eland/tests/ml/test_ml_model_pytest.py
Valeriy Khakhutskyy 0576114a1d
[ML] Export ML model as sklearn Pipeline (#509)
Closes #503

Note: I also had to fix the Sphinx version to 5.3.0 since, starting from 6.0, Sphinx suffers from a TypeError bug, which causes a CI failure.
2023-02-01 16:17:06 +01:00

775 lines
26 KiB
Python

# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from operator import itemgetter
import numpy as np
import pytest
import eland as ed
from eland.ml import MLModel
from tests import ES_TEST_CLIENT, ES_VERSION, FLIGHTS_SMALL_INDEX_NAME
try:
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
HAS_SKLEARN = True
except ImportError:
HAS_SKLEARN = False
try:
from xgboost import XGBClassifier, XGBRegressor
HAS_XGBOOST = True
except ImportError:
HAS_XGBOOST = False
try:
from lightgbm import LGBMClassifier, LGBMRegressor
HAS_LIGHTGBM = True
except ImportError:
HAS_LIGHTGBM = False
try:
import shap
HAS_SHAP = True
except ImportError:
HAS_SHAP = False
requires_sklearn = pytest.mark.skipif(
not HAS_SKLEARN, reason="This test requires 'scikit-learn' package to run."
)
requires_xgboost = pytest.mark.skipif(
not HAS_XGBOOST, reason="This test requires 'xgboost' package to run."
)
requires_shap = pytest.mark.skipif(
not HAS_SHAP, reason="This tests requries 'shap' package to run."
)
requires_no_ml_extras = pytest.mark.skipif(
HAS_SKLEARN or HAS_XGBOOST,
reason="This test requires 'scikit-learn' and 'xgboost' to not be installed.",
)
requires_lightgbm = pytest.mark.skipif(
not HAS_LIGHTGBM, reason="This test requires 'lightgbm' package to run"
)
def skip_if_multiclass_classifition():
if ES_VERSION < (7, 7):
raise pytest.skip(
"Skipped because multiclass classification "
"isn't supported on Elasticsearch 7.6"
)
def random_rows(data, size):
return data[np.random.randint(data.shape[0], size=size), :]
def check_prediction_equality(es_model: MLModel, py_model, test_data):
# Get some test results
test_results = py_model.predict(np.asarray(test_data))
es_results = es_model.predict(test_data)
np.testing.assert_almost_equal(test_results, es_results, decimal=2)
def yield_model_id(analysis, analyzed_fields):
import random
import string
import time
suffix = "".join(random.choices(string.ascii_lowercase, k=4))
job_id = "test-flights-regression-" + suffix
dest = job_id + "-dest"
response = ES_TEST_CLIENT.ml.put_data_frame_analytics(
id=job_id,
analysis=analysis,
dest={"index": dest},
source={"index": [FLIGHTS_SMALL_INDEX_NAME]},
analyzed_fields=analyzed_fields,
)
assert response.meta.status == 200
response = ES_TEST_CLIENT.ml.start_data_frame_analytics(id=job_id)
assert response.meta.status == 200
time.sleep(2)
response = ES_TEST_CLIENT.ml.get_trained_models(model_id=job_id + "*")
assert response.meta.status == 200
assert response.body["count"] == 1
model_id = response.body["trained_model_configs"][0]["model_id"]
yield model_id
ES_TEST_CLIENT.ml.delete_data_frame_analytics(id=job_id)
ES_TEST_CLIENT.indices.delete(index=dest)
ES_TEST_CLIENT.ml.delete_trained_model(model_id=model_id)
@pytest.fixture(params=[[0, 4], [0, 1], range(5)])
def regression_model_id(request):
analysis = {
"regression": {
"dependent_variable": "FlightDelayMin",
"max_trees": 3,
"num_top_feature_importance_values": 0,
"max_optimization_rounds_per_hyperparameter": 1,
"prediction_field_name": "FlightDelayMin_prediction",
"training_percent": 30,
"randomize_seed": 1000,
"loss_function": "mse",
"early_stopping_enabled": True,
}
}
all_includes = [
"FlightDelayMin",
"FlightDelayType",
"FlightTimeMin",
"DistanceMiles",
"OriginAirportID",
]
includes = [all_includes[i] for i in request.param]
analyzed_fields = {
"includes": includes,
"excludes": [],
}
yield from yield_model_id(analysis=analysis, analyzed_fields=analyzed_fields)
@pytest.fixture(params=[[0, 6], [5, 6], range(7)])
def classification_model_id(request):
analysis = {
"classification": {
"dependent_variable": "Cancelled",
"max_trees": 5,
"num_top_feature_importance_values": 0,
"max_optimization_rounds_per_hyperparameter": 1,
"prediction_field_name": "Cancelled_prediction",
"training_percent": 50,
"randomize_seed": 1000,
"num_top_classes": -1,
"class_assignment_objective": "maximize_accuracy",
"early_stopping_enabled": True,
}
}
all_includes = [
"OriginWeather",
"OriginAirportID",
"DestCityName",
"DestWeather",
"DestRegion",
"AvgTicketPrice",
"Cancelled",
]
includes = [all_includes[i] for i in request.param]
analyzed_fields = {
"includes": includes,
"excludes": [],
}
yield from yield_model_id(analysis=analysis, analyzed_fields=analyzed_fields)
class TestMLModel:
@requires_no_ml_extras
def test_import_ml_model_when_dependencies_are_not_available(self):
from eland.ml import MLModel # noqa: F401
@requires_sklearn
def test_unpack_and_raise_errors_in_ingest_simulate(self, mocker):
# Train model
training_data = datasets.make_classification(n_features=5)
classifier = DecisionTreeClassifier()
classifier.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_decision_tree_classifier"
test_data = [[0.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]]
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
classifier,
feature_names,
es_if_exists="replace",
es_compress_model_definition=True,
)
# Mock the ingest.simulate API to return an error within {'docs': [...]}
mock = mocker.patch.object(ES_TEST_CLIENT.ingest, "simulate")
mock.return_value = {
"docs": [
{
"error": {
"type": "x_content_parse_exception",
"reason": "[1:1052] [inference_model_definition] failed to parse field [trained_model]",
}
}
]
}
with pytest.raises(RuntimeError) as err:
es_model.predict(test_data)
assert repr(err.value) == (
'RuntimeError("Failed to run prediction for model ID '
"'test_decision_tree_classifier'\", {'type': 'x_content_parse_exception', "
"'reason': '[1:1052] [inference_model_definition] failed to parse "
"field [trained_model]'})"
)
@requires_sklearn
@pytest.mark.parametrize("compress_model_definition", [True, False])
@pytest.mark.parametrize("multi_class", [True, False])
def test_decision_tree_classifier(self, compress_model_definition, multi_class):
# Train model
training_data = (
datasets.make_classification(
n_features=7,
n_classes=3,
n_clusters_per_class=2,
n_informative=6,
n_redundant=1,
)
if multi_class
else datasets.make_classification(n_features=7)
)
classifier = DecisionTreeClassifier()
classifier.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4", "f5", "f6"]
model_id = "test_decision_tree_classifier"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
classifier,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, classifier, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_sklearn
@pytest.mark.parametrize("compress_model_definition", [True, False])
def test_decision_tree_regressor(self, compress_model_definition):
# Train model
training_data = datasets.make_regression(n_features=5)
regressor = DecisionTreeRegressor()
regressor.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_decision_tree_regressor"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, regressor, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_sklearn
@pytest.mark.parametrize("compress_model_definition", [True, False])
def test_random_forest_classifier(self, compress_model_definition):
# Train model
training_data = datasets.make_classification(n_features=5)
classifier = RandomForestClassifier()
classifier.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_random_forest_classifier"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
classifier,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, classifier, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_sklearn
@pytest.mark.parametrize("compress_model_definition", [True, False])
def test_random_forest_regressor(self, compress_model_definition):
# Train model
training_data = datasets.make_regression(n_features=5)
regressor = RandomForestRegressor()
regressor.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_random_forest_regressor"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, regressor, random_rows(training_data[0], 20)
)
match = f"Trained machine learning model {model_id} already exists"
with pytest.raises(ValueError, match=match):
MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
es_if_exists="fail",
es_compress_model_definition=compress_model_definition,
)
# Clean up
es_model.delete_model()
@requires_xgboost
@pytest.mark.parametrize("compress_model_definition", [True, False])
@pytest.mark.parametrize("multi_class", [True, False])
def test_xgb_classifier(self, compress_model_definition, multi_class):
# test both multiple and binary classification
if multi_class:
skip_if_multiclass_classifition()
training_data = datasets.make_classification(
n_features=5, n_classes=3, n_informative=3
)
classifier = XGBClassifier(
booster="gbtree", objective="multi:softmax", use_label_encoder=False
)
else:
training_data = datasets.make_classification(n_features=5)
classifier = XGBClassifier(booster="gbtree", use_label_encoder=False)
# Train model
classifier.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_xgb_classifier"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
classifier,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, classifier, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_xgboost
@pytest.mark.parametrize(
"objective", ["multi:softmax", "multi:softprob", "binary:logistic"]
)
@pytest.mark.parametrize("booster", ["gbtree", "dart"])
def test_xgb_classifier_objectives_and_booster(self, objective, booster):
# test both multiple and binary classification
if objective.startswith("multi"):
skip_if_multiclass_classifition()
training_data = datasets.make_classification(
n_features=5, n_classes=3, n_informative=3
)
classifier = XGBClassifier(
booster=booster, objective=objective, use_label_encoder=False
)
else:
training_data = datasets.make_classification(n_features=5)
classifier = XGBClassifier(
booster=booster, objective=objective, use_label_encoder=False
)
# Train model
classifier.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["feature0", "feature1", "feature2", "feature3", "feature4"]
model_id = "test_xgb_classifier"
es_model = MLModel.import_model(
ES_TEST_CLIENT, model_id, classifier, feature_names, es_if_exists="replace"
)
# Get some test results
check_prediction_equality(
es_model, classifier, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_xgboost
@pytest.mark.parametrize("compress_model_definition", [True, False])
@pytest.mark.parametrize(
"objective",
[
"reg:squarederror",
"reg:squaredlogerror",
"reg:linear",
"reg:logistic",
"reg:pseudohubererror",
],
)
@pytest.mark.parametrize("booster", ["gbtree", "dart"])
def test_xgb_regressor(self, compress_model_definition, objective, booster):
# Train model
training_data = datasets.make_regression(n_features=5)
regressor = XGBRegressor(objective=objective, booster=booster)
regressor.fit(
training_data[0],
np.exp(training_data[1] - np.max(training_data[1]))
/ sum(np.exp(training_data[1])),
)
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_xgb_regressor"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, regressor, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_xgboost
def test_predict_single_feature_vector(self):
# Train model
training_data = datasets.make_regression(n_features=1)
regressor = XGBRegressor()
regressor.fit(training_data[0], training_data[1])
# Get some test results
test_data = [[0.1]]
test_results = regressor.predict(np.asarray(test_data))
# Serialise the models to Elasticsearch
feature_names = ["f0"]
model_id = "test_xgb_regressor"
es_model = MLModel.import_model(
ES_TEST_CLIENT, model_id, regressor, feature_names, es_if_exists="replace"
)
# Single feature
es_results = es_model.predict(test_data[0])
np.testing.assert_almost_equal(test_results, es_results, decimal=2)
# Clean up
es_model.delete_model()
@requires_lightgbm
@pytest.mark.parametrize("compress_model_definition", [True, False])
@pytest.mark.parametrize(
"objective",
["regression", "regression_l1", "huber", "fair", "quantile", "mape"],
)
@pytest.mark.parametrize("booster", ["gbdt", "rf", "dart", "goss"])
def test_lgbm_regressor(self, compress_model_definition, objective, booster):
# Train model
training_data = datasets.make_regression(n_features=5)
if booster == "rf":
regressor = LGBMRegressor(
boosting_type=booster,
objective=objective,
bagging_fraction=0.5,
bagging_freq=3,
)
else:
regressor = LGBMRegressor(boosting_type=booster, objective=objective)
regressor.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["Column_0", "Column_1", "Column_2", "Column_3", "Column_4"]
model_id = "test_lgbm_regressor"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, regressor, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_lightgbm
@pytest.mark.parametrize("compress_model_definition", [True, False])
@pytest.mark.parametrize("objective", ["binary", "multiclass", "multiclassova"])
@pytest.mark.parametrize("booster", ["gbdt", "dart", "goss"])
def test_lgbm_classifier_objectives_and_booster(
self, compress_model_definition, objective, booster
):
# test both multiple and binary classification
if objective.startswith("multi"):
skip_if_multiclass_classifition()
training_data = datasets.make_classification(
n_features=5, n_classes=3, n_informative=3
)
classifier = LGBMClassifier(boosting_type=booster, objective=objective)
else:
training_data = datasets.make_classification(n_features=5)
classifier = LGBMClassifier(boosting_type=booster, objective=objective)
# Train model
classifier.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["Column_0", "Column_1", "Column_2", "Column_3", "Column_4"]
model_id = "test_lgbm_classifier"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
classifier,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
check_prediction_equality(
es_model, classifier, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_sklearn
@requires_shap
def test_export_regressor(self, regression_model_id):
ed_flights = ed.DataFrame(ES_TEST_CLIENT, FLIGHTS_SMALL_INDEX_NAME).head(10)
types = dict(ed_flights.dtypes)
X = ed_flights.to_pandas().astype(types)
model = MLModel(es_client=ES_TEST_CLIENT, model_id=regression_model_id)
pipeline = model.export_model()
pipeline.fit(X)
predictions_sklearn = pipeline.predict(
X, feature_names_in=pipeline["preprocessor"].get_feature_names_out()
)
response = ES_TEST_CLIENT.ml.infer_trained_model(
model_id=regression_model_id,
docs=X[pipeline["es_model"].input_field_names].to_dict("records"),
)
predictions_es = np.array(
list(
map(
itemgetter("FlightDelayMin_prediction"),
response.body["inference_results"],
)
)
)
np.testing.assert_array_almost_equal(predictions_sklearn, predictions_es)
import pandas as pd
X_transformed = pipeline["preprocessor"].transform(X=X)
X_transformed = pd.DataFrame(
X_transformed, columns=pipeline["preprocessor"].get_feature_names_out()
)
explainer = shap.TreeExplainer(pipeline["es_model"])
shap_values = explainer.shap_values(
X_transformed[pipeline["es_model"].feature_names_in_]
)
np.testing.assert_array_almost_equal(
predictions_sklearn, shap_values.sum(axis=1) + explainer.expected_value
)
@requires_sklearn
def test_export_classification(self, classification_model_id):
ed_flights = ed.DataFrame(ES_TEST_CLIENT, FLIGHTS_SMALL_INDEX_NAME).head(10)
X = ed.eland_to_pandas(ed_flights)
model = MLModel(es_client=ES_TEST_CLIENT, model_id=classification_model_id)
pipeline = model.export_model()
pipeline.fit(X)
predictions_sklearn = pipeline.predict(
X, feature_names_in=pipeline["preprocessor"].get_feature_names_out()
)
prediction_proba_sklearn = pipeline.predict_proba(
X, feature_names_in=pipeline["preprocessor"].get_feature_names_out()
).max(axis=1)
response = ES_TEST_CLIENT.ml.infer_trained_model(
model_id=classification_model_id,
docs=X[pipeline["es_model"].input_field_names].to_dict("records"),
)
predictions_es = np.array(
list(
map(
lambda x: str(int(x["Cancelled_prediction"])),
response.body["inference_results"],
)
)
)
prediction_proba_es = np.array(
list(
map(
itemgetter("prediction_probability"),
response.body["inference_results"],
)
)
)
np.testing.assert_array_almost_equal(
prediction_proba_sklearn, prediction_proba_es
)
np.testing.assert_array_equal(predictions_sklearn, predictions_es)
import pandas as pd
X_transformed = pipeline["preprocessor"].transform(X=X)
X_transformed = pd.DataFrame(
X_transformed, columns=pipeline["preprocessor"].get_feature_names_out()
)
explainer = shap.TreeExplainer(pipeline["es_model"])
shap_values = explainer.shap_values(
X_transformed[pipeline["es_model"].feature_names_in_]
)
log_odds = shap_values.sum(axis=1) + explainer.expected_value
prediction_proba_shap = 1 / (1 + np.exp(-log_odds))
# use probability of the predicted class
prediction_proba_shap[prediction_proba_shap < 0.5] = (
1 - prediction_proba_shap[prediction_proba_shap < 0.5]
)
np.testing.assert_array_almost_equal(
prediction_proba_sklearn, prediction_proba_shap
)
@requires_xgboost
@requires_sklearn
@pytest.mark.parametrize("objective", ["binary:logistic", "reg:squarederror"])
def test_xgb_import_export(self, objective):
booster = "gbtree"
if objective.startswith("binary:"):
training_data = datasets.make_classification(n_features=5)
xgb_model = XGBClassifier(
booster=booster, objective=objective, use_label_encoder=False
)
else:
training_data = datasets.make_regression(n_features=5)
xgb_model = XGBRegressor(
booster=booster, objective=objective, use_label_encoder=False
)
# Train model
xgb_model.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["feature0", "feature1", "feature2", "feature3", "feature4"]
model_id = "test_xgb_model"
es_model = MLModel.import_model(
ES_TEST_CLIENT, model_id, xgb_model, feature_names, es_if_exists="replace"
)
# Export suppose to fail
with pytest.raises(ValueError) as ex:
es_model.export_model()
assert ex.match("Error initializing sklearn classifier.")
# Clean up
es_model.delete_model()
@requires_lightgbm
@pytest.mark.parametrize("objective", ["regression", "binary"])
def test_lgbm_import_export(self, objective):
booster = "gbdt"
if objective == "binary":
training_data = datasets.make_classification(n_features=5)
lgbm_model = LGBMClassifier(boosting_type=booster, objective=objective)
else:
training_data = datasets.make_regression(n_features=5)
lgbm_model = LGBMRegressor(boosting_type=booster, objective=objective)
# Train model
lgbm_model.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["feature0", "feature1", "feature2", "feature3", "feature4"]
model_id = "test_lgbm_model"
es_model = MLModel.import_model(
ES_TEST_CLIENT, model_id, lgbm_model, feature_names, es_if_exists="replace"
)
# Export suppose to fail
with pytest.raises(ValueError) as ex:
es_model.export_model()
assert ex.match("Error initializing sklearn classifier.")
# Clean up
es_model.delete_model()