# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # File called _pytest for PyCharm compatability from datetime import timedelta import numpy as np import pandas as pd import pytest from tests.common import TestData, assert_almost_equal class TestSeriesMetrics(TestData): all_funcs = ["max", "min", "mean", "sum", "nunique", "var", "std", "mad"] timestamp_funcs = ["max", "min", "mean", "nunique"] def assert_almost_equal_for_agg(self, func, pd_metric, ed_metric): if func in ("nunique", "var", "mad"): np.testing.assert_almost_equal(pd_metric, ed_metric, decimal=-3) else: np.testing.assert_almost_equal(pd_metric, ed_metric, decimal=2) def test_flights_metrics(self): pd_flights = self.pd_flights()["AvgTicketPrice"] ed_flights = self.ed_flights()["AvgTicketPrice"] for func in self.all_funcs: pd_metric = getattr(pd_flights, func)() ed_metric = getattr(ed_flights, func)() self.assert_almost_equal_for_agg(func, pd_metric, ed_metric) def test_flights_timestamp(self): pd_flights = self.pd_flights()["timestamp"] ed_flights = self.ed_flights()["timestamp"] for func in self.timestamp_funcs: pd_metric = getattr(pd_flights, func)() ed_metric = getattr(ed_flights, func)() if func == "nunique": print(pd_metric, ed_metric) self.assert_almost_equal_for_agg(func, pd_metric, ed_metric) elif func == "mean": offset = timedelta(seconds=0.001) assert (ed_metric - offset) < pd_metric < (ed_metric + offset) else: assert pd_metric == ed_metric def test_ecommerce_selected_non_numeric_source_fields(self): # None of these are numeric, will result in NaNs column = "category" ed_ecommerce = self.ed_ecommerce()[column] for func in self.all_funcs: if func == "nunique": # nunique never returns 'NaN' continue ed_metric = getattr(ed_ecommerce, func)(numeric_only=False) print(func, ed_metric) assert np.isnan(ed_metric) def test_ecommerce_selected_all_numeric_source_fields(self): # All of these are numeric columns = ["total_quantity", "taxful_total_price", "taxless_total_price"] for column in columns: pd_ecommerce = self.pd_ecommerce()[column] ed_ecommerce = self.ed_ecommerce()[column] for func in self.all_funcs: pd_metric = getattr(pd_ecommerce, func)() ed_metric = getattr(ed_ecommerce, func)( **({"numeric_only": True} if (func != "nunique") else {}) ) self.assert_almost_equal_for_agg(func, pd_metric, ed_metric) @pytest.mark.parametrize("agg", ["mean", "min", "max"]) def test_flights_datetime_metrics_agg(self, agg): ed_timestamps = self.ed_flights()["timestamp"] expected_values = { "min": pd.Timestamp("2018-01-01 00:00:00"), "mean": pd.Timestamp("2018-01-21 19:20:45.564438232"), "max": pd.Timestamp("2018-02-11 23:50:12"), } ed_metric = getattr(ed_timestamps, agg)() assert_almost_equal(ed_metric, expected_values[agg]) def test_flights_datetime_median_metric(self): ed_series = self.ed_flights_small()["timestamp"] median = ed_series.median() assert isinstance(median, pd.Timestamp) assert ( pd.to_datetime("2018-01-01 10:00:00.000") <= median <= pd.to_datetime("2018-01-01 12:00:00.000") )