset.yml Normal file
View File

@ -0,0 +1,485 @@
project: 'Eland Python client'
cross_links:
- docs-content
toc:
- toc: reference
subs:
ref: "https://www.elastic.co/guide/en/elasticsearch/reference/current"
ref-bare: "https://www.elastic.co/guide/en/elasticsearch/reference"
ref-8x: "https://www.elastic.co/guide/en/elasticsearch/reference/8.1"
ref-80: "https://www.elastic.co/guide/en/elasticsearch/reference/8.0"
ref-7x: "https://www.elastic.co/guide/en/elasticsearch/reference/7.17"
ref-70: "https://www.elastic.co/guide/en/elasticsearch/reference/7.0"
ref-60: "https://www.elastic.co/guide/en/elasticsearch/reference/6.0"
ref-64: "https://www.elastic.co/guide/en/elasticsearch/reference/6.4"
xpack-ref: "https://www.elastic.co/guide/en/x-pack/6.2"
logstash-ref: "https://www.elastic.co/guide/en/logstash/current"
kibana-ref: "https://www.elastic.co/guide/en/kibana/current"
kibana-ref-all: "https://www.elastic.co/guide/en/kibana"
beats-ref-root: "https://www.elastic.co/guide/en/beats"
beats-ref: "https://www.elastic.co/guide/en/beats/libbeat/current"
beats-ref-60: "https://www.elastic.co/guide/en/beats/libbeat/6.0"
beats-ref-63: "https://www.elastic.co/guide/en/beats/libbeat/6.3"
beats-devguide: "https://www.elastic.co/guide/en/beats/devguide/current"
auditbeat-ref: "https://www.elastic.co/guide/en/beats/auditbeat/current"
packetbeat-ref: "https://www.elastic.co/guide/en/beats/packetbeat/current"
metricbeat-ref: "https://www.elastic.co/guide/en/beats/metricbeat/current"
filebeat-ref: "https://www.elastic.co/guide/en/beats/filebeat/current"
functionbeat-ref: "https://www.elastic.co/guide/en/beats/functionbeat/current"
winlogbeat-ref: "https://www.elastic.co/guide/en/beats/winlogbeat/current"
heartbeat-ref: "https://www.elastic.co/guide/en/beats/heartbeat/current"
journalbeat-ref: "https://www.elastic.co/guide/en/beats/journalbeat/current"
ingest-guide: "https://www.elastic.co/guide/en/ingest/current"
fleet-guide: "https://www.elastic.co/guide/en/fleet/current"
apm-guide-ref: "https://www.elastic.co/guide/en/apm/guide/current"
apm-guide-7x: "https://www.elastic.co/guide/en/apm/guide/7.17"
apm-app-ref: "https://www.elastic.co/guide/en/kibana/current"
apm-agents-ref: "https://www.elastic.co/guide/en/apm/agent"
apm-android-ref: "https://www.elastic.co/guide/en/apm/agent/android/current"
apm-py-ref: "https://www.elastic.co/guide/en/apm/agent/python/current"
apm-py-ref-3x: "https://www.elastic.co/guide/en/apm/agent/python/3.x"
apm-node-ref-index: "https://www.elastic.co/guide/en/apm/agent/nodejs"
apm-node-ref: "https://www.elastic.co/guide/en/apm/agent/nodejs/current"
apm-node-ref-1x: "https://www.elastic.co/guide/en/apm/agent/nodejs/1.x"
apm-rum-ref: "https://www.elastic.co/guide/en/apm/agent/rum-js/current"
apm-ruby-ref: "https://www.elastic.co/guide/en/apm/agent/ruby/current"
apm-java-ref: "https://www.elastic.co/guide/en/apm/agent/java/current"
apm-go-ref: "https://www.elastic.co/guide/en/apm/agent/go/current"
apm-dotnet-ref: "https://www.elastic.co/guide/en/apm/agent/dotnet/current"
apm-php-ref: "https://www.elastic.co/guide/en/apm/agent/php/current"
apm-ios-ref: "https://www.elastic.co/guide/en/apm/agent/swift/current"
apm-lambda-ref: "https://www.elastic.co/guide/en/apm/lambda/current"
apm-attacher-ref: "https://www.elastic.co/guide/en/apm/attacher/current"
docker-logging-ref: "https://www.elastic.co/guide/en/beats/loggingplugin/current"
esf-ref: "https://www.elastic.co/guide/en/esf/current"
kinesis-firehose-ref: "https://www.elastic.co/guide/en/kinesis/{{kinesis_version}}"
estc-welcome-current: "https://www.elastic.co/guide/en/starting-with-the-elasticsearch-platform-and-its-solutions/current"
estc-welcome: "https://www.elastic.co/guide/en/starting-with-the-elasticsearch-platform-and-its-solutions/current"
estc-welcome-all: "https://www.elastic.co/guide/en/starting-with-the-elasticsearch-platform-and-its-solutions"
hadoop-ref: "https://www.elastic.co/guide/en/elasticsearch/hadoop/current"
stack-ref: "https://www.elastic.co/guide/en/elastic-stack/current"
stack-ref-67: "https://www.elastic.co/guide/en/elastic-stack/6.7"
stack-ref-68: "https://www.elastic.co/guide/en/elastic-stack/6.8"
stack-ref-70: "https://www.elastic.co/guide/en/elastic-stack/7.0"
stack-ref-80: "https://www.elastic.co/guide/en/elastic-stack/8.0"
stack-ov: "https://www.elastic.co/guide/en/elastic-stack-overview/current"
stack-gs: "https://www.elastic.co/guide/en/elastic-stack-get-started/current"
stack-gs-current: "https://www.elastic.co/guide/en/elastic-stack-get-started/current"
javaclient: "https://www.elastic.co/guide/en/elasticsearch/client/java-api/current"
java-api-client: "https://www.elastic.co/guide/en/elasticsearch/client/java-api-client/current"
java-rest: "https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current"
jsclient: "https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current"
jsclient-current: "https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current"
es-ruby-client: "https://www.elastic.co/guide/en/elasticsearch/client/ruby-api/current"
es-dotnet-client: "https://www.elastic.co/guide/en/elasticsearch/client/net-api/current"
es-php-client: "https://www.elastic.co/guide/en/elasticsearch/client/php-api/current"
es-python-client: "https://www.elastic.co/guide/en/elasticsearch/client/python-api/current"
defguide: "https://www.elastic.co/guide/en/elasticsearch/guide/2.x"
painless: "https://www.elastic.co/guide/en/elasticsearch/painless/current"
plugins: "https://www.elastic.co/guide/en/elasticsearch/plugins/current"
plugins-8x: "https://www.elastic.co/guide/en/elasticsearch/plugins/8.1"
plugins-7x: "https://www.elastic.co/guide/en/elasticsearch/plugins/7.17"
plugins-6x: "https://www.elastic.co/guide/en/elasticsearch/plugins/6.8"
glossary: "https://www.elastic.co/guide/en/elastic-stack-glossary/current"
upgrade_guide: "https://www.elastic.co/products/upgrade_guide"
blog-ref: "https://www.elastic.co/blog/"
curator-ref: "https://www.elastic.co/guide/en/elasticsearch/client/curator/current"
curator-ref-current: "https://www.elastic.co/guide/en/elasticsearch/client/curator/current"
metrics-ref: "https://www.elastic.co/guide/en/metrics/current"
metrics-guide: "https://www.elastic.co/guide/en/metrics/guide/current"
logs-ref: "https://www.elastic.co/guide/en/logs/current"
logs-guide: "https://www.elastic.co/guide/en/logs/guide/current"
uptime-guide: "https://www.elastic.co/guide/en/uptime/current"
observability-guide: "https://www.elastic.co/guide/en/observability/current"
observability-guide-all: "https://www.elastic.co/guide/en/observability"
siem-guide: "https://www.elastic.co/guide/en/siem/guide/current"
security-guide: "https://www.elastic.co/guide/en/security/current"
security-guide-all: "https://www.elastic.co/guide/en/security"
endpoint-guide: "https://www.elastic.co/guide/en/endpoint/current"
sql-odbc: "https://www.elastic.co/guide/en/elasticsearch/sql-odbc/current"
ecs-ref: "https://www.elastic.co/guide/en/ecs/current"
ecs-logging-ref: "https://www.elastic.co/guide/en/ecs-logging/overview/current"
ecs-logging-go-logrus-ref: "https://www.elastic.co/guide/en/ecs-logging/go-logrus/current"
ecs-logging-go-zap-ref: "https://www.elastic.co/guide/en/ecs-logging/go-zap/current"
ecs-logging-go-zerolog-ref: "https://www.elastic.co/guide/en/ecs-logging/go-zap/current"
ecs-logging-java-ref: "https://www.elastic.co/guide/en/ecs-logging/java/current"
ecs-logging-dotnet-ref: "https://www.elastic.co/guide/en/ecs-logging/dotnet/current"
ecs-logging-nodejs-ref: "https://www.elastic.co/guide/en/ecs-logging/nodejs/current"
ecs-logging-php-ref: "https://www.elastic.co/guide/en/ecs-logging/php/current"
ecs-logging-python-ref: "https://www.elastic.co/guide/en/ecs-logging/python/current"
ecs-logging-ruby-ref: "https://www.elastic.co/guide/en/ecs-logging/ruby/current"
ml-docs: "https://www.elastic.co/guide/en/machine-learning/current"
eland-docs: "https://www.elastic.co/guide/en/elasticsearch/client/eland/current"
eql-ref: "https://eql.readthedocs.io/en/latest/query-guide"
extendtrial: "https://www.elastic.co/trialextension"
wikipedia: "https://en.wikipedia.org/wiki"
forum: "https://discuss.elastic.co/"
xpack-forum: "https://discuss.elastic.co/c/50-x-pack"
security-forum: "https://discuss.elastic.co/c/x-pack/shield"
watcher-forum: "https://discuss.elastic.co/c/x-pack/watcher"
monitoring-forum: "https://discuss.elastic.co/c/x-pack/marvel"
graph-forum: "https://discuss.elastic.co/c/x-pack/graph"
apm-forum: "https://discuss.elastic.co/c/apm"
enterprise-search-ref: "https://www.elastic.co/guide/en/enterprise-search/current"
app-search-ref: "https://www.elastic.co/guide/en/app-search/current"
workplace-search-ref: "https://www.elastic.co/guide/en/workplace-search/current"
enterprise-search-node-ref: "https://www.elastic.co/guide/en/enterprise-search-clients/enterprise-search-node/current"
enterprise-search-php-ref: "https://www.elastic.co/guide/en/enterprise-search-clients/php/current"
enterprise-search-python-ref: "https://www.elastic.co/guide/en/enterprise-search-clients/python/current"
enterprise-search-ruby-ref: "https://www.elastic.co/guide/en/enterprise-search-clients/ruby/current"
elastic-maps-service: "https://maps.elastic.co"
integrations-docs: "https://docs.elastic.co/en/integrations"
integrations-devguide: "https://www.elastic.co/guide/en/integrations-developer/current"
time-units: "https://www.elastic.co/guide/en/elasticsearch/reference/current/api-conventions.html#time-units"
byte-units: "https://www.elastic.co/guide/en/elasticsearch/reference/current/api-conventions.html#byte-units"
apm-py-ref-v: "https://www.elastic.co/guide/en/apm/agent/python/current"
apm-node-ref-v: "https://www.elastic.co/guide/en/apm/agent/nodejs/current"
apm-rum-ref-v: "https://www.elastic.co/guide/en/apm/agent/rum-js/current"
apm-ruby-ref-v: "https://www.elastic.co/guide/en/apm/agent/ruby/current"
apm-java-ref-v: "https://www.elastic.co/guide/en/apm/agent/java/current"
apm-go-ref-v: "https://www.elastic.co/guide/en/apm/agent/go/current"
apm-ios-ref-v: "https://www.elastic.co/guide/en/apm/agent/swift/current"
apm-dotnet-ref-v: "https://www.elastic.co/guide/en/apm/agent/dotnet/current"
apm-php-ref-v: "https://www.elastic.co/guide/en/apm/agent/php/current"
ecloud: "Elastic Cloud"
esf: "Elastic Serverless Forwarder"
ess: "Elasticsearch Service"
ece: "Elastic Cloud Enterprise"
eck: "Elastic Cloud on Kubernetes"
serverless-full: "Elastic Cloud Serverless"
serverless-short: "Serverless"
es-serverless: "Elasticsearch Serverless"
es3: "Elasticsearch Serverless"
obs-serverless: "Elastic Observability Serverless"
sec-serverless: "Elastic Security Serverless"
serverless-docs: "https://docs.elastic.co/serverless"
cloud: "https://www.elastic.co/guide/en/cloud/current"
ess-utm-params: "?page=docs&placement=docs-body"
ess-baymax: "?page=docs&placement=docs-body"
ess-trial: "https://cloud.elastic.co/registration?page=docs&placement=docs-body"
ess-product: "https://www.elastic.co/cloud/elasticsearch-service?page=docs&placement=docs-body"
ess-console: "https://cloud.elastic.co?page=docs&placement=docs-body"
ess-console-name: "Elasticsearch Service Console"
ess-deployments: "https://cloud.elastic.co/deployments?page=docs&placement=docs-body"
ece-ref: "https://www.elastic.co/guide/en/cloud-enterprise/current"
eck-ref: "https://www.elastic.co/guide/en/cloud-on-k8s/current"
ess-leadin: "You can run Elasticsearch on your own hardware or use our hosted Elasticsearch Service that is available on AWS, GCP, and Azure. https://cloud.elastic.co/registration{ess-utm-params}[Try the Elasticsearch Service for free]."
ess-leadin-short: "Our hosted Elasticsearch Service is available on AWS, GCP, and Azure, and you can https://cloud.elastic.co/registration{ess-utm-params}[try it for free]."
ess-icon: "image:https://doc-icons.s3.us-east-2.amazonaws.com/logo_cloud.svg[link=\"https://cloud.elastic.co/registration{ess-utm-params}\", title=\"Supported on Elasticsearch Service\"]"
ece-icon: "image:https://doc-icons.s3.us-east-2.amazonaws.com/logo_cloud_ece.svg[link=\"https://cloud.elastic.co/registration{ess-utm-params}\", title=\"Supported on Elastic Cloud Enterprise\"]"
cloud-only: "This feature is designed for indirect use by https://cloud.elastic.co/registration{ess-utm-params}[Elasticsearch Service], https://www.elastic.co/guide/en/cloud-enterprise/{ece-version-link}[Elastic Cloud Enterprise], and https://www.elastic.co/guide/en/cloud-on-k8s/current[Elastic Cloud on Kubernetes]. Direct use is not supported."
ess-setting-change: "image:https://doc-icons.s3.us-east-2.amazonaws.com/logo_cloud.svg[link=\"{ess-trial}\", title=\"Supported on {ess}\"] indicates a change to a supported https://www.elastic.co/guide/en/cloud/current/ec-add-user-settings.html[user setting] for Elasticsearch Service."
ess-skip-section: "If you use Elasticsearch Service, skip this section. Elasticsearch Service handles these changes for you."
api-cloud: "https://www.elastic.co/docs/api/doc/cloud"
api-ece: "https://www.elastic.co/docs/api/doc/cloud-enterprise"
api-kibana-serverless: "https://www.elastic.co/docs/api/doc/serverless"
es-feature-flag: "This feature is in development and not yet available for use. This documentation is provided for informational purposes only."
es-ref-dir: "'{{elasticsearch-root}}/docs/reference'"
apm-app: "APM app"
uptime-app: "Uptime app"
synthetics-app: "Synthetics app"
logs-app: "Logs app"
metrics-app: "Metrics app"
infrastructure-app: "Infrastructure app"
siem-app: "SIEM app"
security-app: "Elastic Security app"
ml-app: "Machine Learning"
dev-tools-app: "Dev Tools"
ingest-manager-app: "Ingest Manager"
stack-manage-app: "Stack Management"
stack-monitor-app: "Stack Monitoring"
alerts-ui: "Alerts and Actions"
rules-ui: "Rules"
rac-ui: "Rules and Connectors"
connectors-ui: "Connectors"
connectors-feature: "Actions and Connectors"
stack-rules-feature: "Stack Rules"
user-experience: "User Experience"
ems: "Elastic Maps Service"
ems-init: "EMS"
hosted-ems: "Elastic Maps Server"
ipm-app: "Index Pattern Management"
ingest-pipelines: "ingest pipelines"
ingest-pipelines-app: "Ingest Pipelines"
ingest-pipelines-cap: "Ingest pipelines"
ls-pipelines: "Logstash pipelines"
ls-pipelines-app: "Logstash Pipelines"
maint-windows: "maintenance windows"
maint-windows-app: "Maintenance Windows"
maint-windows-cap: "Maintenance windows"
custom-roles-app: "Custom Roles"
data-source: "data view"
data-sources: "data views"
data-source-caps: "Data View"
data-sources-caps: "Data Views"
data-source-cap: "Data view"
data-sources-cap: "Data views"
project-settings: "Project settings"
manage-app: "Management"
index-manage-app: "Index Management"
data-views-app: "Data Views"
rules-app: "Rules"
saved-objects-app: "Saved Objects"
tags-app: "Tags"
api-keys-app: "API keys"
transforms-app: "Transforms"
connectors-app: "Connectors"
files-app: "Files"
reports-app: "Reports"
maps-app: "Maps"
alerts-app: "Alerts"
crawler: "Enterprise Search web crawler"
ents: "Enterprise Search"
app-search-crawler: "App Search web crawler"
agent: "Elastic Agent"
agents: "Elastic Agents"
fleet: "Fleet"
fleet-server: "Fleet Server"
integrations-server: "Integrations Server"
ingest-manager: "Ingest Manager"
ingest-management: "ingest management"
package-manager: "Elastic Package Manager"
integrations: "Integrations"
package-registry: "Elastic Package Registry"
artifact-registry: "Elastic Artifact Registry"
aws: "AWS"
stack: "Elastic Stack"
xpack: "X-Pack"
es: "Elasticsearch"
kib: "Kibana"
esms: "Elastic Stack Monitoring Service"
esms-init: "ESMS"
ls: "Logstash"
beats: "Beats"
auditbeat: "Auditbeat"
filebeat: "Filebeat"
heartbeat: "Heartbeat"
metricbeat: "Metricbeat"
packetbeat: "Packetbeat"
winlogbeat: "Winlogbeat"
functionbeat: "Functionbeat"
journalbeat: "Journalbeat"
es-sql: "Elasticsearch SQL"
esql: "ES|QL"
elastic-agent: "Elastic Agent"
k8s: "Kubernetes"
log-driver-long: "Elastic Logging Plugin for Docker"
security: "X-Pack security"
security-features: "security features"
operator-feature: "operator privileges feature"
es-security-features: "Elasticsearch security features"
stack-security-features: "Elastic Stack security features"
endpoint-sec: "Endpoint Security"
endpoint-cloud-sec: "Endpoint and Cloud Security"
elastic-defend: "Elastic Defend"
elastic-sec: "Elastic Security"
elastic-endpoint: "Elastic Endpoint"
swimlane: "Swimlane"
sn: "ServiceNow"
sn-itsm: "ServiceNow ITSM"
sn-itom: "ServiceNow ITOM"
sn-sir: "ServiceNow SecOps"
jira: "Jira"
ibm-r: "IBM Resilient"
webhook: "Webhook"
webhook-cm: "Webhook - Case Management"
opsgenie: "Opsgenie"
bedrock: "Amazon Bedrock"
gemini: "Google Gemini"
hive: "TheHive"
monitoring: "X-Pack monitoring"
monitor-features: "monitoring features"
stack-monitor-features: "Elastic Stack monitoring features"
watcher: "Watcher"
alert-features: "alerting features"
reporting: "X-Pack reporting"
report-features: "reporting features"
graph: "X-Pack graph"
graph-features: "graph analytics features"
searchprofiler: "Search Profiler"
xpackml: "X-Pack machine learning"
ml: "machine learning"
ml-cap: "Machine learning"
ml-init: "ML"
ml-features: "machine learning features"
stack-ml-features: "Elastic Stack machine learning features"
ccr: "cross-cluster replication"
ccr-cap: "Cross-cluster replication"
ccr-init: "CCR"
ccs: "cross-cluster search"
ccs-cap: "Cross-cluster search"
ccs-init: "CCS"
ilm: "index lifecycle management"
ilm-cap: "Index lifecycle management"
ilm-init: "ILM"
dlm: "data lifecycle management"
dlm-cap: "Data lifecycle management"
dlm-init: "DLM"
search-snap: "searchable snapshot"
search-snaps: "searchable snapshots"
search-snaps-cap: "Searchable snapshots"
slm: "snapshot lifecycle management"
slm-cap: "Snapshot lifecycle management"
slm-init: "SLM"
rollup-features: "data rollup features"
ipm: "index pattern management"
ipm-cap: "Index pattern"
rollup: "rollup"
rollup-cap: "Rollup"
rollups: "rollups"
rollups-cap: "Rollups"
rollup-job: "rollup job"
rollup-jobs: "rollup jobs"
rollup-jobs-cap: "Rollup jobs"
dfeed: "datafeed"
dfeeds: "datafeeds"
dfeed-cap: "Datafeed"
dfeeds-cap: "Datafeeds"
ml-jobs: "machine learning jobs"
ml-jobs-cap: "Machine learning jobs"
anomaly-detect: "anomaly detection"
anomaly-detect-cap: "Anomaly detection"
anomaly-job: "anomaly detection job"
anomaly-jobs: "anomaly detection jobs"
anomaly-jobs-cap: "Anomaly detection jobs"
dataframe: "data frame"
dataframes: "data frames"
dataframe-cap: "Data frame"
dataframes-cap: "Data frames"
watcher-transform: "payload transform"
watcher-transforms: "payload transforms"
watcher-transform-cap: "Payload transform"
watcher-transforms-cap: "Payload transforms"
transform: "transform"
transforms: "transforms"
transform-cap: "Transform"
transforms-cap: "Transforms"
dataframe-transform: "transform"
dataframe-transform-cap: "Transform"
dataframe-transforms: "transforms"
dataframe-transforms-cap: "Transforms"
dfanalytics-cap: "Data frame analytics"
dfanalytics: "data frame analytics"
dataframe-analytics-config: "'{dataframe} analytics config'"
dfanalytics-job: "'{dataframe} analytics job'"
dfanalytics-jobs: "'{dataframe} analytics jobs'"
dfanalytics-jobs-cap: "'{dataframe-cap} analytics jobs'"
cdataframe: "continuous data frame"
cdataframes: "continuous data frames"
cdataframe-cap: "Continuous data frame"
cdataframes-cap: "Continuous data frames"
cdataframe-transform: "continuous transform"
cdataframe-transforms: "continuous transforms"
cdataframe-transforms-cap: "Continuous transforms"
ctransform: "continuous transform"
ctransform-cap: "Continuous transform"
ctransforms: "continuous transforms"
ctransforms-cap: "Continuous transforms"
oldetection: "outlier detection"
oldetection-cap: "Outlier detection"
olscore: "outlier score"
olscores: "outlier scores"
fiscore: "feature influence score"
evaluatedf-api: "evaluate {dataframe} analytics API"
evaluatedf-api-cap: "Evaluate {dataframe} analytics API"
binarysc: "binary soft classification"
binarysc-cap: "Binary soft classification"
regression: "regression"
regression-cap: "Regression"
reganalysis: "regression analysis"
reganalysis-cap: "Regression analysis"
depvar: "dependent variable"
feature-var: "feature variable"
feature-vars: "feature variables"
feature-vars-cap: "Feature variables"
classification: "classification"
classification-cap: "Classification"
classanalysis: "classification analysis"
classanalysis-cap: "Classification analysis"
infer-cap: "Inference"
infer: "inference"
lang-ident-cap: "Language identification"
lang-ident: "language identification"
data-viz: "Data Visualizer"
file-data-viz: "File Data Visualizer"
feat-imp: "feature importance"
feat-imp-cap: "Feature importance"
nlp: "natural language processing"
nlp-cap: "Natural language processing"
apm-agent: "APM agent"
apm-go-agent: "Elastic APM Go agent"
apm-go-agents: "Elastic APM Go agents"
apm-ios-agent: "Elastic APM iOS agent"
apm-ios-agents: "Elastic APM iOS agents"
apm-java-agent: "Elastic APM Java agent"
apm-java-agents: "Elastic APM Java agents"
apm-dotnet-agent: "Elastic APM .NET agent"
apm-dotnet-agents: "Elastic APM .NET agents"
apm-node-agent: "Elastic APM Node.js agent"
apm-node-agents: "Elastic APM Node.js agents"
apm-php-agent: "Elastic APM PHP agent"
apm-php-agents: "Elastic APM PHP agents"
apm-py-agent: "Elastic APM Python agent"
apm-py-agents: "Elastic APM Python agents"
apm-ruby-agent: "Elastic APM Ruby agent"
apm-ruby-agents: "Elastic APM Ruby agents"
apm-rum-agent: "Elastic APM Real User Monitoring (RUM) JavaScript agent"
apm-rum-agents: "Elastic APM RUM JavaScript agents"
apm-lambda-ext: "Elastic APM AWS Lambda extension"
project-monitors: "project monitors"
project-monitors-cap: "Project monitors"
private-location: "Private Location"
private-locations: "Private Locations"
pwd: "YOUR_PASSWORD"
esh: "ES-Hadoop"
default-dist: "default distribution"
oss-dist: "OSS-only distribution"
observability: "Observability"
api-request-title: "Request"
api-prereq-title: "Prerequisites"
api-description-title: "Description"
api-path-parms-title: "Path parameters"
api-query-parms-title: "Query parameters"
api-request-body-title: "Request body"
api-response-codes-title: "Response codes"
api-response-body-title: "Response body"
api-example-title: "Example"
api-examples-title: "Examples"
api-definitions-title: "Properties"
multi-arg: "†footnoteref:[multi-arg,This parameter accepts multiple arguments.]"
multi-arg-ref: "†footnoteref:[multi-arg]"
yes-icon: "image:https://doc-icons.s3.us-east-2.amazonaws.com/icon-yes.png[Yes,20,15]"
no-icon: "image:https://doc-icons.s3.us-east-2.amazonaws.com/icon-no.png[No,20,15]"
es-repo: "https://github.com/elastic/elasticsearch/"
es-issue: "https://github.com/elastic/elasticsearch/issues/"
es-pull: "https://github.com/elastic/elasticsearch/pull/"
es-commit: "https://github.com/elastic/elasticsearch/commit/"
kib-repo: "https://github.com/elastic/kibana/"
kib-issue: "https://github.com/elastic/kibana/issues/"
kibana-issue: "'{kib-repo}issues/'"
kib-pull: "https://github.com/elastic/kibana/pull/"
kibana-pull: "'{kib-repo}pull/'"
kib-commit: "https://github.com/elastic/kibana/commit/"
ml-repo: "https://github.com/elastic/ml-cpp/"
ml-issue: "https://github.com/elastic/ml-cpp/issues/"
ml-pull: "https://github.com/elastic/ml-cpp/pull/"
ml-commit: "https://github.com/elastic/ml-cpp/commit/"
apm-repo: "https://github.com/elastic/apm-server/"
apm-issue: "https://github.com/elastic/apm-server/issues/"
apm-pull: "https://github.com/elastic/apm-server/pull/"
kibana-blob: "https://github.com/elastic/kibana/blob/current/"
apm-get-started-ref: "https://www.elastic.co/guide/en/apm/get-started/current"
apm-server-ref: "https://www.elastic.co/guide/en/apm/server/current"
apm-server-ref-v: "https://www.elastic.co/guide/en/apm/server/current"
apm-server-ref-m: "https://www.elastic.co/guide/en/apm/server/master"
apm-server-ref-62: "https://www.elastic.co/guide/en/apm/server/6.2"
apm-server-ref-64: "https://www.elastic.co/guide/en/apm/server/6.4"
apm-server-ref-70: "https://www.elastic.co/guide/en/apm/server/7.0"
apm-overview-ref-v: "https://www.elastic.co/guide/en/apm/get-started/current"
apm-overview-ref-70: "https://www.elastic.co/guide/en/apm/get-started/7.0"
apm-overview-ref-m: "https://www.elastic.co/guide/en/apm/get-started/master"
infra-guide: "https://www.elastic.co/guide/en/infrastructure/guide/current"
a-data-source: "a data view"
icon-bug: "pass:[<span class=\"eui-icon icon-bug\"></span>]"
icon-checkInCircleFilled: "pass:[<span class=\"eui-icon icon-checkInCircleFilled\"></span>]"
icon-warningFilled: "pass:[<span class=\"eui-icon icon-warningFilled\"></span>]"

View File

@ -1,14 +0,0 @@
= Eland Python Client
:doctype: book
include::{asciidoc-dir}/../../shared/versions/stack/{source_branch}.asciidoc[]
include::{asciidoc-dir}/../../shared/attributes.asciidoc[]
include::overview.asciidoc[]
include::installation.asciidoc[]
include::dataframes.asciidoc[]
include::machine-learning.asciidoc[]

View File

@ -1,16 +0,0 @@
[[installation]]
== Installation
Eland can be installed with https://pip.pypa.io[pip] from https://pypi.org/project/eland[PyPI]. We recommend https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/[using a virtual environment] when installing with pip:
[source,sh]
-----------------------------
$ python -m pip install eland
-----------------------------
Alternatively, Eland can be installed with https://docs.conda.io[Conda] from https://anaconda.org/conda-forge/eland[Conda Forge]:
[source,sh]
------------------------------------
$ conda install -c conda-forge eland
------------------------------------

View File

@ -1,242 +0,0 @@
[[machine-learning]]
== Machine Learning
[discrete]
[[ml-trained-models]]
=== Trained models
Eland allows transforming trained models from scikit-learn, XGBoost,
and LightGBM libraries to be serialized and used as an inference
model in {es}.
[source,python]
------------------------
>>> from xgboost import XGBClassifier
>>> from eland.ml import MLModel
# Train and exercise an XGBoost ML model locally
>>> xgb_model = XGBClassifier(booster="gbtree")
>>> xgb_model.fit(training_data[0], training_data[1])
>>> xgb_model.predict(training_data[0])
[0 1 1 0 1 0 0 0 1 0]
# Import the model into Elasticsearch
>>> es_model = MLModel.import_model(
es_client="http://localhost:9200",
model_id="xgb-classifier",
model=xgb_model,
feature_names=["f0", "f1", "f2", "f3", "f4"],
)
# Exercise the ML model in Elasticsearch with the training data
>>> es_model.predict(training_data[0])
[0 1 1 0 1 0 0 0 1 0]
------------------------
[discrete]
[[ml-nlp-pytorch]]
=== Natural language processing (NLP) with PyTorch
IMPORTANT: You need to install the appropriate version of PyTorch to import an
NLP model. Run `python -m pip install 'eland[pytorch]'` to install that version.
For NLP tasks, Eland enables you to import PyTorch models into {es}. Use the
`eland_import_hub_model` script to download and install supported
https://huggingface.co/transformers[transformer models] from the
https://huggingface.co/models[Hugging Face model hub]. For example:
[source,bash]
------------------------
$ eland_import_hub_model <authentication> \ <1>
--url http://localhost:9200/ \ <2>
--hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \ <3>
--task-type ner \ <4>
--start
------------------------
<1> Use an authentication method to access your cluster. Refer to <<ml-nlp-pytorch-auth>>.
<2> The cluster URL. Alternatively, use `--cloud-id`.
<3> Specify the identifier for the model in the Hugging Face model hub.
<4> Specify the type of NLP task. Supported values are `fill_mask`, `ner`,
`question_answering`, `text_classification`, `text_embedding`, `text_expansion`,
`text_similarity` and `zero_shot_classification`.
For more information about the available options, run `eland_import_hub_model` with the `--help` option.
[source,bash]
------------------------
$ eland_import_hub_model --help
------------------------
[discrete]
[[ml-nlp-pytorch-docker]]
==== Import model with Docker
IMPORTANT: To use the Docker container, you need to clone the Eland repository: https://github.com/elastic/eland
If you want to use Eland without installing it, you can use the Docker image:
You can use the container interactively:
```bash
$ docker run -it --rm --network host docker.elastic.co/eland/eland
```
Running installed scripts is also possible without an interactive shell, for example:
```bash
docker run -it --rm docker.elastic.co/eland/eland \
eland_import_hub_model \
--url $ELASTICSEARCH_URL \
--hub-model-id elastic/distilbert-base-uncased-finetuned-conll03-english \
--start
```
Replace the `$ELASTICSEARCH_URL` with the URL for your Elasticsearch cluster. For authentication purposes, include an administrator username and password in the URL in the following format: `https://username:password@host:port`.
[discrete]
[[ml-nlp-pytorch-air-gapped]]
==== Install models in an air-gapped environment
You can install models in a restricted or closed network by pointing the
`eland_import_hub_model` script to local files.
For an offline install of a Hugging Face model, the model first needs to be
cloned locally, Git and https://git-lfs.com/[Git Large File Storage] are
required to be installed in your system.
1. Select a model you want to use from Hugging Face. Refer to the
{ml-docs}/ml-nlp-model-ref.html[compatible third party model] list for more
information on the supported architectures.
2. Clone the selected model from Hugging Face by using the model URL. For
example:
+
--
[source,bash]
----
git clone https://huggingface.co/dslim/bert-base-NER
----
This command results in a local copy of
of the model in the directory `bert-base-NER`.
--
3. Use the `eland_import_hub_model` script with the `--hub-model-id` set to the
directory of the cloned model to install it:
+
--
[source,bash]
----
eland_import_hub_model \
--url 'XXXX' \
--hub-model-id /PATH/TO/MODEL \
--task-type ner \
--es-username elastic --es-password XXX \
--es-model-id bert-base-ner
----
If you use the Docker image to run `eland_import_hub_model` you must bind mount
the model directory, so the container can read the files:
[source,bash]
----
docker run --mount type=bind,source=/PATH/TO/MODEL,destination=/model,readonly -it --rm docker.elastic.co/eland/eland \
eland_import_hub_model \
--url 'XXXX' \
--hub-model-id /model \
--task-type ner \
--es-username elastic --es-password XXX \
--es-model-id bert-base-ner
----
Once it's uploaded to {es}, the model will have the ID specified by
`--es-model-id`. If it is not set, the model ID is derived from
`--hub-model-id`; spaces and path delimiters are converted to double
underscores `__`.
--
[discrete]
[[ml-nlp-pytorch-proxy]]
==== Connect to Elasticsearch through a proxy
Behind the scenes, Eland uses the `requests` Python library, which
https://requests.readthedocs.io/en/latest/user/advanced/#proxies[allows configuring
proxies through an environment variable]. For example, to use an HTTP proxy to connect to
an HTTPS Elasticsearch cluster, you need to set the `HTTPS_PROXY` environment variable
when invoking Eland:
[source,bash]
--------------------------------------------------
HTTPS_PROXY=http://proxy-host:proxy-port eland_import_hub_model ...
--------------------------------------------------
If you disabled security on your Elasticsearch cluster, you should use `HTTP_PROXY`
instead.
[discrete]
[[ml-nlp-pytorch-auth]]
==== Authentication methods
The following authentication options are available when using the import script:
* Elasticsearch username and password authentication (specified with the `-u` and `-p` options):
+
--
[source,bash]
--------------------------------------------------
eland_import_hub_model -u <username> -p <password> --cloud-id <cloud-id> ...
--------------------------------------------------
These `-u` and `-p` options also work when you use `--url`.
--
* Elasticsearch username and password authentication (embedded in the URL):
+
--
[source,bash]
--------------------------------------------------
eland_import_hub_model --url https://<user>:<password>@<hostname>:<port> ...
--------------------------------------------------
--
* Elasticsearch API key authentication:
+
--
[source,bash]
--------------------------------------------------
eland_import_hub_model --es-api-key <api-key> --url https://<hostname>:<port> ...
--------------------------------------------------
--
* HuggingFace Hub access token (for private models):
+
--
[source,bash]
--------------------------------------------------
eland_import_hub_model --hub-access-token <access-token> ...
--------------------------------------------------
--
[discrete]
[[ml-nlp-pytorch-tls]]
==== TLS/SSL
The following TLS/SSL options for Elasticsearch are available when using the import script:
* Specify alternate CA bundle to verify the cluster certificate:
+
--
[source,bash]
--------------------------------------------------
eland_import_hub_model --ca-certs CA_CERTS ...
--------------------------------------------------
--
* Disable TLS/SSL verification altogether (strongly discouraged):
+
--
[source,bash]
--------------------------------------------------
eland_import_hub_model --insecure ...
--------------------------------------------------
--

View File

@ -1,16 +1,16 @@
[[dataframes]] ---
== Data Frames mapped_pages:
- https://www.elastic.co/guide/en/elasticsearch/client/eland/current/dataframes.html
---
`eland.DataFrame` wraps an Elasticsearch index in a Pandas-like API # Data Frames [dataframes]
and defers all processing and filtering of data to Elasticsearch
instead of your local machine. This means you can process large
amounts of data within Elasticsearch from a Jupyter Notebook
without overloading your machine.
[source,python] `eland.DataFrame` wraps an Elasticsearch index in a Pandas-like API and defers all processing and filtering of data to Elasticsearch instead of your local machine. This means you can process large amounts of data within Elasticsearch from a Jupyter Notebook without overloading your machine.
-------------------------------------
```python
>>> import eland as ed >>> import eland as ed
>>> # Connect to 'flights' index via localhost Elasticsearch node >>>
# Connect to 'flights' index via localhost Elasticsearch node
>>> df = ed.DataFrame('http://localhost:9200', 'flights') >>> df = ed.DataFrame('http://localhost:9200', 'flights')
# eland.DataFrame instance has the same API as pandas.DataFrame # eland.DataFrame instance has the same API as pandas.DataFrame
@ -29,14 +29,14 @@ without overloading your machine.
<class 'eland.dataframe.DataFrame'> <class 'eland.dataframe.DataFrame'>
Index: 13059 entries, 0 to 13058 Index: 13059 entries, 0 to 13058
Data columns (total 27 columns): Data columns (total 27 columns):
# Column Non-Null Count Dtype # Column Non-Null Count Dtype
--- ------ -------------- ----- --- ------ -------------- -----
0 AvgTicketPrice 13059 non-null float64 0 AvgTicketPrice 13059 non-null float64
1 Cancelled 13059 non-null bool 1 Cancelled 13059 non-null bool
2 Carrier 13059 non-null object 2 Carrier 13059 non-null object
... ...
24 OriginWeather 13059 non-null object 24 OriginWeather 13059 non-null object
25 dayOfWeek 13059 non-null int64 25 dayOfWeek 13059 non-null int64
26 timestamp 13059 non-null datetime64[ns] 26 timestamp 13059 non-null datetime64[ns]
dtypes: bool(2), datetime64[ns](1), float64(5), int64(2), object(17) dtypes: bool(2), datetime64[ns](1), float64(5), int64(2), object(17)
memory usage: 80.0 bytes memory usage: 80.0 bytes
@ -59,4 +59,5 @@ Elasticsearch storage usage: 5.043 MB
sum 9.261629e+07 8.204365e+06 sum 9.261629e+07 8.204365e+06
min 0.000000e+00 1.000205e+02 min 0.000000e+00 1.000205e+02
std 4.578263e+03 2.663867e+02 std 4.578263e+03 2.663867e+02
------------------------------------- ```

View File

@ -1,33 +1,36 @@
[[overview]] ---
== Overview mapped_pages:
- https://www.elastic.co/guide/en/elasticsearch/client/eland/current/index.html
- https://www.elastic.co/guide/en/elasticsearch/client/eland/current/overview.html
navigation_title: Eland
---
Eland is a Python client and toolkit for DataFrames and {ml} in {es}. # Eland Python client [overview]
Full documentation is available on https://eland.readthedocs.io[Read the Docs].
Source code is available on https://github.com/elastic/eland[GitHub].
[discrete] Eland is a Python client and toolkit for DataFrames and {{ml}} in {{es}}. Full documentation is available on [Read the Docs](https://eland.readthedocs.io). Source code is available on [GitHub](https://github.com/elastic/eland).
=== Compatibility
- Supports Python 3.9+ and Pandas 1.5
- Supports {es} 8+ clusters, recommended 8.16 or later for all features to work.
Make sure your Eland major version matches the major version of your Elasticsearch cluster.
The recommended way to set your requirements in your `setup.py` or ## Compatibility [_compatibility]
`requirements.txt` is::
# Elasticsearch 8.x * Supports Python 3.9+ and Pandas 1.5
eland>=8,<9 * Supports {{es}} 8+ clusters, recommended 8.16 or later for all features to work. Make sure your Eland major version matches the major version of your Elasticsearch cluster.
# Elasticsearch 7.x The recommended way to set your requirements in your `setup.py` or `requirements.txt` is::
eland>=7,<8
[discrete] ```
=== Getting Started # Elasticsearch 8.x
eland>=8,<9
```
```
# Elasticsearch 7.x
eland>=7,<8
```
Create a `DataFrame` object connected to an {es} cluster running on `http://localhost:9200`: ## Getting Started [_getting_started]
[source,python] Create a `DataFrame` object connected to an {{es}} cluster running on `http://localhost:9200`:
------------------------------------
```python
>>> import eland as ed >>> import eland as ed
>>> df = ed.DataFrame( >>> df = ed.DataFrame(
... es_client="http://localhost:9200", ... es_client="http://localhost:9200",
@ -48,15 +51,14 @@ Create a `DataFrame` object connected to an {es} cluster running on `http://loca
13058 858.144337 False ... 6 2018-02-11 14:54:34 13058 858.144337 False ... 6 2018-02-11 14:54:34
[13059 rows x 27 columns] [13059 rows x 27 columns]
------------------------------------ ```
[discrete]
==== Elastic Cloud ### Elastic Cloud [_elastic_cloud]
You can also connect Eland to an Elasticsearch instance in Elastic Cloud: You can also connect Eland to an Elasticsearch instance in Elastic Cloud:
[source,python] ```python
------------------------------------
>>> import eland as ed >>> import eland as ed
>>> from elasticsearch import Elasticsearch >>> from elasticsearch import Elasticsearch
@ -73,16 +75,16 @@ You can also connect Eland to an Elasticsearch instance in Elastic Cloud:
3 181.694216 True ... 0 2018-01-01 10:33:28 3 181.694216 True ... 0 2018-01-01 10:33:28
4 730.041778 False ... 0 2018-01-01 05:13:00 4 730.041778 False ... 0 2018-01-01 05:13:00
[5 rows x 27 columns] [5 rows x 27 columns]
------------------------------------ ```
Eland can be used for complex queries and aggregations: Eland can be used for complex queries and aggregations:
[source,python] ```python
------------------------------------
>>> df[df.Carrier != "Kibana Airlines"].groupby("Carrier").mean(numeric_only=False) >>> df[df.Carrier != "Kibana Airlines"].groupby("Carrier").mean(numeric_only=False)
AvgTicketPrice Cancelled timestamp AvgTicketPrice Cancelled timestamp
Carrier Carrier
ES-Air 630.235816 0.129814 2018-01-21 20:45:00.200000000 ES-Air 630.235816 0.129814 2018-01-21 20:45:00.200000000
JetBeats 627.457373 0.134698 2018-01-21 14:43:18.112400635 JetBeats 627.457373 0.134698 2018-01-21 14:43:18.112400635
Logstash Airways 624.581974 0.125188 2018-01-21 16:14:50.711798340 Logstash Airways 624.581974 0.125188 2018-01-21 16:14:50.711798340
------------------------------------ ```

View File

@ -0,0 +1,19 @@
---
mapped_pages:
- https://www.elastic.co/guide/en/elasticsearch/client/eland/current/installation.html
---
# Installation [installation]
Eland can be installed with [pip](https://pip.pypa.io) from [PyPI](https://pypi.org/project/eland). We recommend [using a virtual environment](https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/) when installing with pip:
```sh
$ python -m pip install eland
```
Alternatively, Eland can be installed with [Conda](https://docs.conda.io) from [Conda Forge](https://anaconda.org/conda-forge/eland):
```sh
$ conda install -c conda-forge eland
```

View File

@ -0,0 +1,197 @@
---
mapped_pages:
- https://www.elastic.co/guide/en/elasticsearch/client/eland/current/machine-learning.html
---
# Machine Learning [machine-learning]
## Trained models [ml-trained-models]
Eland allows transforming trained models from scikit-learn, XGBoost, and LightGBM libraries to be serialized and used as an inference model in {{es}}.
```python
>>> from xgboost import XGBClassifier
>>> from eland.ml import MLModel
# Train and exercise an XGBoost ML model locally
>>> xgb_model = XGBClassifier(booster="gbtree")
>>> xgb_model.fit(training_data[0], training_data[1])
>>> xgb_model.predict(training_data[0])
[0 1 1 0 1 0 0 0 1 0]
# Import the model into Elasticsearch
>>> es_model = MLModel.import_model(
es_client="http://localhost:9200",
model_id="xgb-classifier",
model=xgb_model,
feature_names=["f0", "f1", "f2", "f3", "f4"],
)
# Exercise the ML model in Elasticsearch with the training data
>>> es_model.predict(training_data[0])
[0 1 1 0 1 0 0 0 1 0]
```
## Natural language processing (NLP) with PyTorch [ml-nlp-pytorch]
::::{important}
You need to install the appropriate version of PyTorch to import an NLP model. Run `python -m pip install 'eland[pytorch]'` to install that version.
::::
For NLP tasks, Eland enables you to import PyTorch models into {{es}}. Use the `eland_import_hub_model` script to download and install supported [transformer models](https://huggingface.co/transformers) from the [Hugging Face model hub](https://huggingface.co/models). For example:
```bash
$ eland_import_hub_model <authentication> \ <1>
--url http://localhost:9200/ \ <2>
--hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \ <3>
--task-type ner \ <4>
--start
```
1. Use an authentication method to access your cluster. Refer to [Authentication methods](machine-learning.md#ml-nlp-pytorch-auth).
2. The cluster URL. Alternatively, use `--cloud-id`.
3. Specify the identifier for the model in the Hugging Face model hub.
4. Specify the type of NLP task. Supported values are `fill_mask`, `ner`, `question_answering`, `text_classification`, `text_embedding`, `text_expansion`, `text_similarity` and `zero_shot_classification`.
For more information about the available options, run `eland_import_hub_model` with the `--help` option.
```bash
$ eland_import_hub_model --help
```
### Import model with Docker [ml-nlp-pytorch-docker]
::::{important}
To use the Docker container, you need to clone the Eland repository: [https://github.com/elastic/eland](https://github.com/elastic/eland)
::::
If you want to use Eland without installing it, you can use the Docker image:
You can use the container interactively:
```bash
$ docker run -it --rm --network host docker.elastic.co/eland/eland
```
Running installed scripts is also possible without an interactive shell, for example:
```bash
docker run -it --rm docker.elastic.co/eland/eland \
eland_import_hub_model \
--url $ELASTICSEARCH_URL \
--hub-model-id elastic/distilbert-base-uncased-finetuned-conll03-english \
--start
```
Replace the `$ELASTICSEARCH_URL` with the URL for your Elasticsearch cluster. For authentication purposes, include an administrator username and password in the URL in the following format: `https://username:password@host:port`.
### Install models in an air-gapped environment [ml-nlp-pytorch-air-gapped]
You can install models in a restricted or closed network by pointing the `eland_import_hub_model` script to local files.
For an offline install of a Hugging Face model, the model first needs to be cloned locally, Git and [Git Large File Storage](https://git-lfs.com/) are required to be installed in your system.
1. Select a model you want to use from Hugging Face. Refer to the [compatible third party model](docs-content://explore-analyze/machine-learning/nlp/ml-nlp-model-ref.md) list for more information on the supported architectures.
2. Clone the selected model from Hugging Face by using the model URL. For example:
```bash
git clone https://huggingface.co/dslim/bert-base-NER
```
This command results in a local copy of of the model in the directory `bert-base-NER`.
3. Use the `eland_import_hub_model` script with the `--hub-model-id` set to the directory of the cloned model to install it:
```bash
eland_import_hub_model \
--url 'XXXX' \
--hub-model-id /PATH/TO/MODEL \
--task-type ner \
--es-username elastic --es-password XXX \
--es-model-id bert-base-ner
```
If you use the Docker image to run `eland_import_hub_model` you must bind mount the model directory, so the container can read the files:
```bash
docker run --mount type=bind,source=/PATH/TO/MODEL,destination=/model,readonly -it --rm docker.elastic.co/eland/eland \
eland_import_hub_model \
--url 'XXXX' \
--hub-model-id /model \
--task-type ner \
--es-username elastic --es-password XXX \
--es-model-id bert-base-ner
```
Once its uploaded to {{es}}, the model will have the ID specified by `--es-model-id`. If it is not set, the model ID is derived from `--hub-model-id`; spaces and path delimiters are converted to double underscores `__`.
### Connect to Elasticsearch through a proxy [ml-nlp-pytorch-proxy]
Behind the scenes, Eland uses the `requests` Python library, which [allows configuring proxies through an environment variable](https://requests.readthedocs.io/en/latest/user/advanced/#proxies). For example, to use an HTTP proxy to connect to an HTTPS Elasticsearch cluster, you need to set the `HTTPS_PROXY` environment variable when invoking Eland:
```bash
HTTPS_PROXY=http://proxy-host:proxy-port eland_import_hub_model ...
```
If you disabled security on your Elasticsearch cluster, you should use `HTTP_PROXY` instead.
### Authentication methods [ml-nlp-pytorch-auth]
The following authentication options are available when using the import script:
* Elasticsearch username and password authentication (specified with the `-u` and `-p` options):
```bash
eland_import_hub_model -u <username> -p <password> --cloud-id <cloud-id> ...
```
These `-u` and `-p` options also work when you use `--url`.
* Elasticsearch username and password authentication (embedded in the URL):
```bash
eland_import_hub_model --url https://<user>:<password>@<hostname>:<port> ...
```
* Elasticsearch API key authentication:
```bash
eland_import_hub_model --es-api-key <api-key> --url https://<hostname>:<port> ...
```
* HuggingFace Hub access token (for private models):
```bash
eland_import_hub_model --hub-access-token <access-token> ...
```
### TLS/SSL [ml-nlp-pytorch-tls]
The following TLS/SSL options for Elasticsearch are available when using the import script:
* Specify alternate CA bundle to verify the cluster certificate:
```bash
eland_import_hub_model --ca-certs CA_CERTS ...
```
* Disable TLS/SSL verification altogether (strongly discouraged):
```bash
eland_import_hub_model --insecure ...
```

6
docs/reference/toc.yml Normal file
View File

@ -0,0 +1,6 @@
project: 'Eland reference'
toc:
- file: index.md
- file: installation.md
- file: dataframes.md
- file: machine-learning.md