eland/tests/dataframe/test_to_csv_pytest.py
Bart Broere 33cf029efe
Implement eland.DataFrame.to_json (#661)
Co-authored-by: Quentin Pradet <quentin.pradet@elastic.co>
2024-02-15 11:32:54 +04:00

123 lines
4.3 KiB
Python

# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# File called _pytest for PyCharm compatibility
import ast
import time
from io import StringIO
import pandas as pd
from pandas.testing import assert_frame_equal
import eland as ed
from tests import ES_TEST_CLIENT, FLIGHTS_INDEX_NAME
from tests.common import ROOT_DIR, TestData
class TestDataFrameToCSV(TestData):
def test_to_csv_head(self):
results_file = ROOT_DIR + "/dataframe/results/test_to_csv_head.csv"
ed_flights = self.ed_flights().head()
pd_flights = self.pd_flights().head()
ed_flights.to_csv(results_file)
# Converting back from csv is messy as pd_flights is created from a json file
pd_from_csv = pd.read_csv(
results_file,
index_col=0,
converters={
"DestLocation": lambda x: ast.literal_eval(x),
"OriginLocation": lambda x: ast.literal_eval(x),
},
)
pd_from_csv.index = pd_from_csv.index.map(str)
pd_from_csv.timestamp = pd.to_datetime(pd_from_csv.timestamp)
assert_frame_equal(pd_flights, pd_from_csv)
def test_to_csv_full(self):
results_file = ROOT_DIR + "/dataframe/results/test_to_csv_full.csv"
# Test is slow as it's for the full dataset, but it is useful as it goes over 10000 docs
ed_flights = self.ed_flights()
pd_flights = self.pd_flights()
ed_flights.to_csv(results_file)
# Converting back from csv is messy as pd_flights is created from a json file
pd_from_csv = pd.read_csv(
results_file,
index_col=0,
converters={
"DestLocation": lambda x: ast.literal_eval(x),
"OriginLocation": lambda x: ast.literal_eval(x),
},
)
pd_from_csv.index = pd_from_csv.index.map(str)
pd_from_csv.timestamp = pd.to_datetime(pd_from_csv.timestamp)
assert_frame_equal(pd_flights, pd_from_csv)
# Now read the csv to an index
now_millis = int(round(time.time() * 1000))
test_index = FLIGHTS_INDEX_NAME + "." + str(now_millis)
ed_flights_from_csv = ed.csv_to_eland(
results_file,
ES_TEST_CLIENT,
test_index,
index_col=0,
es_refresh=True,
es_type_overrides={
"OriginLocation": "geo_point",
"DestLocation": "geo_point",
},
converters={
"DestLocation": lambda x: ast.literal_eval(x),
"OriginLocation": lambda x: ast.literal_eval(x),
},
)
pd_flights_from_csv = ed.eland_to_pandas(ed_flights_from_csv)
# TODO - there is a 'bug' where the Elasticsearch index returns data in a different order to the CSV
print(ed_flights_from_csv.head())
print(pd_flights_from_csv.head())
# clean up index
ES_TEST_CLIENT.indices.delete(index=test_index)
def test_pd_to_csv_without_filepath(self):
ed_flights = self.ed_flights()
pd_flights = self.pd_flights()
ret = ed_flights.to_csv()
results = StringIO(ret)
# Converting back from csv is messy as pd_flights is created from a json file
pd_from_csv = pd.read_csv(
results,
index_col=0,
converters={
"DestLocation": lambda x: ast.literal_eval(x),
"OriginLocation": lambda x: ast.literal_eval(x),
},
)
pd_from_csv.index = pd_from_csv.index.map(str)
pd_from_csv.timestamp = pd.to_datetime(pd_from_csv.timestamp)
assert_frame_equal(pd_flights, pd_from_csv)