diff --git a/test.ipynb b/test.ipynb
index ebce3d0..6cc6f63 100644
--- a/test.ipynb
+++ b/test.ipynb
@@ -1,416 +1,5 @@
{
"cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Eland"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import eland as ed"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "df = ed.read_es('localhost', 'kibana_sample_data_flights')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " AvgTicketPrice | \n",
- " Cancelled | \n",
- " Carrier | \n",
- " Dest | \n",
- " DestAirportID | \n",
- " DestCityName | \n",
- " DestCountry | \n",
- " DestLocation | \n",
- " DestRegion | \n",
- " DestWeather | \n",
- " ... | \n",
- " FlightTimeMin | \n",
- " Origin | \n",
- " OriginAirportID | \n",
- " OriginCityName | \n",
- " OriginCountry | \n",
- " OriginLocation | \n",
- " OriginRegion | \n",
- " OriginWeather | \n",
- " dayOfWeek | \n",
- " timestamp | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 841.265642 | \n",
- " False | \n",
- " Kibana Airlines | \n",
- " Sydney Kingsford Smith International Airport | \n",
- " SYD | \n",
- " Sydney | \n",
- " AU | \n",
- " {'lat': '-33.94609833', 'lon': '151.177002'} | \n",
- " SE-BD | \n",
- " Rain | \n",
- " ... | \n",
- " 1030.770416 | \n",
- " Frankfurt am Main Airport | \n",
- " FRA | \n",
- " Frankfurt am Main | \n",
- " DE | \n",
- " {'lat': '50.033333', 'lon': '8.570556'} | \n",
- " DE-HE | \n",
- " Sunny | \n",
- " 0 | \n",
- " 2019-05-27T00:00:00 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 882.982662 | \n",
- " False | \n",
- " Logstash Airways | \n",
- " Venice Marco Polo Airport | \n",
- " VE05 | \n",
- " Venice | \n",
- " IT | \n",
- " {'lat': '45.505299', 'lon': '12.3519'} | \n",
- " IT-34 | \n",
- " Sunny | \n",
- " ... | \n",
- " 464.389481 | \n",
- " Cape Town International Airport | \n",
- " CPT | \n",
- " Cape Town | \n",
- " ZA | \n",
- " {'lat': '-33.96480179', 'lon': '18.60169983'} | \n",
- " SE-BD | \n",
- " Clear | \n",
- " 0 | \n",
- " 2019-05-27T18:27:00 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 190.636904 | \n",
- " False | \n",
- " Logstash Airways | \n",
- " Venice Marco Polo Airport | \n",
- " VE05 | \n",
- " Venice | \n",
- " IT | \n",
- " {'lat': '45.505299', 'lon': '12.3519'} | \n",
- " IT-34 | \n",
- " Cloudy | \n",
- " ... | \n",
- " 0.000000 | \n",
- " Venice Marco Polo Airport | \n",
- " VE05 | \n",
- " Venice | \n",
- " IT | \n",
- " {'lat': '45.505299', 'lon': '12.3519'} | \n",
- " IT-34 | \n",
- " Rain | \n",
- " 0 | \n",
- " 2019-05-27T17:11:14 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 181.694216 | \n",
- " True | \n",
- " Kibana Airlines | \n",
- " Treviso-Sant'Angelo Airport | \n",
- " TV01 | \n",
- " Treviso | \n",
- " IT | \n",
- " {'lat': '45.648399', 'lon': '12.1944'} | \n",
- " IT-34 | \n",
- " Clear | \n",
- " ... | \n",
- " 222.749059 | \n",
- " Naples International Airport | \n",
- " NA01 | \n",
- " Naples | \n",
- " IT | \n",
- " {'lat': '40.886002', 'lon': '14.2908'} | \n",
- " IT-72 | \n",
- " Thunder & Lightning | \n",
- " 0 | \n",
- " 2019-05-27T10:33:28 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 730.041778 | \n",
- " False | \n",
- " Kibana Airlines | \n",
- " Xi'an Xianyang International Airport | \n",
- " XIY | \n",
- " Xi'an | \n",
- " CN | \n",
- " {'lat': '34.447102', 'lon': '108.751999'} | \n",
- " SE-BD | \n",
- " Clear | \n",
- " ... | \n",
- " 785.779071 | \n",
- " Licenciado Benito Juarez International Airport | \n",
- " AICM | \n",
- " Mexico City | \n",
- " MX | \n",
- " {'lat': '19.4363', 'lon': '-99.072098'} | \n",
- " MX-DIF | \n",
- " Damaging Wind | \n",
- " 0 | \n",
- " 2019-05-27T05:13:00 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 27 columns
\n",
- "
"
- ],
- "text/plain": [
- " AvgTicketPrice Cancelled Carrier \\\n",
- "0 841.265642 False Kibana Airlines \n",
- "1 882.982662 False Logstash Airways \n",
- "2 190.636904 False Logstash Airways \n",
- "3 181.694216 True Kibana Airlines \n",
- "4 730.041778 False Kibana Airlines \n",
- "\n",
- " Dest DestAirportID DestCityName \\\n",
- "0 Sydney Kingsford Smith International Airport SYD Sydney \n",
- "1 Venice Marco Polo Airport VE05 Venice \n",
- "2 Venice Marco Polo Airport VE05 Venice \n",
- "3 Treviso-Sant'Angelo Airport TV01 Treviso \n",
- "4 Xi'an Xianyang International Airport XIY Xi'an \n",
- "\n",
- " DestCountry DestLocation DestRegion \\\n",
- "0 AU {'lat': '-33.94609833', 'lon': '151.177002'} SE-BD \n",
- "1 IT {'lat': '45.505299', 'lon': '12.3519'} IT-34 \n",
- "2 IT {'lat': '45.505299', 'lon': '12.3519'} IT-34 \n",
- "3 IT {'lat': '45.648399', 'lon': '12.1944'} IT-34 \n",
- "4 CN {'lat': '34.447102', 'lon': '108.751999'} SE-BD \n",
- "\n",
- " DestWeather ... FlightTimeMin \\\n",
- "0 Rain ... 1030.770416 \n",
- "1 Sunny ... 464.389481 \n",
- "2 Cloudy ... 0.000000 \n",
- "3 Clear ... 222.749059 \n",
- "4 Clear ... 785.779071 \n",
- "\n",
- " Origin OriginAirportID \\\n",
- "0 Frankfurt am Main Airport FRA \n",
- "1 Cape Town International Airport CPT \n",
- "2 Venice Marco Polo Airport VE05 \n",
- "3 Naples International Airport NA01 \n",
- "4 Licenciado Benito Juarez International Airport AICM \n",
- "\n",
- " OriginCityName OriginCountry \\\n",
- "0 Frankfurt am Main DE \n",
- "1 Cape Town ZA \n",
- "2 Venice IT \n",
- "3 Naples IT \n",
- "4 Mexico City MX \n",
- "\n",
- " OriginLocation OriginRegion \\\n",
- "0 {'lat': '50.033333', 'lon': '8.570556'} DE-HE \n",
- "1 {'lat': '-33.96480179', 'lon': '18.60169983'} SE-BD \n",
- "2 {'lat': '45.505299', 'lon': '12.3519'} IT-34 \n",
- "3 {'lat': '40.886002', 'lon': '14.2908'} IT-72 \n",
- "4 {'lat': '19.4363', 'lon': '-99.072098'} MX-DIF \n",
- "\n",
- " OriginWeather dayOfWeek timestamp \n",
- "0 Sunny 0 2019-05-27T00:00:00 \n",
- "1 Clear 0 2019-05-27T18:27:00 \n",
- "2 Rain 0 2019-05-27T17:11:14 \n",
- "3 Thunder & Lightning 0 2019-05-27T10:33:28 \n",
- "4 Damaging Wind 0 2019-05-27T05:13:00 \n",
- "\n",
- "[5 rows x 27 columns]"
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " AvgTicketPrice | \n",
- " DistanceKilometers | \n",
- " DistanceMiles | \n",
- " FlightDelayMin | \n",
- " FlightTimeMin | \n",
- " dayOfWeek | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " count | \n",
- " 13059.000000 | \n",
- " 13059.000000 | \n",
- " 13059.000000 | \n",
- " 13059.000000 | \n",
- " 13059.000000 | \n",
- " 13059.000000 | \n",
- "
\n",
- " \n",
- " mean | \n",
- " 628.253689 | \n",
- " 7092.142457 | \n",
- " 4406.853010 | \n",
- " 47.335171 | \n",
- " 511.127842 | \n",
- " 2.835975 | \n",
- "
\n",
- " \n",
- " std | \n",
- " 266.386661 | \n",
- " 4578.263193 | \n",
- " 2844.800855 | \n",
- " 96.743006 | \n",
- " 334.741135 | \n",
- " 1.939365 | \n",
- "
\n",
- " \n",
- " min | \n",
- " 100.020531 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- " 0.000000 | \n",
- "
\n",
- " \n",
- " 25% | \n",
- " 410.008918 | \n",
- " 2470.545974 | \n",
- " 1535.126118 | \n",
- " 0.000000 | \n",
- " 251.682199 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 50% | \n",
- " 640.362374 | \n",
- " 7612.072403 | \n",
- " 4729.922470 | \n",
- " 0.000000 | \n",
- " 503.148975 | \n",
- " 3.000000 | \n",
- "
\n",
- " \n",
- " 75% | \n",
- " 842.260482 | \n",
- " 9735.660463 | \n",
- " 6049.459005 | \n",
- " 14.102113 | \n",
- " 720.569838 | \n",
- " 4.000000 | \n",
- "
\n",
- " \n",
- " max | \n",
- " 1199.729004 | \n",
- " 19881.482422 | \n",
- " 12353.780273 | \n",
- " 360.000000 | \n",
- " 1902.901978 | \n",
- " 6.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " AvgTicketPrice DistanceKilometers DistanceMiles FlightDelayMin \\\n",
- "count 13059.000000 13059.000000 13059.000000 13059.000000 \n",
- "mean 628.253689 7092.142457 4406.853010 47.335171 \n",
- "std 266.386661 4578.263193 2844.800855 96.743006 \n",
- "min 100.020531 0.000000 0.000000 0.000000 \n",
- "25% 410.008918 2470.545974 1535.126118 0.000000 \n",
- "50% 640.362374 7612.072403 4729.922470 0.000000 \n",
- "75% 842.260482 9735.660463 6049.459005 14.102113 \n",
- "max 1199.729004 19881.482422 12353.780273 360.000000 \n",
- "\n",
- " FlightTimeMin dayOfWeek \n",
- "count 13059.000000 13059.000000 \n",
- "mean 511.127842 2.835975 \n",
- "std 334.741135 1.939365 \n",
- "min 0.000000 0.000000 \n",
- "25% 251.682199 1.000000 \n",
- "50% 503.148975 3.000000 \n",
- "75% 720.569838 4.000000 \n",
- "max 1902.901978 6.000000 "
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.describe()"
- ]
- },
{
"cell_type": "markdown",
"metadata": {},
@@ -420,7 +9,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -429,7 +18,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -438,7 +27,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 3,
"metadata": {},
"outputs": [
{
@@ -671,7 +260,7 @@
"[5 rows x 27 columns]"
]
},
- "execution_count": 7,
+ "execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
@@ -682,7 +271,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 4,
"metadata": {},
"outputs": [
{
@@ -822,7 +411,7 @@
"max 31.715034 1902.902032 6.000000 "
]
},
- "execution_count": 8,
+ "execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -830,6 +419,419 @@
"source": [
"pd_df.describe()"
]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Eland"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import eland as ed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ed_df = ed.read_es('localhost', 'kibana_sample_data_flights')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " AvgTicketPrice | \n",
+ " Cancelled | \n",
+ " Carrier | \n",
+ " Dest | \n",
+ " DestAirportID | \n",
+ " DestCityName | \n",
+ " DestCountry | \n",
+ " DestLocation | \n",
+ " DestRegion | \n",
+ " DestWeather | \n",
+ " ... | \n",
+ " FlightTimeMin | \n",
+ " Origin | \n",
+ " OriginAirportID | \n",
+ " OriginCityName | \n",
+ " OriginCountry | \n",
+ " OriginLocation | \n",
+ " OriginRegion | \n",
+ " OriginWeather | \n",
+ " dayOfWeek | \n",
+ " timestamp | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 841.265642 | \n",
+ " False | \n",
+ " Kibana Airlines | \n",
+ " Sydney Kingsford Smith International Airport | \n",
+ " SYD | \n",
+ " Sydney | \n",
+ " AU | \n",
+ " {'lat': '-33.94609833', 'lon': '151.177002'} | \n",
+ " SE-BD | \n",
+ " Rain | \n",
+ " ... | \n",
+ " 1030.770416 | \n",
+ " Frankfurt am Main Airport | \n",
+ " FRA | \n",
+ " Frankfurt am Main | \n",
+ " DE | \n",
+ " {'lat': '50.033333', 'lon': '8.570556'} | \n",
+ " DE-HE | \n",
+ " Sunny | \n",
+ " 0 | \n",
+ " 2019-05-27T00:00:00 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 882.982662 | \n",
+ " False | \n",
+ " Logstash Airways | \n",
+ " Venice Marco Polo Airport | \n",
+ " VE05 | \n",
+ " Venice | \n",
+ " IT | \n",
+ " {'lat': '45.505299', 'lon': '12.3519'} | \n",
+ " IT-34 | \n",
+ " Sunny | \n",
+ " ... | \n",
+ " 464.389481 | \n",
+ " Cape Town International Airport | \n",
+ " CPT | \n",
+ " Cape Town | \n",
+ " ZA | \n",
+ " {'lat': '-33.96480179', 'lon': '18.60169983'} | \n",
+ " SE-BD | \n",
+ " Clear | \n",
+ " 0 | \n",
+ " 2019-05-27T18:27:00 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 190.636904 | \n",
+ " False | \n",
+ " Logstash Airways | \n",
+ " Venice Marco Polo Airport | \n",
+ " VE05 | \n",
+ " Venice | \n",
+ " IT | \n",
+ " {'lat': '45.505299', 'lon': '12.3519'} | \n",
+ " IT-34 | \n",
+ " Cloudy | \n",
+ " ... | \n",
+ " 0.000000 | \n",
+ " Venice Marco Polo Airport | \n",
+ " VE05 | \n",
+ " Venice | \n",
+ " IT | \n",
+ " {'lat': '45.505299', 'lon': '12.3519'} | \n",
+ " IT-34 | \n",
+ " Rain | \n",
+ " 0 | \n",
+ " 2019-05-27T17:11:14 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 181.694216 | \n",
+ " True | \n",
+ " Kibana Airlines | \n",
+ " Treviso-Sant'Angelo Airport | \n",
+ " TV01 | \n",
+ " Treviso | \n",
+ " IT | \n",
+ " {'lat': '45.648399', 'lon': '12.1944'} | \n",
+ " IT-34 | \n",
+ " Clear | \n",
+ " ... | \n",
+ " 222.749059 | \n",
+ " Naples International Airport | \n",
+ " NA01 | \n",
+ " Naples | \n",
+ " IT | \n",
+ " {'lat': '40.886002', 'lon': '14.2908'} | \n",
+ " IT-72 | \n",
+ " Thunder & Lightning | \n",
+ " 0 | \n",
+ " 2019-05-27T10:33:28 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 730.041778 | \n",
+ " False | \n",
+ " Kibana Airlines | \n",
+ " Xi'an Xianyang International Airport | \n",
+ " XIY | \n",
+ " Xi'an | \n",
+ " CN | \n",
+ " {'lat': '34.447102', 'lon': '108.751999'} | \n",
+ " SE-BD | \n",
+ " Clear | \n",
+ " ... | \n",
+ " 785.779071 | \n",
+ " Licenciado Benito Juarez International Airport | \n",
+ " AICM | \n",
+ " Mexico City | \n",
+ " MX | \n",
+ " {'lat': '19.4363', 'lon': '-99.072098'} | \n",
+ " MX-DIF | \n",
+ " Damaging Wind | \n",
+ " 0 | \n",
+ " 2019-05-27T05:13:00 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
5 rows × 27 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " AvgTicketPrice Cancelled Carrier \\\n",
+ "0 841.265642 False Kibana Airlines \n",
+ "1 882.982662 False Logstash Airways \n",
+ "2 190.636904 False Logstash Airways \n",
+ "3 181.694216 True Kibana Airlines \n",
+ "4 730.041778 False Kibana Airlines \n",
+ "\n",
+ " Dest DestAirportID DestCityName \\\n",
+ "0 Sydney Kingsford Smith International Airport SYD Sydney \n",
+ "1 Venice Marco Polo Airport VE05 Venice \n",
+ "2 Venice Marco Polo Airport VE05 Venice \n",
+ "3 Treviso-Sant'Angelo Airport TV01 Treviso \n",
+ "4 Xi'an Xianyang International Airport XIY Xi'an \n",
+ "\n",
+ " DestCountry DestLocation DestRegion \\\n",
+ "0 AU {'lat': '-33.94609833', 'lon': '151.177002'} SE-BD \n",
+ "1 IT {'lat': '45.505299', 'lon': '12.3519'} IT-34 \n",
+ "2 IT {'lat': '45.505299', 'lon': '12.3519'} IT-34 \n",
+ "3 IT {'lat': '45.648399', 'lon': '12.1944'} IT-34 \n",
+ "4 CN {'lat': '34.447102', 'lon': '108.751999'} SE-BD \n",
+ "\n",
+ " DestWeather ... FlightTimeMin \\\n",
+ "0 Rain ... 1030.770416 \n",
+ "1 Sunny ... 464.389481 \n",
+ "2 Cloudy ... 0.000000 \n",
+ "3 Clear ... 222.749059 \n",
+ "4 Clear ... 785.779071 \n",
+ "\n",
+ " Origin OriginAirportID \\\n",
+ "0 Frankfurt am Main Airport FRA \n",
+ "1 Cape Town International Airport CPT \n",
+ "2 Venice Marco Polo Airport VE05 \n",
+ "3 Naples International Airport NA01 \n",
+ "4 Licenciado Benito Juarez International Airport AICM \n",
+ "\n",
+ " OriginCityName OriginCountry \\\n",
+ "0 Frankfurt am Main DE \n",
+ "1 Cape Town ZA \n",
+ "2 Venice IT \n",
+ "3 Naples IT \n",
+ "4 Mexico City MX \n",
+ "\n",
+ " OriginLocation OriginRegion \\\n",
+ "0 {'lat': '50.033333', 'lon': '8.570556'} DE-HE \n",
+ "1 {'lat': '-33.96480179', 'lon': '18.60169983'} SE-BD \n",
+ "2 {'lat': '45.505299', 'lon': '12.3519'} IT-34 \n",
+ "3 {'lat': '40.886002', 'lon': '14.2908'} IT-72 \n",
+ "4 {'lat': '19.4363', 'lon': '-99.072098'} MX-DIF \n",
+ "\n",
+ " OriginWeather dayOfWeek timestamp \n",
+ "0 Sunny 0 2019-05-27T00:00:00 \n",
+ "1 Clear 0 2019-05-27T18:27:00 \n",
+ "2 Rain 0 2019-05-27T17:11:14 \n",
+ "3 Thunder & Lightning 0 2019-05-27T10:33:28 \n",
+ "4 Damaging Wind 0 2019-05-27T05:13:00 \n",
+ "\n",
+ "[5 rows x 27 columns]"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ed_df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " AvgTicketPrice | \n",
+ " DistanceKilometers | \n",
+ " DistanceMiles | \n",
+ " FlightDelayMin | \n",
+ " FlightTimeMin | \n",
+ " dayOfWeek | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 13059.000000 | \n",
+ " 13059.000000 | \n",
+ " 13059.000000 | \n",
+ " 13059.000000 | \n",
+ " 13059.000000 | \n",
+ " 13059.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 628.253689 | \n",
+ " 7092.142457 | \n",
+ " 4406.853010 | \n",
+ " 47.335171 | \n",
+ " 511.127842 | \n",
+ " 2.835975 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 266.386661 | \n",
+ " 4578.263193 | \n",
+ " 2844.800855 | \n",
+ " 96.743006 | \n",
+ " 334.741135 | \n",
+ " 1.939365 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 100.020531 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 410.008918 | \n",
+ " 2470.545974 | \n",
+ " 1535.126118 | \n",
+ " 0.000000 | \n",
+ " 252.064162 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 640.387285 | \n",
+ " 7612.072403 | \n",
+ " 4729.922470 | \n",
+ " 0.000000 | \n",
+ " 503.148975 | \n",
+ " 3.000000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 842.259390 | \n",
+ " 9735.660463 | \n",
+ " 6049.583389 | \n",
+ " 15.000000 | \n",
+ " 720.505705 | \n",
+ " 4.068000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 1199.729004 | \n",
+ " 19881.482422 | \n",
+ " 12353.780273 | \n",
+ " 360.000000 | \n",
+ " 1902.901978 | \n",
+ " 6.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " AvgTicketPrice DistanceKilometers DistanceMiles FlightDelayMin \\\n",
+ "count 13059.000000 13059.000000 13059.000000 13059.000000 \n",
+ "mean 628.253689 7092.142457 4406.853010 47.335171 \n",
+ "std 266.386661 4578.263193 2844.800855 96.743006 \n",
+ "min 100.020531 0.000000 0.000000 0.000000 \n",
+ "25% 410.008918 2470.545974 1535.126118 0.000000 \n",
+ "50% 640.387285 7612.072403 4729.922470 0.000000 \n",
+ "75% 842.259390 9735.660463 6049.583389 15.000000 \n",
+ "max 1199.729004 19881.482422 12353.780273 360.000000 \n",
+ "\n",
+ " FlightTimeMin dayOfWeek \n",
+ "count 13059.000000 13059.000000 \n",
+ "mean 511.127842 2.835975 \n",
+ "std 334.741135 1.939365 \n",
+ "min 0.000000 0.000000 \n",
+ "25% 252.064162 1.000000 \n",
+ "50% 503.148975 3.000000 \n",
+ "75% 720.505705 4.068000 \n",
+ "max 1902.901978 6.000000 "
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ed_df.describe()"
+ ]
}
],
"metadata": {