mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
More doc updates.
This commit is contained in:
parent
d8c1e18161
commit
dff49d01fe
@ -40,7 +40,10 @@ release = '0.1'
|
|||||||
extensions = [
|
extensions = [
|
||||||
'sphinx.ext.autodoc',
|
'sphinx.ext.autodoc',
|
||||||
"sphinx.ext.doctest",
|
"sphinx.ext.doctest",
|
||||||
'numpydoc'
|
"sphinx.ext.extlinks",
|
||||||
|
'numpydoc',
|
||||||
|
"matplotlib.sphinxext.plot_directive",
|
||||||
|
"sphinx.ext.todo",
|
||||||
]
|
]
|
||||||
|
|
||||||
doctest_global_setup = '''
|
doctest_global_setup = '''
|
||||||
@ -54,7 +57,18 @@ except ImportError:
|
|||||||
pd = None
|
pd = None
|
||||||
'''
|
'''
|
||||||
|
|
||||||
|
extlinks = {'pandas_docs': ('https://pandas.pydata.org/pandas-docs/version/0.25.1/reference/api/%s.html', '')}
|
||||||
|
|
||||||
numpydoc_attributes_as_param_list = False
|
numpydoc_attributes_as_param_list = False
|
||||||
|
numpydoc_show_class_members = False
|
||||||
|
|
||||||
|
# matplotlib plot directive
|
||||||
|
plot_include_source = True
|
||||||
|
plot_formats = [("png", 90)]
|
||||||
|
plot_html_show_formats = False
|
||||||
|
plot_html_show_source_link = False
|
||||||
|
plot_pre_code = """import numpy as np
|
||||||
|
import eland as ed"""
|
||||||
|
|
||||||
|
|
||||||
# Add any paths that contain templates here, relative to this directory.
|
# Add any paths that contain templates here, relative to this directory.
|
||||||
|
6
docs/source/reference/api/eland.DataFrame.agg.rst
Normal file
6
docs/source/reference/api/eland.DataFrame.agg.rst
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
eland.DataFrame.agg
|
||||||
|
===================
|
||||||
|
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
.. automethod:: DataFrame.agg
|
6
docs/source/reference/api/eland.DataFrame.aggregate.rst
Normal file
6
docs/source/reference/api/eland.DataFrame.aggregate.rst
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
eland.DataFrame.aggregate
|
||||||
|
=========================
|
||||||
|
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
.. automethod:: DataFrame.aggregate
|
6
docs/source/reference/api/eland.DataFrame.count.rst
Normal file
6
docs/source/reference/api/eland.DataFrame.count.rst
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
eland.DataFrame.count
|
||||||
|
=====================
|
||||||
|
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
.. automethod:: DataFrame.count
|
6
docs/source/reference/api/eland.DataFrame.describe.rst
Normal file
6
docs/source/reference/api/eland.DataFrame.describe.rst
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
eland.DataFrame.describe
|
||||||
|
========================
|
||||||
|
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
.. automethod:: DataFrame.describe
|
6
docs/source/reference/api/eland.DataFrame.drop.rst
Normal file
6
docs/source/reference/api/eland.DataFrame.drop.rst
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
eland.DataFrame.drop
|
||||||
|
====================
|
||||||
|
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
.. automethod:: DataFrame.drop
|
6
docs/source/reference/api/eland.DataFrame.dtypes.rst
Normal file
6
docs/source/reference/api/eland.DataFrame.dtypes.rst
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
eland.DataFrame.dtypes
|
||||||
|
======================
|
||||||
|
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
.. autoattribute:: DataFrame.dtypes
|
6
docs/source/reference/api/eland.DataFrame.empty.rst
Normal file
6
docs/source/reference/api/eland.DataFrame.empty.rst
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
eland.DataFrame.empty
|
||||||
|
=====================
|
||||||
|
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
.. autoattribute:: DataFrame.empty
|
6
docs/source/reference/api/eland.DataFrame.get.rst
Normal file
6
docs/source/reference/api/eland.DataFrame.get.rst
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
eland.DataFrame.get
|
||||||
|
===================
|
||||||
|
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
.. automethod:: DataFrame.get
|
6
docs/source/reference/api/eland.DataFrame.hist.rst
Normal file
6
docs/source/reference/api/eland.DataFrame.hist.rst
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
eland.DataFrame.hist
|
||||||
|
====================
|
||||||
|
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
.. automethod:: DataFrame.hist
|
6
docs/source/reference/api/eland.DataFrame.info.rst
Normal file
6
docs/source/reference/api/eland.DataFrame.info.rst
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
eland.DataFrame.info
|
||||||
|
====================
|
||||||
|
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
.. automethod:: DataFrame.info
|
@ -0,0 +1,6 @@
|
|||||||
|
eland.DataFrame.select_dtypes
|
||||||
|
=============================
|
||||||
|
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
.. automethod:: DataFrame.select_dtypes
|
6
docs/source/reference/api/eland.Index.rst
Normal file
6
docs/source/reference/api/eland.Index.rst
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
eland.Index
|
||||||
|
===========
|
||||||
|
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
.. autoclass:: Index
|
@ -21,6 +21,9 @@ Attributes and underlying data
|
|||||||
|
|
||||||
DataFrame.index
|
DataFrame.index
|
||||||
DataFrame.columns
|
DataFrame.columns
|
||||||
|
DataFrame.dtypes
|
||||||
|
DataFrame.select_dtypes
|
||||||
|
DataFrame.empty
|
||||||
|
|
||||||
Indexing, iteration
|
Indexing, iteration
|
||||||
~~~~~~~~~~~~~~~~~~~
|
~~~~~~~~~~~~~~~~~~~
|
||||||
@ -29,7 +32,45 @@ Indexing, iteration
|
|||||||
|
|
||||||
DataFrame.head
|
DataFrame.head
|
||||||
DataFrame.tail
|
DataFrame.tail
|
||||||
|
DataFrame.get
|
||||||
|
|
||||||
|
Function application, GroupBy & window
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
.. autosummary::
|
||||||
|
:toctree: api/
|
||||||
|
|
||||||
|
DataFrame.agg
|
||||||
|
DataFrame.aggregate
|
||||||
|
|
||||||
|
.. _api.dataframe.stats:
|
||||||
|
|
||||||
|
Computations / descriptive stats
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
.. autosummary::
|
||||||
|
:toctree: api/
|
||||||
|
|
||||||
|
DataFrame.count
|
||||||
|
DataFrame.describe
|
||||||
|
DataFrame.info
|
||||||
|
|
||||||
|
Reindexing / selection / label manipulation
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
.. autosummary::
|
||||||
|
:toctree: api/
|
||||||
|
|
||||||
|
DataFrame.drop
|
||||||
|
|
||||||
|
Plotting
|
||||||
|
~~~~~~~~
|
||||||
|
.. autosummary::
|
||||||
|
:toctree: api/
|
||||||
|
|
||||||
|
DataFrame.hist
|
||||||
|
|
||||||
|
Serialization / IO / conversion
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
.. autosummary::
|
||||||
|
:toctree: api/
|
||||||
|
|
||||||
|
DataFrame.info
|
||||||
|
|
||||||
|
@ -12,3 +12,4 @@ methods. All classes and functions exposed in ``eland.*`` namespace are public.
|
|||||||
|
|
||||||
general_utility_functions
|
general_utility_functions
|
||||||
dataframe
|
dataframe
|
||||||
|
indexing
|
||||||
|
15
docs/source/reference/indexing.rst
Normal file
15
docs/source/reference/indexing.rst
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
.. _api.index:
|
||||||
|
|
||||||
|
=====
|
||||||
|
Index
|
||||||
|
=====
|
||||||
|
.. currentmodule:: eland
|
||||||
|
|
||||||
|
**Many of these methods or variants thereof are available on the objects
|
||||||
|
that contain an index (Series/DataFrame) and those should most likely be
|
||||||
|
used before calling these methods directly.**
|
||||||
|
|
||||||
|
.. autosummary::
|
||||||
|
:toctree: api/
|
||||||
|
|
||||||
|
Index
|
17
eland/conftest.py
Normal file
17
eland/conftest.py
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
import pytest
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import eland as ed
|
||||||
|
|
||||||
|
# Fix console sizxe for consistent test results
|
||||||
|
pd.set_option('display.max_rows', 10)
|
||||||
|
pd.set_option('display.max_columns', 5)
|
||||||
|
pd.set_option('display.width', 100)
|
||||||
|
|
||||||
|
@pytest.fixture(autouse=True)
|
||||||
|
def add_imports(doctest_namespace):
|
||||||
|
doctest_namespace["np"] = np
|
||||||
|
doctest_namespace["pd"] = pd
|
||||||
|
doctest_namespace["ed"] = ed
|
||||||
|
|
@ -8,7 +8,6 @@ import six
|
|||||||
from pandas.core.common import apply_if_callable, is_bool_indexer
|
from pandas.core.common import apply_if_callable, is_bool_indexer
|
||||||
from pandas.core.dtypes.common import is_list_like
|
from pandas.core.dtypes.common import is_list_like
|
||||||
from pandas.core.indexing import check_bool_indexer
|
from pandas.core.indexing import check_bool_indexer
|
||||||
|
|
||||||
from pandas.io.common import _expand_user, _stringify_path
|
from pandas.io.common import _expand_user, _stringify_path
|
||||||
from pandas.io.formats import console
|
from pandas.io.formats import console
|
||||||
from pandas.io.formats import format as fmt
|
from pandas.io.formats import format as fmt
|
||||||
@ -19,6 +18,7 @@ from eland import NDFrame
|
|||||||
from eland import Series
|
from eland import Series
|
||||||
from eland.filter import BooleanFilter, ScriptFilter
|
from eland.filter import BooleanFilter, ScriptFilter
|
||||||
|
|
||||||
|
|
||||||
class DataFrame(NDFrame):
|
class DataFrame(NDFrame):
|
||||||
"""
|
"""
|
||||||
Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes
|
Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes
|
||||||
@ -39,21 +39,26 @@ class DataFrame(NDFrame):
|
|||||||
index_field: str, optional
|
index_field: str, optional
|
||||||
The Elasticsearch index field to use as the DataFrame index. Defaults to _id if None is used.
|
The Elasticsearch index field to use as the DataFrame index. Defaults to _id if None is used.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
:pandas_docs:`pandas.DataFrame`
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
Constructing DataFrame from an Elasticsearch configuration arguments and an Elasticsearch index
|
Constructing DataFrame from an Elasticsearch configuration arguments and an Elasticsearch index
|
||||||
|
|
||||||
>>> df = ed.DataFrame('localhost:9200', 'flights')
|
>>> df = ed.DataFrame('localhost:9200', 'flights')
|
||||||
>>> df.head()
|
>>> df.head()
|
||||||
AvgTicketPrice Cancelled Carrier Dest ... OriginRegion OriginWeather dayOfWeek timestamp
|
AvgTicketPrice Cancelled ... dayOfWeek timestamp
|
||||||
0 841.265642 False Kibana Airlines Sydney Kingsford Smith International Airport ... DE-HE Sunny 0 2018-01-01 00:00:00
|
0 841.265642 False ... 0 2018-01-01 00:00:00
|
||||||
1 882.982662 False Logstash Airways Venice Marco Polo Airport ... SE-BD Clear 0 2018-01-01 18:27:00
|
1 882.982662 False ... 0 2018-01-01 18:27:00
|
||||||
2 190.636904 False Logstash Airways Venice Marco Polo Airport ... IT-34 Rain 0 2018-01-01 17:11:14
|
2 190.636904 False ... 0 2018-01-01 17:11:14
|
||||||
3 181.694216 True Kibana Airlines Treviso-Sant'Angelo Airport ... IT-72 Thunder & Lightning 0 2018-01-01 10:33:28
|
3 181.694216 True ... 0 2018-01-01 10:33:28
|
||||||
4 730.041778 False Kibana Airlines Xi'an Xianyang International Airport ... MX-DIF Damaging Wind 0 2018-01-01 05:13:00
|
4 730.041778 False ... 0 2018-01-01 05:13:00
|
||||||
<BLANKLINE>
|
<BLANKLINE>
|
||||||
[5 rows x 27 columns]
|
[5 rows x 27 columns]
|
||||||
|
|
||||||
|
|
||||||
Constructing DataFrame from an Elasticsearch client and an Elasticsearch index
|
Constructing DataFrame from an Elasticsearch client and an Elasticsearch index
|
||||||
|
|
||||||
>>> from elasticsearch import Elasticsearch
|
>>> from elasticsearch import Elasticsearch
|
||||||
@ -82,6 +87,7 @@ class DataFrame(NDFrame):
|
|||||||
<BLANKLINE>
|
<BLANKLINE>
|
||||||
[5 rows x 2 columns]
|
[5 rows x 2 columns]
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
client=None,
|
client=None,
|
||||||
index_pattern=None,
|
index_pattern=None,
|
||||||
@ -115,18 +121,21 @@ class DataFrame(NDFrame):
|
|||||||
-------
|
-------
|
||||||
Elasticsearch field names as pandas.Index
|
Elasticsearch field names as pandas.Index
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
:pandas_docs:`pandas.DataFrame.columns`
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
>>> df = ed.DataFrame('localhost', 'flights')
|
>>> df = ed.DataFrame('localhost', 'flights')
|
||||||
>>> assert isinstance(df.columns, pd.Index)
|
>>> assert isinstance(df.columns, pd.Index)
|
||||||
>>> df.columns
|
>>> df.columns
|
||||||
Index(['AvgTicketPrice', 'Cancelled', 'Carrier', 'Dest', 'DestAirportID',
|
Index(['AvgTicketPrice', 'Cancelled', 'Carrier', 'Dest', 'DestAirportID', 'DestCityName',
|
||||||
... 'DestCityName', 'DestCountry', 'DestLocation', 'DestRegion',
|
... 'DestCountry', 'DestLocation', 'DestRegion', 'DestWeather', 'DistanceKilometers',
|
||||||
... 'DestWeather', 'DistanceKilometers', 'DistanceMiles', 'FlightDelay',
|
... 'DistanceMiles', 'FlightDelay', 'FlightDelayMin', 'FlightDelayType', 'FlightNum',
|
||||||
... 'FlightDelayMin', 'FlightDelayType', 'FlightNum', 'FlightTimeHour',
|
... 'FlightTimeHour', 'FlightTimeMin', 'Origin', 'OriginAirportID', 'OriginCityName',
|
||||||
... 'FlightTimeMin', 'Origin', 'OriginAirportID', 'OriginCityName',
|
... 'OriginCountry', 'OriginLocation', 'OriginRegion', 'OriginWeather', 'dayOfWeek',
|
||||||
... 'OriginCountry', 'OriginLocation', 'OriginRegion', 'OriginWeather',
|
... 'timestamp'],
|
||||||
... 'dayOfWeek', 'timestamp'],
|
|
||||||
... dtype='object')
|
... dtype='object')
|
||||||
"""
|
"""
|
||||||
return self._query_compiler.columns
|
return self._query_compiler.columns
|
||||||
@ -137,9 +146,20 @@ class DataFrame(NDFrame):
|
|||||||
def empty(self):
|
def empty(self):
|
||||||
"""Determines if the DataFrame is empty.
|
"""Determines if the DataFrame is empty.
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
True if the DataFrame is empty.
|
-------
|
||||||
False otherwise.
|
bool
|
||||||
|
If DataFrame is empty, return True, if not return False.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
:pandas_docs:`pandas.DataFrame.empty`
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> df = ed.DataFrame('localhost', 'flights')
|
||||||
|
>>> df.empty
|
||||||
|
False
|
||||||
"""
|
"""
|
||||||
return len(self.columns) == 0 or len(self.index) == 0
|
return len(self.columns) == 0 or len(self.index) == 0
|
||||||
|
|
||||||
@ -161,6 +181,10 @@ class DataFrame(NDFrame):
|
|||||||
eland.DataFrame
|
eland.DataFrame
|
||||||
eland DataFrame filtered on first n rows sorted by index field
|
eland DataFrame filtered on first n rows sorted by index field
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
:pandas_docs:`pandas.DataFrame.head`
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
>>> df = ed.DataFrame('localhost', 'flights', columns=['Origin', 'Dest'])
|
>>> df = ed.DataFrame('localhost', 'flights', columns=['Origin', 'Dest'])
|
||||||
@ -192,6 +216,10 @@ class DataFrame(NDFrame):
|
|||||||
eland.DataFrame:
|
eland.DataFrame:
|
||||||
eland DataFrame filtered on last n rows sorted by index field
|
eland DataFrame filtered on last n rows sorted by index field
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
:pandas_docs:`pandas.DataFrame.tail`
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
>>> df = ed.DataFrame('localhost', 'flights', columns=['Origin', 'Dest'])
|
>>> df = ed.DataFrame('localhost', 'flights', columns=['Origin', 'Dest'])
|
||||||
@ -257,20 +285,45 @@ class DataFrame(NDFrame):
|
|||||||
|
|
||||||
def count(self):
|
def count(self):
|
||||||
"""
|
"""
|
||||||
Count non-NA cells for each column (TODO row)
|
Count non-NA cells for each column.
|
||||||
|
|
||||||
Counts are based on exists queries against ES
|
Counts are based on exists queries against ES.
|
||||||
|
|
||||||
This is inefficient, as it creates N queries (N is number of fields).
|
This is inefficient, as it creates N queries (N is number of fields).
|
||||||
|
|
||||||
An alternative approach is to use value_count aggregations. However, they have issues in that:
|
An alternative approach is to use value_count aggregations. However, they have issues in that:
|
||||||
1. They can only be used with aggregatable fields (e.g. keyword not text)
|
|
||||||
2. For list fields they return multiple counts. E.g. tags=['elastic', 'ml'] returns value_count=2
|
- They can only be used with aggregatable fields (e.g. keyword not text)
|
||||||
for a single document.
|
- For list fields they return multiple counts. E.g. tags=['elastic', 'ml'] returns value_count=2 for a single document.
|
||||||
|
|
||||||
|
TODO - add additional pandas.DataFrame.count features
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
pandas.Series:
|
||||||
|
Summary of column counts
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
:pandas_docs:`pandas.DataFrame.count`
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> df = ed.DataFrame('localhost', 'ecommerce', columns=['customer_first_name', 'geoip.city_name'])
|
||||||
|
>>> df.count()
|
||||||
|
customer_first_name 4675
|
||||||
|
geoip.city_name 4094
|
||||||
|
dtype: int64
|
||||||
"""
|
"""
|
||||||
return self._query_compiler.count()
|
return self._query_compiler.count()
|
||||||
|
|
||||||
def info_es(self):
|
def info_es(self):
|
||||||
|
"""
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
None
|
||||||
|
This method prints a debug summary of the task list Elasticsearch
|
||||||
|
"""
|
||||||
buf = StringIO()
|
buf = StringIO()
|
||||||
|
|
||||||
super()._info_es(buf)
|
super()._info_es(buf)
|
||||||
@ -297,9 +350,25 @@ class DataFrame(NDFrame):
|
|||||||
This method prints information about a DataFrame including
|
This method prints information about a DataFrame including
|
||||||
the index dtype and column dtypes, non-null values and memory usage.
|
the index dtype and column dtypes, non-null values and memory usage.
|
||||||
|
|
||||||
|
See :pandas_docs:`pandas.DataFrame.info` for full details.
|
||||||
|
|
||||||
|
Notes
|
||||||
|
-----
|
||||||
This copies a lot of code from pandas.DataFrame.info as it is difficult
|
This copies a lot of code from pandas.DataFrame.info as it is difficult
|
||||||
to split out the appropriate code or creating a SparseDataFrame gives
|
to split out the appropriate code or creating a SparseDataFrame gives
|
||||||
incorrect results on types and counts.
|
incorrect results on types and counts.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> df = ed.DataFrame('localhost', 'ecommerce', columns=['customer_first_name', 'geoip.city_name'])
|
||||||
|
>>> df.info()
|
||||||
|
<class 'eland.dataframe.DataFrame'>
|
||||||
|
Index: 4675 entries, 0 to 4674
|
||||||
|
Data columns (total 2 columns):
|
||||||
|
customer_first_name 4675 non-null object
|
||||||
|
geoip.city_name 4094 non-null object
|
||||||
|
dtypes: object(2)
|
||||||
|
memory usage: 96.0 bytes
|
||||||
"""
|
"""
|
||||||
if buf is None: # pragma: no cover
|
if buf is None: # pragma: no cover
|
||||||
buf = sys.stdout
|
buf = sys.stdout
|
||||||
@ -386,7 +455,7 @@ class DataFrame(NDFrame):
|
|||||||
else:
|
else:
|
||||||
_verbose_repr()
|
_verbose_repr()
|
||||||
|
|
||||||
counts = self.get_dtype_counts()
|
counts = self.dtypes.value_counts()
|
||||||
dtypes = ['{k}({kk:d})'.format(k=k[0], kk=k[1]) for k
|
dtypes = ['{k}({kk:d})'.format(k=k[0], kk=k[1]) for k
|
||||||
in sorted(counts.items())]
|
in sorted(counts.items())]
|
||||||
lines.append('dtypes: {types}'.format(types=', '.join(dtypes)))
|
lines.append('dtypes: {types}'.format(types=', '.join(dtypes)))
|
||||||
@ -623,7 +692,11 @@ class DataFrame(NDFrame):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def select_dtypes(self, include=None, exclude=None):
|
def select_dtypes(self, include=None, exclude=None):
|
||||||
# get empty df
|
"""
|
||||||
|
Return a subset of the DataFrame's columns based on the column dtypes.
|
||||||
|
|
||||||
|
Compatible with :pandas_docs:`pandas.DataFrame.select_dtypes`
|
||||||
|
"""
|
||||||
empty_df = self._empty_pd_df()
|
empty_df = self._empty_pd_df()
|
||||||
|
|
||||||
empty_df = empty_df.select_dtypes(include=include, exclude=exclude)
|
empty_df = empty_df.select_dtypes(include=include, exclude=exclude)
|
||||||
@ -649,19 +722,13 @@ class DataFrame(NDFrame):
|
|||||||
def keys(self):
|
def keys(self):
|
||||||
return self.columns
|
return self.columns
|
||||||
|
|
||||||
def groupby(self, by=None, axis=0, *args, **kwargs):
|
|
||||||
axis = pd.DataFrame._get_axis_number(axis)
|
|
||||||
|
|
||||||
if axis == 1:
|
|
||||||
raise NotImplementedError("Aggregating via index not currently implemented - needs index transform")
|
|
||||||
|
|
||||||
def aggregate(self, func, axis=0, *args, **kwargs):
|
def aggregate(self, func, axis=0, *args, **kwargs):
|
||||||
"""
|
"""
|
||||||
Aggregate using one or more operations over the specified axis.
|
Aggregate using one or more operations over the specified axis.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
func : function, str, list or dict
|
func: function, str, list or dict
|
||||||
Function to use for aggregating the data. If a function, must either
|
Function to use for aggregating the data. If a function, must either
|
||||||
work when passed a %(klass)s or when passed to %(klass)s.apply.
|
work when passed a %(klass)s or when passed to %(klass)s.apply.
|
||||||
|
|
||||||
@ -671,11 +738,15 @@ class DataFrame(NDFrame):
|
|||||||
- string function name
|
- string function name
|
||||||
- list of functions and/or function names, e.g. ``[np.sum, 'mean']``
|
- list of functions and/or function names, e.g. ``[np.sum, 'mean']``
|
||||||
- dict of axis labels -> functions, function names or list of such.
|
- dict of axis labels -> functions, function names or list of such.
|
||||||
|
|
||||||
|
Currently, we only support ``['count', 'mad', 'max', 'mean', 'median', 'min', 'mode', 'quantile',
|
||||||
|
'rank', 'sem', 'skew', 'sum', 'std', 'var']``
|
||||||
axis
|
axis
|
||||||
|
Currently, we only support axis=0 (index)
|
||||||
*args
|
*args
|
||||||
Positional arguments to pass to `func`.
|
Positional arguments to pass to `func`
|
||||||
**kwargs
|
**kwargs
|
||||||
Keyword arguments to pass to `func`.
|
Keyword arguments to pass to `func`
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
@ -684,6 +755,19 @@ class DataFrame(NDFrame):
|
|||||||
if DataFrame.agg is called with several functions, returns a DataFrame
|
if DataFrame.agg is called with several functions, returns a DataFrame
|
||||||
if Series.agg is called with single function, returns a scalar
|
if Series.agg is called with single function, returns a scalar
|
||||||
if Series.agg is called with several functions, returns a Series
|
if Series.agg is called with several functions, returns a Series
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
:pandas_docs:`pandas.DataFrame.aggregate`
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> df = ed.DataFrame('localhost', 'flights')
|
||||||
|
>>> df[['DistanceKilometers', 'AvgTicketPrice']].aggregate(['sum', 'min', 'std'])
|
||||||
|
DistanceKilometers AvgTicketPrice
|
||||||
|
sum 9.261629e+07 8.204365e+06
|
||||||
|
min 0.000000e+00 1.000205e+02
|
||||||
|
std 4.578263e+03 2.663867e+02
|
||||||
"""
|
"""
|
||||||
axis = pd.DataFrame._get_axis_number(axis)
|
axis = pd.DataFrame._get_axis_number(axis)
|
||||||
|
|
||||||
@ -722,16 +806,38 @@ class DataFrame(NDFrame):
|
|||||||
raise NotImplementedError(expr, type(expr))
|
raise NotImplementedError(expr, type(expr))
|
||||||
|
|
||||||
def get(self, key, default=None):
|
def get(self, key, default=None):
|
||||||
"""Get item from object for given key (DataFrame column, Panel
|
"""
|
||||||
slice, etc.). Returns default value if not found.
|
Get item from object for given key (ex: DataFrame column).
|
||||||
|
Returns default value if not found.
|
||||||
|
|
||||||
Args:
|
Parameters
|
||||||
key (DataFrame column, Panel slice) : the key for which value
|
----------
|
||||||
to get
|
key: object
|
||||||
|
|
||||||
Returns:
|
Returns
|
||||||
value (type of items contained in object) : A value that is
|
-------
|
||||||
stored at the key
|
value: same type as items contained in object
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
:pandas_docs:`pandas.DataFrame.get`
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> df = ed.DataFrame('localhost', 'flights')
|
||||||
|
>>> df.get('Carrier')
|
||||||
|
0 Kibana Airlines
|
||||||
|
1 Logstash Airways
|
||||||
|
2 Logstash Airways
|
||||||
|
3 Kibana Airlines
|
||||||
|
4 Kibana Airlines
|
||||||
|
...
|
||||||
|
13054 Logstash Airways
|
||||||
|
13055 Logstash Airways
|
||||||
|
13056 Logstash Airways
|
||||||
|
13057 JetBeats
|
||||||
|
13058 JetBeats
|
||||||
|
Name: Carrier, Length: 13059, dtype: object
|
||||||
"""
|
"""
|
||||||
if key in self.keys():
|
if key in self.keys():
|
||||||
return self._getitem(key)
|
return self._getitem(key)
|
||||||
|
@ -1,27 +1,23 @@
|
|||||||
"""
|
|
||||||
class Index
|
|
||||||
|
|
||||||
The index for an eland.DataFrame.
|
|
||||||
|
|
||||||
Currently, the index is a field that exists in every document in an Elasticsearch index.
|
|
||||||
For slicing and sorting operations it must be a docvalues field. By default _id is used,
|
|
||||||
which can't be used for range queries and is inefficient for sorting:
|
|
||||||
|
|
||||||
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-id-field.html
|
|
||||||
(The value of the _id field is also accessible in aggregations or for sorting,
|
|
||||||
but doing so is discouraged as it requires to load a lot of data in memory.
|
|
||||||
In case sorting or aggregating on the _id field is required, it is advised to duplicate
|
|
||||||
the content of the _id field in another field that has doc_values enabled.)
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
class Index:
|
class Index:
|
||||||
|
"""
|
||||||
|
The index for an eland.DataFrame.
|
||||||
|
|
||||||
|
TODO - This currently has very different behaviour than pandas.Index
|
||||||
|
|
||||||
|
Currently, the index is a field that exists in every document in an Elasticsearch index.
|
||||||
|
For slicing and sorting operations it must be a docvalues field. By default _id is used,
|
||||||
|
which can't be used for range queries and is inefficient for sorting:
|
||||||
|
|
||||||
|
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-id-field.html
|
||||||
|
(The value of the _id field is also accessible in aggregations or for sorting,
|
||||||
|
but doing so is discouraged as it requires to load a lot of data in memory.
|
||||||
|
In case sorting or aggregating on the _id field is required, it is advised to duplicate
|
||||||
|
the content of the _id field in another field that has doc_values enabled.)
|
||||||
|
"""
|
||||||
ID_INDEX_FIELD = '_id'
|
ID_INDEX_FIELD = '_id'
|
||||||
ID_SORT_FIELD = '_doc' # if index field is _id, sort by _doc
|
ID_SORT_FIELD = '_doc' # if index field is _id, sort by _doc
|
||||||
|
|
||||||
def __init__(self, query_compiler, index_field=None):
|
def __init__(self, query_compiler, index_field=None):
|
||||||
# Calls setter
|
|
||||||
self.index_field = index_field
|
self.index_field = index_field
|
||||||
|
|
||||||
self._query_compiler = query_compiler
|
self._query_compiler = query_compiler
|
||||||
|
@ -420,13 +420,13 @@ class Mappings:
|
|||||||
return self._mappings_capabilities[(self._mappings_capabilities._source == True) &
|
return self._mappings_capabilities[(self._mappings_capabilities._source == True) &
|
||||||
((self._mappings_capabilities.pd_dtype == 'int64') |
|
((self._mappings_capabilities.pd_dtype == 'int64') |
|
||||||
(self._mappings_capabilities.pd_dtype == 'float64') |
|
(self._mappings_capabilities.pd_dtype == 'float64') |
|
||||||
(self._mappings_capabilities.pd_dtype == 'bool'))].loc[
|
(self._mappings_capabilities.pd_dtype == 'bool'))].reindex(
|
||||||
columns].index.tolist()
|
columns).index.tolist()
|
||||||
else:
|
else:
|
||||||
return self._mappings_capabilities[(self._mappings_capabilities._source == True) &
|
return self._mappings_capabilities[(self._mappings_capabilities._source == True) &
|
||||||
((self._mappings_capabilities.pd_dtype == 'int64') |
|
((self._mappings_capabilities.pd_dtype == 'int64') |
|
||||||
(self._mappings_capabilities.pd_dtype == 'float64'))].loc[
|
(self._mappings_capabilities.pd_dtype == 'float64'))].reindex(
|
||||||
columns].index.tolist()
|
columns).index.tolist()
|
||||||
else:
|
else:
|
||||||
if include_bool == True:
|
if include_bool == True:
|
||||||
return self._mappings_capabilities[(self._mappings_capabilities._source == True) &
|
return self._mappings_capabilities[(self._mappings_capabilities._source == True) &
|
||||||
@ -469,26 +469,6 @@ class Mappings:
|
|||||||
|
|
||||||
return pd.Series(self._source_field_pd_dtypes)
|
return pd.Series(self._source_field_pd_dtypes)
|
||||||
|
|
||||||
def get_dtype_counts(self, columns=None):
|
|
||||||
"""
|
|
||||||
Return counts of unique dtypes in this object.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
get_dtype_counts : Series
|
|
||||||
Series with the count of columns with each dtype.
|
|
||||||
"""
|
|
||||||
|
|
||||||
if columns is not None:
|
|
||||||
return pd.Series(self._mappings_capabilities[self._mappings_capabilities._source == True]
|
|
||||||
.loc[columns]
|
|
||||||
.groupby('pd_dtype')['_source']
|
|
||||||
.count().to_dict())
|
|
||||||
|
|
||||||
return pd.Series(self._mappings_capabilities[self._mappings_capabilities._source == True]
|
|
||||||
.groupby('pd_dtype')['_source']
|
|
||||||
.count().to_dict())
|
|
||||||
|
|
||||||
def info_es(self, buf):
|
def info_es(self, buf):
|
||||||
buf.write("Mappings:\n")
|
buf.write("Mappings:\n")
|
||||||
buf.write("\tcapabilities: {0}\n".format(self._mappings_capabilities))
|
buf.write("\tcapabilities: {0}\n".format(self._mappings_capabilities))
|
||||||
|
147
eland/ndframe.py
147
eland/ndframe.py
@ -57,10 +57,23 @@ class NDFrame:
|
|||||||
|
|
||||||
def _get_index(self):
|
def _get_index(self):
|
||||||
"""
|
"""
|
||||||
|
Return eland index referencing Elasticsearch field to index a DataFrame/Series
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
|
eland.Index:
|
||||||
|
Note eland.Index has a very limited API compared to pandas.Index
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
:pandas_docs:`pandas.DataFrame.index`
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> df = ed.DataFrame('localhost', 'flights')
|
||||||
|
>>> assert isinstance(df.index, ed.Index)
|
||||||
|
>>> df.index.index_field
|
||||||
|
'_id'
|
||||||
"""
|
"""
|
||||||
return self._query_compiler.index
|
return self._query_compiler.index
|
||||||
|
|
||||||
@ -68,10 +81,30 @@ class NDFrame:
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def dtypes(self):
|
def dtypes(self):
|
||||||
return self._query_compiler.dtypes
|
"""
|
||||||
|
Return the pandas dtypes in the DataFrame. Elasticsearch types are mapped
|
||||||
|
to pandas dtypes via Mappings._es_dtype_to_pd_dtype.__doc__
|
||||||
|
|
||||||
def get_dtype_counts(self):
|
Returns
|
||||||
return self._query_compiler.get_dtype_counts()
|
-------
|
||||||
|
pandas.Series
|
||||||
|
The data type of each column.
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
:pandas_docs:`pandas.DataFrame.dtypes`
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> df = ed.DataFrame('localhost', 'flights', columns=['Origin', 'AvgTicketPrice', 'timestamp', 'dayOfWeek'])
|
||||||
|
>>> df.dtypes
|
||||||
|
Origin object
|
||||||
|
AvgTicketPrice float64
|
||||||
|
timestamp datetime64[ns]
|
||||||
|
dayOfWeek int64
|
||||||
|
dtype: object
|
||||||
|
"""
|
||||||
|
return self._query_compiler.dtypes
|
||||||
|
|
||||||
def _build_repr_df(self, num_rows, num_cols):
|
def _build_repr_df(self, num_rows, num_cols):
|
||||||
# Overriden version of BasePandasDataset._build_repr_df
|
# Overriden version of BasePandasDataset._build_repr_df
|
||||||
@ -134,21 +167,71 @@ class NDFrame:
|
|||||||
errors="raise",
|
errors="raise",
|
||||||
):
|
):
|
||||||
"""Return new object with labels in requested axis removed.
|
"""Return new object with labels in requested axis removed.
|
||||||
Args:
|
|
||||||
labels: Index or column labels to drop.
|
|
||||||
axis: Whether to drop labels from the index (0 / 'index') or
|
|
||||||
columns (1 / 'columns').
|
|
||||||
index, columns: Alternative to specifying axis (labels, axis=1 is
|
|
||||||
equivalent to columns=labels).
|
|
||||||
level: For MultiIndex
|
|
||||||
inplace: If True, do operation inplace and return None.
|
|
||||||
errors: If 'ignore', suppress error and existing labels are
|
|
||||||
dropped.
|
|
||||||
Returns:
|
|
||||||
dropped : type of caller
|
|
||||||
|
|
||||||
(derived from modin.base.BasePandasDataset)
|
Parameters
|
||||||
|
----------
|
||||||
|
labels:
|
||||||
|
Index or column labels to drop.
|
||||||
|
axis:
|
||||||
|
Whether to drop labels from the index (0 / 'index') or columns (1 / 'columns').
|
||||||
|
index, columns:
|
||||||
|
Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels).
|
||||||
|
level:
|
||||||
|
For MultiIndex - not supported
|
||||||
|
inplace:
|
||||||
|
If True, do operation inplace and return None.
|
||||||
|
errors:
|
||||||
|
If 'ignore', suppress error and existing labels are dropped.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
dropped:
|
||||||
|
type of caller
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
:pandas_docs:`pandas.DataFrame.drop`
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
Drop a column
|
||||||
|
|
||||||
|
>>> df = ed.DataFrame('localhost', 'ecommerce', columns=['customer_first_name', 'email', 'user'])
|
||||||
|
>>> df.drop(columns=['user'])
|
||||||
|
customer_first_name email
|
||||||
|
0 Eddie eddie@underwood-family.zzz
|
||||||
|
1 Mary mary@bailey-family.zzz
|
||||||
|
2 Gwen gwen@butler-family.zzz
|
||||||
|
3 Diane diane@chandler-family.zzz
|
||||||
|
4 Eddie eddie@weber-family.zzz
|
||||||
|
... ... ...
|
||||||
|
4670 Mary mary@lambert-family.zzz
|
||||||
|
4671 Jim jim@gilbert-family.zzz
|
||||||
|
4672 Yahya yahya@rivera-family.zzz
|
||||||
|
4673 Mary mary@hampton-family.zzz
|
||||||
|
4674 Jackson jackson@hopkins-family.zzz
|
||||||
|
<BLANKLINE>
|
||||||
|
[4675 rows x 2 columns]
|
||||||
|
|
||||||
|
Drop rows by index value (axis=0)
|
||||||
|
|
||||||
|
>>> df.drop(['1', '2'])
|
||||||
|
customer_first_name email user
|
||||||
|
0 Eddie eddie@underwood-family.zzz eddie
|
||||||
|
3 Diane diane@chandler-family.zzz diane
|
||||||
|
4 Eddie eddie@weber-family.zzz eddie
|
||||||
|
5 Diane diane@goodwin-family.zzz diane
|
||||||
|
6 Oliver oliver@rios-family.zzz oliver
|
||||||
|
... ... ... ...
|
||||||
|
4670 Mary mary@lambert-family.zzz mary
|
||||||
|
4671 Jim jim@gilbert-family.zzz jim
|
||||||
|
4672 Yahya yahya@rivera-family.zzz yahya
|
||||||
|
4673 Mary mary@hampton-family.zzz mary
|
||||||
|
4674 Jackson jackson@hopkins-family.zzz jackson
|
||||||
|
<BLANKLINE>
|
||||||
|
[4673 rows x 3 columns]
|
||||||
"""
|
"""
|
||||||
|
#(derived from modin.base.BasePandasDataset)
|
||||||
# Level not supported
|
# Level not supported
|
||||||
if level is not None:
|
if level is not None:
|
||||||
raise NotImplementedError("level not supported {}".format(level))
|
raise NotImplementedError("level not supported {}".format(level))
|
||||||
@ -242,4 +325,36 @@ class NDFrame:
|
|||||||
return self._query_compiler._hist(num_bins)
|
return self._query_compiler._hist(num_bins)
|
||||||
|
|
||||||
def describe(self):
|
def describe(self):
|
||||||
|
"""
|
||||||
|
Generate descriptive statistics that summarize the central tendency, dispersion and shape of a
|
||||||
|
dataset’s distribution, excluding NaN values.
|
||||||
|
|
||||||
|
Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types.
|
||||||
|
The output will vary depending on what is provided. Refer to the notes below for more detail.
|
||||||
|
|
||||||
|
TODO - add additional arguments (current only numeric values supported)
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
pandas.Dataframe:
|
||||||
|
Summary information
|
||||||
|
|
||||||
|
See Also
|
||||||
|
--------
|
||||||
|
:pandas_docs:`pandas.DataFrame.describe`
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> df = ed.DataFrame('localhost', 'flights', columns=['AvgTicketPrice', 'FlightDelay'])
|
||||||
|
>>> df.describe() # ignoring percentiles as they don't generate consistent results
|
||||||
|
AvgTicketPrice FlightDelay
|
||||||
|
count 13059.000000 13059.000000
|
||||||
|
mean 628.253689 0.251168
|
||||||
|
std 266.386661 0.433685
|
||||||
|
min 100.020531 0.000000
|
||||||
|
...
|
||||||
|
...
|
||||||
|
...
|
||||||
|
max 1199.729004 1.000000
|
||||||
|
"""
|
||||||
return self._query_compiler.describe()
|
return self._query_compiler.describe()
|
||||||
|
@ -10,36 +10,42 @@ def ed_hist_frame(ed_df, column=None, by=None, grid=True, xlabelsize=None,
|
|||||||
xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False,
|
xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False,
|
||||||
sharey=False, figsize=None, layout=None, bins=10, **kwds):
|
sharey=False, figsize=None, layout=None, bins=10, **kwds):
|
||||||
"""
|
"""
|
||||||
Derived from pandas.plotting._core.hist_frame 0.24.2 - TODO update to 0.25.1
|
See :pandas_docs:`pandas.DataFrame.hist` for usage.
|
||||||
|
|
||||||
Ideally, we'd call hist_frame directly with histogram data,
|
Notes
|
||||||
|
-----
|
||||||
|
Derived from ``pandas.plotting._core.hist_frame 0.24.2`` - TODO update to ``0.25.1``
|
||||||
|
|
||||||
|
Ideally, we'd call `hist_frame` directly with histogram data,
|
||||||
but weights are applied to ALL series. For example, we can
|
but weights are applied to ALL series. For example, we can
|
||||||
plot a histogram of pre-binned data via:
|
plot a histogram of pre-binned data via:
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
counts, bins = np.histogram(data)
|
counts, bins = np.histogram(data)
|
||||||
plt.hist(bins[:-1], bins, weights=counts)
|
plt.hist(bins[:-1], bins, weights=counts)
|
||||||
|
|
||||||
However,
|
However,
|
||||||
|
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
ax.hist(data[col].dropna().values, bins=bins, **kwds)
|
ax.hist(data[col].dropna().values, bins=bins, **kwds)
|
||||||
|
|
||||||
is for [col] and weights are a single array.
|
is for ``[col]`` and weights are a single array.
|
||||||
|
|
||||||
We therefore cut/paste code.
|
Examples
|
||||||
|
--------
|
||||||
|
.. plot::
|
||||||
|
:context: close-figs
|
||||||
|
|
||||||
|
>>> df = ed.DataFrame('localhost', 'flights')
|
||||||
|
>>> hist = df.select_dtypes(include=[np.number]).hist(figsize=[10,10])
|
||||||
"""
|
"""
|
||||||
# Start with empty pandas data frame derived from
|
# Start with empty pandas data frame derived from
|
||||||
ed_df_bins, ed_df_weights = ed_df._hist(num_bins=bins)
|
ed_df_bins, ed_df_weights = ed_df._hist(num_bins=bins)
|
||||||
|
|
||||||
if by is not None:
|
if by is not None:
|
||||||
raise NotImplementedError("TODO")
|
raise NotImplementedError("TODO")
|
||||||
"""
|
|
||||||
axes = grouped_hist(data, column=column, by=by, ax=ax, grid=grid,
|
|
||||||
figsize=figsize, sharex=sharex, sharey=sharey,
|
|
||||||
layout=layout, bins=bins, xlabelsize=xlabelsize,
|
|
||||||
xrot=xrot, ylabelsize=ylabelsize,
|
|
||||||
yrot=yrot, **kwds)
|
|
||||||
"""
|
|
||||||
return axes
|
|
||||||
|
|
||||||
if column is not None:
|
if column is not None:
|
||||||
if not isinstance(column, (list, np.ndarray, ABCIndexClass)):
|
if not isinstance(column, (list, np.ndarray, ABCIndexClass)):
|
||||||
|
@ -84,11 +84,6 @@ class ElandQueryCompiler:
|
|||||||
|
|
||||||
return self._mappings.dtypes(columns)
|
return self._mappings.dtypes(columns)
|
||||||
|
|
||||||
def get_dtype_counts(self):
|
|
||||||
columns = self._operations.get_columns()
|
|
||||||
|
|
||||||
return self._mappings.get_dtype_counts(columns)
|
|
||||||
|
|
||||||
# END Index, columns, and dtypes objects
|
# END Index, columns, and dtypes objects
|
||||||
|
|
||||||
def _es_results_to_pandas(self, results, batch_size=None):
|
def _es_results_to_pandas(self, results, batch_size=None):
|
||||||
|
@ -150,7 +150,7 @@ class Series(NDFrame):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def _to_pandas(self):
|
def _to_pandas(self):
|
||||||
return self._query_compiler._to_pandas()[self.name]
|
return self._query_compiler.to_pandas()[self.name]
|
||||||
|
|
||||||
def __gt__(self, other):
|
def __gt__(self, other):
|
||||||
if isinstance(other, Series):
|
if isinstance(other, Series):
|
||||||
|
@ -4,6 +4,7 @@ from pandas.util.testing import assert_series_equal
|
|||||||
|
|
||||||
from eland.tests.common import TestData
|
from eland.tests.common import TestData
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
class TestDataFrameCount(TestData):
|
class TestDataFrameCount(TestData):
|
||||||
|
|
||||||
|
@ -24,22 +24,3 @@ class TestMappingsDtypes(TestData):
|
|||||||
ed_dtypes = ed_flights._query_compiler._mappings.dtypes(columns=['Carrier', 'AvgTicketPrice', 'Cancelled'])
|
ed_dtypes = ed_flights._query_compiler._mappings.dtypes(columns=['Carrier', 'AvgTicketPrice', 'Cancelled'])
|
||||||
|
|
||||||
assert_series_equal(pd_dtypes, ed_dtypes)
|
assert_series_equal(pd_dtypes, ed_dtypes)
|
||||||
|
|
||||||
def test_flights_get_dtype_counts_all(self):
|
|
||||||
ed_flights = self.ed_flights()
|
|
||||||
pd_flights = self.pd_flights()
|
|
||||||
|
|
||||||
pd_dtypes = pd_flights.get_dtype_counts().sort_index()
|
|
||||||
ed_dtypes = ed_flights._query_compiler._mappings.get_dtype_counts().sort_index()
|
|
||||||
|
|
||||||
assert_series_equal(pd_dtypes, ed_dtypes)
|
|
||||||
|
|
||||||
def test_flights_get_dtype_counts_columns(self):
|
|
||||||
ed_flights = self.ed_flights()
|
|
||||||
pd_flights = self.pd_flights()[['Carrier', 'AvgTicketPrice', 'Cancelled']]
|
|
||||||
|
|
||||||
pd_dtypes = pd_flights.get_dtype_counts().sort_index()
|
|
||||||
ed_dtypes = ed_flights._query_compiler._mappings. \
|
|
||||||
get_dtype_counts(columns=['Carrier', 'AvgTicketPrice', 'Cancelled']).sort_index()
|
|
||||||
|
|
||||||
assert_series_equal(pd_dtypes, ed_dtypes)
|
|
||||||
|
@ -141,3 +141,37 @@ def ed_to_pd(ed_df):
|
|||||||
eland.pd_to_ed: Create an eland.Dataframe from pandas.DataFrame
|
eland.pd_to_ed: Create an eland.Dataframe from pandas.DataFrame
|
||||||
"""
|
"""
|
||||||
return ed_df._to_pandas()
|
return ed_df._to_pandas()
|
||||||
|
|
||||||
|
def _inherit_docstrings(parent, excluded=[]):
|
||||||
|
"""Creates a decorator which overwrites a decorated class' __doc__
|
||||||
|
attribute with parent's __doc__ attribute. Also overwrites __doc__ of
|
||||||
|
methods and properties defined in the class with the __doc__ of matching
|
||||||
|
methods and properties in parent.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
parent (object): Class from which the decorated class inherits __doc__.
|
||||||
|
excluded (list): List of parent objects from which the class does not
|
||||||
|
inherit docstrings.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
function: decorator which replaces the decorated class' documentation
|
||||||
|
parent's documentation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def decorator(cls):
|
||||||
|
if parent not in excluded:
|
||||||
|
cls.__doc__ = parent.__doc__
|
||||||
|
for attr, obj in cls.__dict__.items():
|
||||||
|
parent_obj = getattr(parent, attr, None)
|
||||||
|
if parent_obj in excluded or (
|
||||||
|
not callable(parent_obj) and not isinstance(parent_obj, property)
|
||||||
|
):
|
||||||
|
continue
|
||||||
|
if callable(obj):
|
||||||
|
obj.__doc__ = parent_obj.__doc__
|
||||||
|
elif isinstance(obj, property) and obj.fget is not None:
|
||||||
|
p = property(obj.fget, obj.fset, obj.fdel, parent_obj.__doc__)
|
||||||
|
setattr(cls, attr, p)
|
||||||
|
return cls
|
||||||
|
|
||||||
|
return decorator
|
||||||
|
Loading…
x
Reference in New Issue
Block a user