diff --git a/README.md b/README.md index b613f29..3b15d29 100644 --- a/README.md +++ b/README.md @@ -94,8 +94,7 @@ $ docker run -it --rm --network host \ eland_import_hub_model \ --url http://host.docker.internal:9200/ \ --hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \ - --task-type ner \ - --start + --task-type ner ``` ### Connecting to Elasticsearch @@ -237,6 +236,17 @@ $ eland_import_hub_model \ --start ``` +The example above will automatically start a model deployment. This is a +good shortcut for initial experimentation, but for anything that needs +good throughput you should omit the `--start` argument from the Eland +command line and instead start the model using the ML UI in Kibana. +The `--start` argument will deploy the model with one allocation and one +thread per allocation, which will not offer good performance. When starting +the model deployment using the ML UI in Kibana or the Elasticsearch +[API](https://www.elastic.co/guide/en/elasticsearch/reference/current/start-trained-model-deployment.html) +you will be able to set the threading options to make best use of your +hardware. + ```python >>> import elasticsearch >>> from pathlib import Path