Merge pull request #14 from stevedodson/master

Introduction of eland.Series - big refactor
This commit is contained in:
stevedodson 2019-07-03 11:51:39 +02:00 committed by GitHub
commit f2df2c77b2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 1084 additions and 357 deletions

View File

@ -1,5 +1,7 @@
from .utils import *
from .dataframe import *
from .client import *
from .mappings import *
from .ndframe import *
from .index import *
from .mappings import *
from .series import *
from .dataframe import *
from .utils import *

View File

@ -1,4 +1,5 @@
from elasticsearch import Elasticsearch
from elasticsearch import helpers
class Client():
"""
@ -17,7 +18,13 @@ class Client():
def indices(self):
return self.es.indices
def bulk(self, actions, refresh=False):
return helpers.bulk(self.es, actions, refresh=refresh)
def scan(self, **kwargs):
return helpers.scan(self.es, **kwargs)
def search(self, **kwargs):
return self.es.search(**kwargs)

View File

@ -26,18 +26,23 @@ only Elasticsearch aggregatable fields can be aggregated or grouped.
import sys
import pandas as pd
from elasticsearch_dsl import Search
from pandas.compat import StringIO
from pandas.core import common as com
from pandas.io.common import _expand_user, _stringify_path
from pandas.io.formats import format as fmt
from pandas.io.formats.printing import pprint_thing
from pandas.compat import StringIO
from pandas.io.common import _expand_user, _stringify_path
from pandas.io.formats import console
from pandas.core import common as com
import eland as ed
from eland import NDFrame
from eland import Index
from eland import Series
class DataFrame():
class DataFrame(NDFrame):
"""
pandas.DataFrame like API that proxies into Elasticsearch index(es).
@ -49,9 +54,6 @@ class DataFrame():
index_pattern : str
An Elasticsearch index pattern. This can contain wildcards (e.g. filebeat-*).
operations: list of operation
A list of Elasticsearch analytics operations e.g. filter, aggregations etc.
See Also
--------
@ -83,229 +85,14 @@ class DataFrame():
index_pattern,
mappings=None,
index_field=None):
self._client = ed.Client(client)
self._index_pattern = index_pattern
# Get and persist mappings, this allows us to correctly
# map returned types from Elasticsearch to pandas datatypes
if mappings is None:
self._mappings = ed.Mappings(self._client, self._index_pattern)
else:
self._mappings = mappings
self._index = ed.Index(index_field)
def _es_results_to_pandas(self, results):
"""
Parameters
----------
results: dict
Elasticsearch results from self.client.search
Returns
-------
df: pandas.DataFrame
_source values extracted from results and mapped to pandas DataFrame
dtypes are mapped via Mapping object
Notes
-----
Fields containing lists in Elasticsearch don't map easily to pandas.DataFrame
For example, an index with mapping:
```
"mappings" : {
"properties" : {
"group" : {
"type" : "keyword"
},
"user" : {
"type" : "nested",
"properties" : {
"first" : {
"type" : "keyword"
},
"last" : {
"type" : "keyword"
}
}
}
}
}
```
Adding a document:
```
"_source" : {
"group" : "amsterdam",
"user" : [
{
"first" : "John",
"last" : "Smith"
},
{
"first" : "Alice",
"last" : "White"
}
]
}
```
(https://www.elastic.co/guide/en/elasticsearch/reference/current/nested.html)
this would be transformed internally (in Elasticsearch) into a document that looks more like this:
```
{
"group" : "amsterdam",
"user.first" : [ "alice", "john" ],
"user.last" : [ "smith", "white" ]
}
```
When mapping this a pandas data frame we mimic this transformation.
Similarly, if a list is added to Elasticsearch:
```
PUT my_index/_doc/1
{
"list" : [
0, 1, 2
]
}
```
The mapping is:
```
"mappings" : {
"properties" : {
"user" : {
"type" : "long"
}
}
}
```
TODO - explain how lists are handled (https://www.elastic.co/guide/en/elasticsearch/reference/current/array.html)
TODO - an option here is to use Elasticsearch's multi-field matching instead of pandas treatment of lists (which isn't great)
NOTE - using this lists is generally not a good way to use this API
"""
def flatten_dict(y):
out = {}
def flatten(x, name=''):
# We flatten into source fields e.g. if type=geo_point
# location: {lat=52.38, lon=4.90}
if name == '':
is_source_field = False
pd_dtype = 'object'
else:
is_source_field, pd_dtype = self._mappings.source_field_pd_dtype(name[:-1])
if not is_source_field and type(x) is dict:
for a in x:
flatten(x[a], name + a + '.')
elif not is_source_field and type(x) is list:
for a in x:
flatten(a, name)
elif is_source_field == True: # only print source fields from mappings (TODO - not so efficient for large number of fields and filtered mapping)
field_name = name[:-1]
# Coerce types - for now just datetime
if pd_dtype == 'datetime64[ns]':
x = pd.to_datetime(x)
# Elasticsearch can have multiple values for a field. These are represented as lists, so
# create lists for this pivot (see notes above)
if field_name in out:
if type(out[field_name]) is not list:
l = [out[field_name]]
out[field_name] = l
out[field_name].append(x)
else:
out[field_name] = x
flatten(y)
return out
rows = []
index = []
for hit in results['hits']['hits']:
row = hit['_source']
# get index value - can be _id or can be field value in source
if self._index.is_source_field:
index_field = row[self._index.index_field]
else:
index_field = hit[self._index.index_field]
index.append(index_field)
# flatten row to map correctly to 2D DataFrame
rows.append(flatten_dict(row))
# Create pandas DataFrame
df = pd.DataFrame(data=rows, index=index)
# _source may not contain all columns in the mapping
# therefore, fill in missing columns
# (note this returns self.columns NOT IN df.columns)
missing_columns = list(set(self.columns) - set(df.columns))
for missing in missing_columns:
is_source_field, pd_dtype = self._mappings.source_field_pd_dtype(missing)
df[missing] = None
df[missing].astype(pd_dtype)
# Sort columns in mapping order
df = df[self.columns]
return df
# python 3 syntax
super().__init__(client, index_pattern, mappings=mappings, index_field=index_field)
def head(self, n=5):
sort_params = self._index.sort_field + ":asc"
results = self._client.search(index=self._index_pattern, size=n, sort=sort_params)
return self._es_results_to_pandas(results)
return super()._head(n)
def tail(self, n=5):
sort_params = self._index.sort_field + ":desc"
results = self._client.search(index=self._index_pattern, size=n, sort=sort_params)
df = self._es_results_to_pandas(results)
# reverse order (index ascending)
return df.sort_index()
def describe(self):
numeric_source_fields = self._mappings.numeric_source_fields()
# for each field we compute:
# count, mean, std, min, 25%, 50%, 75%, max
search = Search(using=self._client, index=self._index_pattern).extra(size=0)
for field in numeric_source_fields:
search.aggs.metric('extended_stats_' + field, 'extended_stats', field=field)
search.aggs.metric('percentiles_' + field, 'percentiles', field=field)
response = search.execute()
results = {}
for field in numeric_source_fields:
values = []
values.append(response.aggregations['extended_stats_' + field]['count'])
values.append(response.aggregations['extended_stats_' + field]['avg'])
values.append(response.aggregations['extended_stats_' + field]['std_deviation'])
values.append(response.aggregations['extended_stats_' + field]['min'])
values.append(response.aggregations['percentiles_' + field]['values']['25.0'])
values.append(response.aggregations['percentiles_' + field]['values']['50.0'])
values.append(response.aggregations['percentiles_' + field]['values']['75.0'])
values.append(response.aggregations['extended_stats_' + field]['max'])
# if not None
if (values.count(None) < len(values)):
results[field] = values
df = pd.DataFrame(data=results, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'])
return df
return super()._tail(n)
def info(self, verbose=None, buf=None, max_cols=None, memory_usage=None,
null_counts=None):
@ -325,7 +112,7 @@ class DataFrame():
lines = []
lines.append(str(type(self)))
lines.append(self.index_summary())
lines.append(self._index_summary())
if len(self.columns) == 0:
lines.append('Empty {name}'.format(name=type(self).__name__))
@ -435,20 +222,12 @@ class DataFrame():
return num_rows, num_columns
@property
def columns(self):
return pd.Index(self._mappings.source_fields())
@property
def index(self):
return self._index
def set_index(self, index_field):
copy = self.copy()
copy._index = ed.Index(index_field)
copy._index = Index(index_field)
return copy
def index_summary(self):
def _index_summary(self):
head = self.head(1).index[0]
tail = self.tail(1).index[0]
index_summary = ', %s to %s' % (pprint_thing(head),
@ -457,13 +236,6 @@ class DataFrame():
name = "Index"
return '%s: %s entries%s' % (name, len(self), index_summary)
@property
def dtypes(self):
return self._mappings.dtypes()
def get_dtype_counts(self):
return self._mappings.get_dtype_counts()
def count(self):
"""
Count non-NA cells for each column (TODO row)
@ -487,29 +259,13 @@ class DataFrame():
return count
def index_count(self):
"""
Returns
-------
index_count: int
Count of docs where index_field exists
"""
exists_query = {"query": {"exists": {"field": self._index.index_field}}}
def describe(self):
return super()._describe()
index_count = self._client.count(index=self._index_pattern, body=exists_query)
return index_count
def _filter_by_columns(self, columns):
# Return new eland.DataFrame with modified mappings
mappings = ed.Mappings(mappings=self._mappings, columns=columns)
return DataFrame(self._client, self._index_pattern, mappings=mappings)
def __getitem__(self, key):
# NOTE: there is a difference between pandas here.
# e.g. df['a'] returns pd.Series, df[['a','b']] return pd.DataFrame
# we always return DataFrame - TODO maybe create eland.Series at some point...
# Implementation mainly copied from pandas v0.24.2
# (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html)
@ -535,26 +291,36 @@ class DataFrame():
# We are left with two options: a single key, and a collection of keys,
columns = []
is_single_key = False
if isinstance(key, str):
if not self._mappings.is_source_field(key):
raise TypeError('Column does not exist: [{0}]'.format(key))
columns.append(key)
is_single_key = True
elif isinstance(key, list):
columns.extend(key)
else:
raise TypeError('__getitem__ arguments invalid: [{0}]'.format(key))
return self._filter_by_columns(columns)
mappings = self._filter_mappings(columns)
def __len__(self):
"""
Returns length of info axis, but here we use the index.
"""
return self._client.count(index=self._index_pattern)
# Return new eland.DataFrame with modified mappings
if is_single_key:
return Series(self._client, self._index_pattern, mappings=mappings)
else:
return DataFrame(self._client, self._index_pattern, mappings=mappings)
def __getattr__(self, name):
# Note: obj.x will always call obj.__getattribute__('x') prior to
# calling obj.__getattr__('x').
mappings = self._filter_mappings([name])
return Series(self._client, self._index_pattern, mappings=mappings)
def copy(self):
# TODO - test and validate...may need deep copying
return ed.DataFrame(self._client,
return DataFrame(self._client,
self._index_pattern,
self._mappings,
self._index)
@ -590,73 +356,38 @@ class DataFrame():
if max_rows == None:
max_rows = pd.get_option('display.max_rows')
sdf = self.__fake_dataframe__(max_rows=max_rows+1)
_show_dimensions = show_dimensions
df = self._fake_head_tail_df(max_rows=max_rows+1)
if buf is not None:
_buf = _expand_user(_stringify_path(buf))
else:
_buf = StringIO()
sdf.to_string(buf=_buf, columns=columns,
col_space=col_space, na_rep=na_rep,
formatters=formatters,
float_format=float_format,
sparsify=sparsify, justify=justify,
index_names=index_names,
header=header, index=index,
max_rows=max_rows,
max_cols=max_cols,
show_dimensions=False, # print this outside of this call
decimal=decimal,
line_width=line_width)
df.to_string(buf=_buf, columns=columns,
col_space=col_space, na_rep=na_rep,
formatters=formatters,
float_format=float_format,
sparsify=sparsify, justify=justify,
index_names=index_names,
header=header, index=index,
max_rows=max_rows,
max_cols=max_cols,
show_dimensions=False, # print this outside of this call
decimal=decimal,
line_width=line_width)
if _show_dimensions:
# Our fake dataframe has incorrect number of rows (max_rows*2+1) - write out
# the correct number of rows
if show_dimensions:
_buf.write("\n\n[{nrows} rows x {ncols} columns]"
.format(nrows=self.index_count(), ncols=len(self.columns)))
.format(nrows=self._index_count(), ncols=len(self.columns)))
if buf is None:
result = _buf.getvalue()
return result
def __fake_dataframe__(self, max_rows=1):
head_rows = int(max_rows / 2) + max_rows % 2
tail_rows = max_rows - head_rows
head = self.head(head_rows)
tail = self.tail(tail_rows)
num_rows = len(self)
if (num_rows > max_rows):
# If we have a lot of rows, create a SparseDataFrame and use
# pandas to_string logic
# NOTE: this sparse DataFrame can't be used as the middle
# section is all NaNs. However, it gives us potentially a nice way
# to use the pandas IO methods.
# TODO - if data is indexed by time series, return top/bottom of
# time series, rather than first max_rows items
"""
if tail_rows > 0:
locations = [0, num_rows - tail_rows]
lengths = [head_rows, tail_rows]
else:
locations = [0]
lengths = [head_rows]
sdf = pd.DataFrame({item: pd.SparseArray(data=head[item],
sparse_index=
BlockIndex(
num_rows, locations, lengths))
for item in self.columns})
"""
return pd.concat([head, tail])
return pd.concat([head, tail])
def to_pandas(selfs):
return super()._to_pandas()
# From pandas.DataFrame
def _put_str(s, space):

View File

@ -2,6 +2,7 @@ import warnings
import pandas as pd
from pandas.core.dtypes.common import (is_float_dtype, is_bool_dtype, is_integer_dtype, is_datetime_or_timedelta_dtype, is_string_dtype)
class Mappings():
"""
@ -217,6 +218,7 @@ class Mappings():
return capability_matrix_df.sort_index()
@staticmethod
def _es_dtype_to_pd_dtype(es_dtype):
"""
Mapping Elasticsearch types to pandas dtypes
@ -259,6 +261,84 @@ class Mappings():
# Return 'object' for all unsupported TODO - investigate how different types could be supported
return 'object'
@staticmethod
def _pd_dtype_to_es_dtype(pd_dtype):
"""
Mapping pandas dtypes to Elasticsearch dtype
--------------------------------------------
```
Pandas dtype Python type NumPy type Usage
object str string_, unicode_ Text
int64 int int_, int8, int16, int32, int64, uint8, uint16, uint32, uint64 Integer numbers
float64 float float_, float16, float32, float64 Floating point numbers
bool bool bool_ True/False values
datetime64 NA datetime64[ns] Date and time values
timedelta[ns] NA NA Differences between two datetimes
category NA NA Finite list of text values
```
"""
es_dtype = None
# Map all to 64-bit - TODO map to specifics: int32 -> int etc.
if is_float_dtype(pd_dtype):
es_dtype = 'double'
elif is_integer_dtype(pd_dtype):
es_dtype = 'long'
elif is_bool_dtype(pd_dtype):
es_dtype = 'boolean'
elif is_string_dtype(pd_dtype):
es_dtype = 'keyword'
elif is_datetime_or_timedelta_dtype(pd_dtype):
es_dtype = 'date'
else:
warnings.warn('No mapping for pd_dtype: [{0}], using default mapping'.format(pd_dtype))
return es_dtype
@staticmethod
def _generate_es_mappings(dataframe):
"""Given a pandas dataframe, generate the associated Elasticsearch mapping
Parameters
----------
dataframe : pandas.DataFrame
pandas.DataFrame to create schema from
Returns
-------
mapping : str
"""
"""
"mappings" : {
"properties" : {
"AvgTicketPrice" : {
"type" : "float"
},
"Cancelled" : {
"type" : "boolean"
},
"Carrier" : {
"type" : "keyword"
},
"Dest" : {
"type" : "keyword"
}
}
}
"""
mappings = {}
mappings['properties'] = {}
for column_name, dtype in dataframe.dtypes.iteritems():
es_dtype = Mappings._pd_dtype_to_es_dtype(dtype)
mappings['properties'][column_name] = {}
mappings['properties'][column_name]['type'] = es_dtype
return {"mappings": mappings}
def all_fields(self):
"""
Returns
@ -379,3 +459,14 @@ class Mappings():
"""
return pd.Series(self._mappings_capabilities[self._mappings_capabilities._source == True].groupby('pd_dtype')[
'_source'].count().to_dict())
def to_pandas(self):
"""
Returns
-------
df : pd.DataFrame
pandas DaraFrame representing this index
"""

371
eland/ndframe.py Normal file
View File

@ -0,0 +1,371 @@
"""
NDFrame
---------
Base class for eland.DataFrame and eland.Series.
The underlying data resides in Elasticsearch and the API aligns as much as
possible with pandas APIs.
This allows the eland.DataFrame to access large datasets stored in Elasticsearch,
without storing the dataset in local memory.
Implementation Details
----------------------
Elasticsearch indexes can be configured in many different ways, and these indexes
utilise different data structures to pandas.
eland.DataFrame operations that return individual rows (e.g. df.head()) return
_source data. If _source is not enabled, this data is not accessible.
Similarly, only Elasticsearch searchable fields can be searched or filtered, and
only Elasticsearch aggregatable fields can be aggregated or grouped.
"""
import pandas as pd
import functools
from elasticsearch_dsl import Search
import eland as ed
from pandas.core.generic import NDFrame as pd_NDFrame
from pandas._libs import Timestamp, iNaT, properties
class NDFrame():
"""
pandas.DataFrame/Series like API that proxies into Elasticsearch index(es).
Parameters
----------
client : eland.Client
A reference to a Elasticsearch python client
index_pattern : str
An Elasticsearch index pattern. This can contain wildcards (e.g. filebeat-*).
See Also
--------
"""
def __init__(self,
client,
index_pattern,
mappings=None,
index_field=None):
self._client = ed.Client(client)
self._index_pattern = index_pattern
# Get and persist mappings, this allows us to correctly
# map returned types from Elasticsearch to pandas datatypes
if mappings is None:
self._mappings = ed.Mappings(self._client, self._index_pattern)
else:
self._mappings = mappings
self._index = ed.Index(index_field)
def _es_results_to_pandas(self, results):
"""
Parameters
----------
results: dict
Elasticsearch results from self.client.search
Returns
-------
df: pandas.DataFrame
_source values extracted from results and mapped to pandas DataFrame
dtypes are mapped via Mapping object
Notes
-----
Fields containing lists in Elasticsearch don't map easily to pandas.DataFrame
For example, an index with mapping:
```
"mappings" : {
"properties" : {
"group" : {
"type" : "keyword"
},
"user" : {
"type" : "nested",
"properties" : {
"first" : {
"type" : "keyword"
},
"last" : {
"type" : "keyword"
}
}
}
}
}
```
Adding a document:
```
"_source" : {
"group" : "amsterdam",
"user" : [
{
"first" : "John",
"last" : "Smith"
},
{
"first" : "Alice",
"last" : "White"
}
]
}
```
(https://www.elastic.co/guide/en/elasticsearch/reference/current/nested.html)
this would be transformed internally (in Elasticsearch) into a document that looks more like this:
```
{
"group" : "amsterdam",
"user.first" : [ "alice", "john" ],
"user.last" : [ "smith", "white" ]
}
```
When mapping this a pandas data frame we mimic this transformation.
Similarly, if a list is added to Elasticsearch:
```
PUT my_index/_doc/1
{
"list" : [
0, 1, 2
]
}
```
The mapping is:
```
"mappings" : {
"properties" : {
"user" : {
"type" : "long"
}
}
}
```
TODO - explain how lists are handled (https://www.elastic.co/guide/en/elasticsearch/reference/current/array.html)
TODO - an option here is to use Elasticsearch's multi-field matching instead of pandas treatment of lists (which isn't great)
NOTE - using this lists is generally not a good way to use this API
"""
def flatten_dict(y):
out = {}
def flatten(x, name=''):
# We flatten into source fields e.g. if type=geo_point
# location: {lat=52.38, lon=4.90}
if name == '':
is_source_field = False
pd_dtype = 'object'
else:
is_source_field, pd_dtype = self._mappings.source_field_pd_dtype(name[:-1])
if not is_source_field and type(x) is dict:
for a in x:
flatten(x[a], name + a + '.')
elif not is_source_field and type(x) is list:
for a in x:
flatten(a, name)
elif is_source_field == True: # only print source fields from mappings (TODO - not so efficient for large number of fields and filtered mapping)
field_name = name[:-1]
# Coerce types - for now just datetime
if pd_dtype == 'datetime64[ns]':
x = pd.to_datetime(x)
# Elasticsearch can have multiple values for a field. These are represented as lists, so
# create lists for this pivot (see notes above)
if field_name in out:
if type(out[field_name]) is not list:
l = [out[field_name]]
out[field_name] = l
out[field_name].append(x)
else:
out[field_name] = x
flatten(y)
return out
rows = []
index = []
if isinstance(results, dict):
iterator = results['hits']['hits']
else:
iterator = results
for hit in iterator:
row = hit['_source']
# get index value - can be _id or can be field value in source
if self._index.is_source_field:
index_field = row[self._index.index_field]
else:
index_field = hit[self._index.index_field]
index.append(index_field)
# flatten row to map correctly to 2D DataFrame
rows.append(flatten_dict(row))
# Create pandas DataFrame
df = pd.DataFrame(data=rows, index=index)
# _source may not contain all columns in the mapping
# therefore, fill in missing columns
# (note this returns self.columns NOT IN df.columns)
missing_columns = list(set(self._columns) - set(df.columns))
for missing in missing_columns:
is_source_field, pd_dtype = self._mappings.source_field_pd_dtype(missing)
df[missing] = None
df[missing].astype(pd_dtype)
# Sort columns in mapping order
df = df[self._columns]
return df
def _head(self, n=5):
"""
Protected method that returns head as pandas.DataFrame.
Returns
-------
_head
pandas.DataFrame of top N values
"""
sort_params = self._index.sort_field + ":asc"
results = self._client.search(index=self._index_pattern, size=n, sort=sort_params)
return self._es_results_to_pandas(results)
def _tail(self, n=5):
"""
Protected method that returns tail as pandas.DataFrame.
Returns
-------
_tail
pandas.DataFrame of last N values
"""
sort_params = self._index.sort_field + ":desc"
results = self._client.search(index=self._index_pattern, size=n, sort=sort_params)
df = self._es_results_to_pandas(results)
# reverse order (index ascending)
return df.sort_index()
def _to_pandas(self):
"""
Protected method that returns all data as pandas.DataFrame.
Returns
-------
df
pandas.DataFrame of all values
"""
sort_params = self._index.sort_field + ":asc"
results = self._client.scan(index=self._index_pattern)
# We sort here rather than in scan - once everything is in core this
# should be faster
return self._es_results_to_pandas(results)
def _describe(self):
numeric_source_fields = self._mappings.numeric_source_fields()
# for each field we compute:
# count, mean, std, min, 25%, 50%, 75%, max
search = Search(using=self._client, index=self._index_pattern).extra(size=0)
for field in numeric_source_fields:
search.aggs.metric('extended_stats_' + field, 'extended_stats', field=field)
search.aggs.metric('percentiles_' + field, 'percentiles', field=field)
response = search.execute()
results = {}
for field in numeric_source_fields:
values = list()
values.append(response.aggregations['extended_stats_' + field]['count'])
values.append(response.aggregations['extended_stats_' + field]['avg'])
values.append(response.aggregations['extended_stats_' + field]['std_deviation'])
values.append(response.aggregations['extended_stats_' + field]['min'])
values.append(response.aggregations['percentiles_' + field]['values']['25.0'])
values.append(response.aggregations['percentiles_' + field]['values']['50.0'])
values.append(response.aggregations['percentiles_' + field]['values']['75.0'])
values.append(response.aggregations['extended_stats_' + field]['max'])
# if not None
if values.count(None) < len(values):
results[field] = values
df = pd.DataFrame(data=results, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'])
return df
def _filter_mappings(self, columns):
mappings = ed.Mappings(mappings=self._mappings, columns=columns)
return mappings
@property
def columns(self):
return self._columns
@property
def index(self):
return self._index
@property
def dtypes(self):
return self._mappings.dtypes()
@property
def _columns(self):
return pd.Index(self._mappings.source_fields())
def get_dtype_counts(self):
return self._mappings.get_dtype_counts()
def _index_count(self):
"""
Returns
-------
index_count: int
Count of docs where index_field exists
"""
exists_query = {"query": {"exists": {"field": self._index.index_field}}}
index_count = self._client.count(index=self._index_pattern, body=exists_query)
return index_count
def __len__(self):
"""
Returns length of info axis, but here we use the index.
"""
return self._client.count(index=self._index_pattern)
def _fake_head_tail_df(self, max_rows=1):
"""
Create a 'fake' pd.DataFrame of the entire ed.DataFrame
by concat head and tail. Used for display.
"""
head_rows = int(max_rows / 2) + max_rows % 2
tail_rows = max_rows - head_rows
head = self._head(head_rows)
tail = self._tail(tail_rows)
return head.append(tail)

402
eland/series.py Normal file
View File

@ -0,0 +1,402 @@
"""
Series
---------
One-dimensional ndarray with axis labels (including time series).
The underlying data resides in Elasticsearch and the API aligns as much as
possible with pandas.DataFrame API.
This allows the eland.Series to access large datasets stored in Elasticsearch,
without storing the dataset in local memory.
Implementation Details
----------------------
Based on NDFrame which underpins eland.1DataFrame
"""
import sys
import pandas as pd
import pandas.compat as compat
from pandas.compat import StringIO
from pandas.core.dtypes.common import (
is_categorical_dtype)
from pandas.io.formats import format as fmt
from pandas.io.formats.printing import pprint_thing
from eland import Index
from eland import NDFrame
class Series(NDFrame):
"""
pandas.Series like API that proxies into Elasticsearch index(es).
Parameters
----------
client : eland.Client
A reference to a Elasticsearch python client
index_pattern : str
An Elasticsearch index pattern. This can contain wildcards (e.g. filebeat-*).
field_name : str
The field to base the series on
See Also
--------
Examples
--------
import eland as ed
client = ed.Client(Elasticsearch())
s = ed.DataFrame(client, 'reviews', 'date')
df.head()
reviewerId vendorId rating date
0 0 0 5 2006-04-07 17:08
1 1 1 5 2006-05-04 12:16
2 2 2 4 2006-04-21 12:26
3 3 3 5 2006-04-18 15:48
4 3 4 5 2006-04-18 15:49
Notice that the types are based on Elasticsearch mappings
Notes
-----
If the Elasticsearch index is deleted or index mappings are changed after this
object is created, the object is not rebuilt and so inconsistencies can occur.
"""
def __init__(self,
client,
index_pattern,
field_name=None,
mappings=None,
index_field=None):
# python 3 syntax
super().__init__(client, index_pattern, mappings=mappings, index_field=index_field)
# now select column (field_name)
if field_name is not None:
self._mappings = self._filter_mappings([field_name])
elif len(self._mappings.source_fields()) != 1:
raise TypeError('Series must have 1 field: [{0}]'.format(len(self._mappings.source_fields())))
def head(self, n=5):
return self._df_to_series(super()._head(n))
def tail(self, n=5):
return self._df_to_series(super()._tail(n))
def info(self, verbose=None, buf=None, max_cols=None, memory_usage=None,
null_counts=None):
"""
Print a concise summary of a DataFrame.
This method prints information about a DataFrame including
the index dtype and column dtypes, non-null values and memory usage.
This copies a lot of code from pandas.DataFrame.info as it is difficult
to split out the appropriate code or creating a SparseDataFrame gives
incorrect results on types and counts.
"""
if buf is None: # pragma: no cover
buf = sys.stdout
lines = []
lines.append(str(type(self)))
lines.append(self._index_summary())
if len(self.columns) == 0:
lines.append('Empty {name}'.format(name=type(self).__name__))
fmt.buffer_put_lines(buf, lines)
return
cols = self.columns
# hack
if max_cols is None:
max_cols = pd.get_option('display.max_info_columns',
len(self.columns) + 1)
max_rows = pd.get_option('display.max_info_rows', len(self) + 1)
if null_counts is None:
show_counts = ((len(self.columns) <= max_cols) and
(len(self) < max_rows))
else:
show_counts = null_counts
exceeds_info_cols = len(self.columns) > max_cols
def _verbose_repr():
lines.append('Data columns (total %d columns):' %
len(self.columns))
space = max(len(pprint_thing(k)) for k in self.columns) + 4
counts = None
tmpl = "{count}{dtype}"
if show_counts:
counts = self.count()
if len(cols) != len(counts): # pragma: no cover
raise AssertionError(
'Columns must equal counts '
'({cols:d} != {counts:d})'.format(
cols=len(cols), counts=len(counts)))
tmpl = "{count} non-null {dtype}"
dtypes = self.dtypes
for i, col in enumerate(self._columns):
dtype = dtypes.iloc[i]
col = pprint_thing(col)
count = ""
if show_counts:
count = counts.iloc[i]
lines.append(_put_str(col, space) + tmpl.format(count=count,
dtype=dtype))
def _non_verbose_repr():
lines.append(self._columns._summary(name='Columns'))
def _sizeof_fmt(num, size_qualifier):
# returns size in human readable format
for x in ['bytes', 'KB', 'MB', 'GB', 'TB']:
if num < 1024.0:
return ("{num:3.1f}{size_q} "
"{x}".format(num=num, size_q=size_qualifier, x=x))
num /= 1024.0
return "{num:3.1f}{size_q} {pb}".format(num=num,
size_q=size_qualifier,
pb='PB')
if verbose:
_verbose_repr()
elif verbose is False: # specifically set to False, not nesc None
_non_verbose_repr()
else:
if exceeds_info_cols:
_non_verbose_repr()
else:
_verbose_repr()
counts = self.get_dtype_counts()
dtypes = ['{k}({kk:d})'.format(k=k[0], kk=k[1]) for k
in sorted(counts.items())]
lines.append('dtypes: {types}'.format(types=', '.join(dtypes)))
if memory_usage is None:
memory_usage = pd.get_option('display.memory_usage')
if memory_usage:
# append memory usage of df to display
size_qualifier = ''
# TODO - this is different from pd.DataFrame as we shouldn't
# really hold much in memory. For now just approximate with getsizeof + ignore deep
mem_usage = sys.getsizeof(self)
lines.append("memory usage: {mem}\n".format(
mem=_sizeof_fmt(mem_usage, size_qualifier)))
fmt.buffer_put_lines(buf, lines)
@property
def name(self):
return list(self._mappings.source_fields())[0]
@property
def shape(self):
"""
Return a tuple representing the dimensionality of the DataFrame.
Returns
-------
shape: tuple
0 - number of rows
1 - number of columns
"""
num_rows = len(self)
num_columns = len(self._columns)
return num_rows, num_columns
@property
def set_index(self, index_field):
copy = self.copy()
copy._index = Index(index_field)
return copy
def _index_summary(self):
head = self.head(1).index[0]
tail = self.tail(1).index[0]
index_summary = ', %s to %s' % (pprint_thing(head),
pprint_thing(tail))
name = "Index"
return '%s: %s entries%s' % (name, len(self), index_summary)
def count(self):
"""
Count non-NA cells for each column (TODO row)
Counts are based on exists queries against ES
This is inefficient, as it creates N queries (N is number of fields).
An alternative approach is to use value_count aggregations. However, they have issues in that:
1. They can only be used with aggregatable fields (e.g. keyword not text)
2. For list fields they return multiple counts. E.g. tags=['elastic', 'ml'] returns value_count=2
for a single document.
"""
counts = {}
for field in self._mappings.source_fields():
exists_query = {"query": {"exists": {"field": field}}}
field_exists_count = self._client.count(index=self._index_pattern, body=exists_query)
counts[field] = field_exists_count
count = pd.Series(data=counts, index=self._mappings.source_fields())
return count
def describe(self):
return super()._describe()
def _df_to_series(self, df):
return df[self.name]
# ----------------------------------------------------------------------
# Rendering Methods
def __repr__(self):
"""
From pandas
"""
buf = StringIO()
max_rows = pd.get_option("display.max_rows")
self.to_string(buf=buf, na_rep='NaN', float_format=None, header=True, index=True, length=True,
dtype=True, name=True, max_rows=max_rows)
return buf.getvalue()
def to_string(self, buf=None, na_rep='NaN',
float_format=None, header=True,
index=True, length=True, dtype=True,
name=True, max_rows=None):
"""
From pandas 0.24.2
Render a string representation of the Series.
Parameters
----------
buf : StringIO-like, optional
buffer to write to
na_rep : string, optional
string representation of NAN to use, default 'NaN'
float_format : one-parameter function, optional
formatter function to apply to columns' elements if they are floats
default None
header : boolean, default True
Add the Series header (index name)
index : bool, optional
Add index (row) labels, default True
length : boolean, default False
Add the Series length
dtype : boolean, default False
Add the Series dtype
name : boolean, default False
Add the Series name if not None
max_rows : int, optional
Maximum number of rows to show before truncating. If None, show
all.
Returns
-------
formatted : string (if not buffer passed)
"""
if max_rows == None:
max_rows = pd.get_option("display.max_rows")
df = self._fake_head_tail_df(max_rows=max_rows + 1)
s = self._df_to_series(df)
formatter = Series.SeriesFormatter(s, len(self), name=name, length=length,
header=header, index=index,
dtype=dtype, na_rep=na_rep,
float_format=float_format,
max_rows=max_rows)
result = formatter.to_string()
# catch contract violations
if not isinstance(result, compat.text_type):
raise AssertionError("result must be of type unicode, type"
" of result is {0!r}"
"".format(result.__class__.__name__))
if buf is None:
return result
else:
try:
buf.write(result)
except AttributeError:
with open(buf, 'w') as f:
f.write(result)
class SeriesFormatter(fmt.SeriesFormatter):
"""
A hacked overridden version of pandas.io.formats.SeriesFormatter that writes correct length
"""
def __init__(self, series, series_length, buf=None, length=True, header=True, index=True,
na_rep='NaN', name=False, float_format=None, dtype=True,
max_rows=None):
super().__init__(series, buf=buf, length=length, header=header, index=index,
na_rep=na_rep, name=name, float_format=float_format, dtype=dtype,
max_rows=max_rows)
self._series_length = series_length
def _get_footer(self):
"""
Overridden with length change
(from pandas 0.24.2 io.formats.SeriesFormatter)
"""
name = self.series.name
footer = ''
if getattr(self.series.index, 'freq', None) is not None:
footer += 'Freq: {freq}'.format(freq=self.series.index.freqstr)
if self.name is not False and name is not None:
if footer:
footer += ', '
series_name = pprint_thing(name,
escape_chars=('\t', '\r', '\n'))
footer += ("Name: {sname}".format(sname=series_name)
if name is not None else "")
if (self.length is True or
(self.length == 'truncate' and self.truncate_v)):
if footer:
footer += ', '
footer += 'Length: {length}'.format(length=self._series_length)
if self.dtype is not False and self.dtype is not None:
name = getattr(self.tr_series.dtype, 'name', None)
if name:
if footer:
footer += ', '
footer += 'dtype: {typ}'.format(typ=pprint_thing(name))
# level infos are added to the end and in a new line, like it is done
# for Categoricals
if is_categorical_dtype(self.tr_series.dtype):
level_info = self.tr_series._values._repr_categories_info()
if footer:
footer += "\n"
footer += level_info
return compat.text_type(footer)

View File

@ -1,5 +1,6 @@
# File called _pytest for PyCharm compatability
import numpy as np
from pandas.util.testing import (
assert_series_equal, assert_frame_equal)
@ -16,7 +17,7 @@ class TestMapping(TestData):
assert TEST_MAPPING1_EXPECTED_DF.index.tolist() == mappings.all_fields()
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mappings.mappings_capabilities['es_dtype']))
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mappings._mappings_capabilities['es_dtype']))
assert TEST_MAPPING1_EXPECTED_SOURCE_FIELD_COUNT == mappings.count_source_fields()
@ -24,7 +25,7 @@ class TestMapping(TestData):
mappings = ed.Mappings(ed.Client(ELASTICSEARCH_HOST), TEST_MAPPING1_INDEX_NAME)
assert TEST_MAPPING1_EXPECTED_DF.index.tolist() == mappings.all_fields()
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mappings.mappings_capabilities['es_dtype']))
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mappings._mappings_capabilities['es_dtype']))
assert TEST_MAPPING1_EXPECTED_SOURCE_FIELD_COUNT == mappings.count_source_fields()
# Pick 1 source field
@ -43,7 +44,7 @@ class TestMapping(TestData):
# Check original is still ok
assert TEST_MAPPING1_EXPECTED_DF.index.tolist() == mappings.all_fields()
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mappings.mappings_capabilities['es_dtype']))
assert_frame_equal(TEST_MAPPING1_EXPECTED_DF, pd.DataFrame(mappings._mappings_capabilities['es_dtype']))
assert TEST_MAPPING1_EXPECTED_SOURCE_FIELD_COUNT == mappings.count_source_fields()
def test_dtypes(self):
@ -88,3 +89,36 @@ class TestMapping(TestData):
assert 'object' == field_capabilities['pd_dtype']
assert True == field_capabilities['searchable']
assert True == field_capabilities['aggregatable']
def test_generate_es_mappings(self):
df = pd.DataFrame(data={'A': np.random.rand(3),
'B': 1,
'C': 'foo',
'D': pd.Timestamp('20190102'),
'E': [1.0, 2.0, 3.0],
'F': False,
'G': [1, 2, 3]},
index=['0','1','2'])
expected_mappings = {'mappings': {
'properties': {'A': {'type': 'double'},
'B': {'type': 'long'},
'C': {'type': 'keyword'},
'D': {'type': 'date'},
'E': {'type': 'double'},
'F': {'type': 'boolean'},
'G': {'type': 'long'}}}}
mappings = ed.Mappings._generate_es_mappings(df)
assert expected_mappings == mappings
# Now create index
index_name = 'eland_test_generate_es_mappings'
ed.pandas_to_es(df, ELASTICSEARCH_HOST, index_name, if_exists="replace", refresh=True)
ed_df = ed.DataFrame(ELASTICSEARCH_HOST, index_name)
ed_df_head = ed_df.head()
assert_frame_equal(df, ed_df_head)

View File

@ -7,7 +7,7 @@ import io
from pandas.util.testing import (
assert_series_equal, assert_frame_equal)
class TestDataFrameIndexing(TestData):
class TestDataFrameBasics(TestData):
def test_mapping(self):
ed_flights_mappings = pd.DataFrame(self.ed_flights()._mappings._mappings_capabilities
@ -153,3 +153,7 @@ class TestDataFrameIndexing(TestData):
ed_flights_timestamp.info()
ed_flights.info()
def test_to_pandas(self):
ed_ecommerce_pd_df = self.ed_ecommerce().to_pandas()
assert_frame_equal(self.pd_ecommerce(), ed_ecommerce_pd_df)

View File

@ -15,7 +15,7 @@ class TestDataFrameGetItem(TestData):
ed_carrier = self.ed_flights()['Carrier']
# pandas returns a Series here
assert_frame_equal(pd.DataFrame(pd_carrier.head(100)), ed_carrier.head(100))
assert_series_equal(pd_carrier.head(100), ed_carrier.head(100))
pd_3_items = self.pd_flights()[['Dest','Carrier','FlightDelay']]
ed_3_items = self.ed_flights()[['Dest','Carrier','FlightDelay']]
@ -36,28 +36,12 @@ class TestDataFrameGetItem(TestData):
def test_getattr_basic(self):
# Test 1 attribute
pd_carrier = self.pd_flights().Carrier
#ed_carrier = self.ed_flights().Carrier
ed_carrier = self.ed_flights().Carrier
print(type(pd_carrier))
print(pd_carrier)
assert_series_equal(pd_carrier.head(100), ed_carrier.head(100))
def test_boolean(self):
# Test 1 attribute
pd_carrier = self.pd_flights()['Carrier == "Kibana Airlines"']
#ed_carrier = self.ed_flights().Carrier
pd_avgticketprice = self.pd_flights().AvgTicketPrice
ed_avgticketprice = self.ed_flights().AvgTicketPrice
print(type(pd_carrier))
print(pd_carrier)
def test_loc(self):
pd = self.pd_flights().loc[10:15, ['Dest', 'Carrier']]
print(type(pd))
print(pd)
pd = self.pd_flights().loc[10]
print(type(pd))
print(pd)
assert_series_equal(pd_avgticketprice.head(100), ed_avgticketprice.head(100))

View File

@ -0,0 +1,32 @@
# File called _pytest for PyCharm compatability
from eland.tests.common import TestData
import pandas as pd
import eland as ed
import io
from eland.tests import ELASTICSEARCH_HOST
from eland.tests import FLIGHTS_INDEX_NAME
from pandas.util.testing import (
assert_series_equal, assert_frame_equal)
class TestSeriesBasics(TestData):
def test_head_tail(self):
pd_s = self.pd_flights()['Carrier']
ed_s = ed.Series(ELASTICSEARCH_HOST, FLIGHTS_INDEX_NAME, 'Carrier')
pd_s_head = pd_s.head(10)
ed_s_head = ed_s.head(10)
assert_series_equal(pd_s_head, ed_s_head)
pd_s_tail = pd_s.tail(10)
ed_s_tail = ed_s.tail(10)
assert_series_equal(pd_s_tail, ed_s_tail)
def test_print(self):
ed_s = ed.Series(ELASTICSEARCH_HOST, FLIGHTS_INDEX_NAME, 'timestamp')
print(ed_s.to_string())

View File

@ -1,4 +1,73 @@
import eland as ed
from eland import Client
from eland import DataFrame
from eland import Mappings
def read_es(es_params, index_pattern):
return ed.DataFrame(client=es_params, index_pattern=index_pattern)
return DataFrame(client=es_params, index_pattern=index_pattern)
def pandas_to_es(df, es_params, destination_index, if_exists='fail', chunk_size=10000, refresh=False):
"""
Append a pandas DataFrame to an Elasticsearch index.
Mainly used in testing.
Parameters
----------
es_params : Elasticsearch client argument
elasticsearch-py parameters or
elasticsearch-py instance or
eland.Client instance
destination_index : str
Name of Elasticsearch index to be written
if_exists : str, default 'fail'
Behavior when the destination index exists. Value can be one of:
``'fail'``
If table exists, do nothing.
``'replace'``
If table exists, drop it, recreate it, and insert data.
``'append'``
If table exists, insert data. Create if does not exist.
"""
client = Client(es_params)
mapping = Mappings._generate_es_mappings(df)
# If table exists, check if_exists parameter
if client.indices().exists(destination_index):
if if_exists == "fail":
raise ValueError(
"Could not create the index [{0}] because it "
"already exists. "
"Change the if_exists parameter to "
"'append' or 'replace' data.".format(destination_index)
)
elif if_exists == "replace":
client.indices().delete(destination_index)
client.indices().create(destination_index, mapping)
#elif if_exists == "append":
# TODO validate mapping is compatible
else:
client.indices().create(destination_index, mapping)
# Now add data
actions = []
n = 0
for row in df.iterrows():
# Use index as _id
id = row[0]
values = row[1].to_dict()
# Use integer as id field for repeatable results
action = {'_index': destination_index, '_source': values, '_id': str(id)}
actions.append(action)
n = n + 1
if n % chunk_size == 0:
client.bulk(actions, refresh=refresh)
actions = []
client.bulk(actions, refresh=refresh)