eland/eland/tests/dataframe/test_metrics_pytest.py
2020-04-27 15:16:48 -05:00

134 lines
4.7 KiB
Python

# Licensed to Elasticsearch B.V under one or more agreements.
# Elasticsearch B.V licenses this file to you under the Apache 2.0 License.
# See the LICENSE file in the project root for more information
# File called _pytest for PyCharm compatibility
from pandas.testing import assert_series_equal
from eland.tests.common import TestData
class TestDataFrameMetrics(TestData):
funcs = ["max", "min", "mean", "sum"]
extended_funcs = ["median", "mad", "var", "std"]
def test_flights_metrics(self):
pd_flights = self.pd_flights()
ed_flights = self.ed_flights()
for func in self.funcs:
pd_metric = getattr(pd_flights, func)(numeric_only=True)
ed_metric = getattr(ed_flights, func)(numeric_only=True)
assert_series_equal(pd_metric, ed_metric)
def test_flights_extended_metrics(self):
pd_flights = self.pd_flights()
ed_flights = self.ed_flights()
# Test on reduced set of data for more consistent
# median behaviour + better var, std test for sample vs population
pd_flights = pd_flights[["AvgTicketPrice"]]
ed_flights = ed_flights[["AvgTicketPrice"]]
import logging
logger = logging.getLogger("elasticsearch")
logger.addHandler(logging.StreamHandler())
logger.setLevel(logging.DEBUG)
for func in self.extended_funcs:
pd_metric = getattr(pd_flights, func)(
**({"numeric_only": True} if func != "mad" else {})
)
ed_metric = getattr(ed_flights, func)(numeric_only=True)
pd_value = pd_metric["AvgTicketPrice"]
ed_value = ed_metric["AvgTicketPrice"]
assert (ed_value * 0.9) <= pd_value <= (ed_value * 1.1) # +/-10%
def test_flights_extended_metrics_nan(self):
pd_flights = self.pd_flights()
ed_flights = self.ed_flights()
# Test on single row to test NaN behaviour of sample std/variance
pd_flights_1 = pd_flights[pd_flights.FlightNum == "9HY9SWR"][["AvgTicketPrice"]]
ed_flights_1 = ed_flights[ed_flights.FlightNum == "9HY9SWR"][["AvgTicketPrice"]]
for func in self.extended_funcs:
pd_metric = getattr(pd_flights_1, func)()
ed_metric = getattr(ed_flights_1, func)()
assert_series_equal(
pd_metric, ed_metric, check_exact=False, check_less_precise=True
)
# Test on zero rows to test NaN behaviour of sample std/variance
pd_flights_0 = pd_flights[pd_flights.FlightNum == "XXX"][["AvgTicketPrice"]]
ed_flights_0 = ed_flights[ed_flights.FlightNum == "XXX"][["AvgTicketPrice"]]
for func in self.extended_funcs:
pd_metric = getattr(pd_flights_0, func)()
ed_metric = getattr(ed_flights_0, func)()
assert_series_equal(
pd_metric, ed_metric, check_exact=False, check_less_precise=True
)
def test_ecommerce_selected_non_numeric_source_fields(self):
# None of these are numeric
columns = [
"category",
"currency",
"customer_birth_date",
"customer_first_name",
"user",
]
pd_ecommerce = self.pd_ecommerce()[columns]
ed_ecommerce = self.ed_ecommerce()[columns]
for func in self.funcs:
assert_series_equal(
getattr(pd_ecommerce, func)(numeric_only=True),
getattr(ed_ecommerce, func)(numeric_only=True),
check_less_precise=True,
)
def test_ecommerce_selected_mixed_numeric_source_fields(self):
# Some of these are numeric
columns = [
"category",
"currency",
"taxless_total_price",
"customer_birth_date",
"total_quantity",
"customer_first_name",
"user",
]
pd_ecommerce = self.pd_ecommerce()[columns]
ed_ecommerce = self.ed_ecommerce()[columns]
for func in self.funcs:
assert_series_equal(
getattr(pd_ecommerce, func)(numeric_only=True),
getattr(ed_ecommerce, func)(numeric_only=True),
check_less_precise=True,
)
def test_ecommerce_selected_all_numeric_source_fields(self):
# All of these are numeric
columns = ["total_quantity", "taxful_total_price", "taxless_total_price"]
pd_ecommerce = self.pd_ecommerce()[columns]
ed_ecommerce = self.ed_ecommerce()[columns]
for func in self.funcs:
assert_series_equal(
getattr(pd_ecommerce, func)(numeric_only=True),
getattr(ed_ecommerce, func)(numeric_only=True),
check_less_precise=True,
)