eland/tests/ml/test_imported_ml_model_pytest.py
2020-11-16 11:30:41 -06:00

570 lines
20 KiB
Python

# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
import pytest
from eland.ml import MLModel
from tests import ES_TEST_CLIENT, ES_VERSION
try:
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
HAS_SKLEARN = True
except ImportError:
HAS_SKLEARN = False
try:
from xgboost import XGBClassifier, XGBRegressor
HAS_XGBOOST = True
except ImportError:
HAS_XGBOOST = False
try:
from lightgbm import LGBMClassifier, LGBMRegressor
HAS_LIGHTGBM = True
except ImportError:
HAS_LIGHTGBM = False
requires_sklearn = pytest.mark.skipif(
not HAS_SKLEARN, reason="This test requires 'scikit-learn' package to run"
)
requires_xgboost = pytest.mark.skipif(
not HAS_XGBOOST, reason="This test requires 'xgboost' package to run"
)
requires_no_ml_extras = pytest.mark.skipif(
HAS_SKLEARN or HAS_XGBOOST,
reason="This test requires 'scikit-learn' and 'xgboost' to not be installed",
)
requires_lightgbm = pytest.mark.skipif(
not HAS_LIGHTGBM, reason="This test requires 'lightgbm' package to run"
)
def skip_if_multiclass_classifition():
if ES_VERSION < (7, 7):
raise pytest.skip(
"Skipped because multiclass classification "
"isn't supported on Elasticsearch 7.6"
)
def random_rows(data, size):
return data[np.random.randint(data.shape[0], size=size), :]
def check_prediction_equality(es_model, py_model, test_data):
# Get some test results
test_results = py_model.predict(np.asarray(test_data))
es_results = es_model.predict(test_data)
np.testing.assert_almost_equal(test_results, es_results, decimal=2)
class TestImportedMLModel:
@requires_no_ml_extras
def test_import_ml_model_when_dependencies_are_not_available(self):
from eland.ml import MLModel # noqa: F401
@requires_sklearn
def test_unpack_and_raise_errors_in_ingest_simulate(self, mocker):
# Train model
training_data = datasets.make_classification(n_features=5)
classifier = DecisionTreeClassifier()
classifier.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_decision_tree_classifier"
test_data = [[0.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]]
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
classifier,
feature_names,
es_if_exists="replace",
es_compress_model_definition=True,
)
# Mock the ingest.simulate API to return an error within {'docs': [...]}
mock = mocker.patch.object(ES_TEST_CLIENT.ingest, "simulate")
mock.return_value = {
"docs": [
{
"error": {
"type": "x_content_parse_exception",
"reason": "[1:1052] [inference_model_definition] failed to parse field [trained_model]",
}
}
]
}
with pytest.raises(RuntimeError) as err:
es_model.predict(test_data)
assert repr(err.value) == (
'RuntimeError("Failed to run prediction for model ID '
"'test_decision_tree_classifier'\", {'type': 'x_content_parse_exception', "
"'reason': '[1:1052] [inference_model_definition] failed to parse "
"field [trained_model]'})"
)
@requires_sklearn
@pytest.mark.parametrize("compress_model_definition", [True, False])
def test_decision_tree_classifier(self, compress_model_definition):
# Train model
training_data = datasets.make_classification(n_features=5)
classifier = DecisionTreeClassifier()
classifier.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_decision_tree_classifier"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
classifier,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, classifier, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_sklearn
@pytest.mark.parametrize("compress_model_definition", [True, False])
def test_decision_tree_regressor(self, compress_model_definition):
# Train model
training_data = datasets.make_regression(n_features=5)
regressor = DecisionTreeRegressor()
regressor.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_decision_tree_regressor"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, regressor, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_sklearn
@pytest.mark.parametrize("compress_model_definition", [True, False])
def test_random_forest_classifier(self, compress_model_definition):
# Train model
training_data = datasets.make_classification(n_features=5)
classifier = RandomForestClassifier()
classifier.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_random_forest_classifier"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
classifier,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, classifier, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_sklearn
@pytest.mark.parametrize("compress_model_definition", [True, False])
def test_random_forest_regressor(self, compress_model_definition):
# Train model
training_data = datasets.make_regression(n_features=5)
regressor = RandomForestRegressor()
regressor.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_random_forest_regressor"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, regressor, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_xgboost
@pytest.mark.parametrize("compress_model_definition", [True, False])
@pytest.mark.parametrize("multi_class", [True, False])
def test_xgb_classifier(self, compress_model_definition, multi_class):
# test both multiple and binary classification
if multi_class:
skip_if_multiclass_classifition()
training_data = datasets.make_classification(
n_features=5, n_classes=3, n_informative=3
)
classifier = XGBClassifier(booster="gbtree", objective="multi:softmax")
else:
training_data = datasets.make_classification(n_features=5)
classifier = XGBClassifier(booster="gbtree")
# Train model
classifier.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_xgb_classifier"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
classifier,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, classifier, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_xgboost
@pytest.mark.parametrize(
"objective", ["multi:softmax", "multi:softprob", "binary:logistic"]
)
@pytest.mark.parametrize("booster", ["gbtree", "dart"])
def test_xgb_classifier_objectives_and_booster(self, objective, booster):
# test both multiple and binary classification
if objective.startswith("multi"):
skip_if_multiclass_classifition()
training_data = datasets.make_classification(
n_features=5, n_classes=3, n_informative=3
)
classifier = XGBClassifier(booster=booster, objective=objective)
else:
training_data = datasets.make_classification(n_features=5)
classifier = XGBClassifier(booster=booster, objective=objective)
# Train model
classifier.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["feature0", "feature1", "feature2", "feature3", "feature4"]
model_id = "test_xgb_classifier"
es_model = MLModel.import_model(
ES_TEST_CLIENT, model_id, classifier, feature_names, es_if_exists="replace"
)
# Get some test results
check_prediction_equality(
es_model, classifier, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_xgboost
@pytest.mark.parametrize("compress_model_definition", [True, False])
@pytest.mark.parametrize(
"objective",
["reg:squarederror", "reg:squaredlogerror", "reg:linear", "reg:logistic"],
)
@pytest.mark.parametrize("booster", ["gbtree", "dart"])
def test_xgb_regressor(self, compress_model_definition, objective, booster):
# Train model
training_data = datasets.make_regression(n_features=5)
regressor = XGBRegressor(objective=objective, booster=booster)
regressor.fit(
training_data[0],
np.exp(training_data[1] - np.max(training_data[1]))
/ sum(np.exp(training_data[1])),
)
# Serialise the models to Elasticsearch
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_xgb_regressor"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, regressor, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_xgboost
def test_predict_single_feature_vector(self):
# Train model
training_data = datasets.make_regression(n_features=1)
regressor = XGBRegressor()
regressor.fit(training_data[0], training_data[1])
# Get some test results
test_data = [[0.1]]
test_results = regressor.predict(np.asarray(test_data))
# Serialise the models to Elasticsearch
feature_names = ["f0"]
model_id = "test_xgb_regressor"
es_model = MLModel.import_model(
ES_TEST_CLIENT, model_id, regressor, feature_names, es_if_exists="replace"
)
# Single feature
es_results = es_model.predict(test_data[0])
np.testing.assert_almost_equal(test_results, es_results, decimal=2)
# Clean up
es_model.delete_model()
@requires_lightgbm
@pytest.mark.parametrize("compress_model_definition", [True, False])
@pytest.mark.parametrize(
"objective",
["regression", "regression_l1", "huber", "fair", "quantile", "mape"],
)
@pytest.mark.parametrize("booster", ["gbdt", "rf", "dart", "goss"])
def test_lgbm_regressor(self, compress_model_definition, objective, booster):
# Train model
training_data = datasets.make_regression(n_features=5)
if booster == "rf":
regressor = LGBMRegressor(
boosting_type=booster,
objective=objective,
bagging_fraction=0.5,
bagging_freq=3,
)
else:
regressor = LGBMRegressor(boosting_type=booster, objective=objective)
regressor.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["Column_0", "Column_1", "Column_2", "Column_3", "Column_4"]
model_id = "test_lgbm_regressor"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
# Get some test results
check_prediction_equality(
es_model, regressor, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
@requires_lightgbm
@pytest.mark.parametrize("compress_model_definition", [True, False])
@pytest.mark.parametrize("objective", ["binary", "multiclass", "multiclassova"])
@pytest.mark.parametrize("booster", ["gbdt", "dart", "goss"])
def test_lgbm_classifier_objectives_and_booster(
self, compress_model_definition, objective, booster
):
# test both multiple and binary classification
if objective.startswith("multi"):
skip_if_multiclass_classifition()
training_data = datasets.make_classification(
n_features=5, n_classes=3, n_informative=3
)
classifier = LGBMClassifier(boosting_type=booster, objective=objective)
else:
training_data = datasets.make_classification(n_features=5)
classifier = LGBMClassifier(boosting_type=booster, objective=objective)
# Train model
classifier.fit(training_data[0], training_data[1])
# Serialise the models to Elasticsearch
feature_names = ["Column_0", "Column_1", "Column_2", "Column_3", "Column_4"]
model_id = "test_lgbm_classifier"
es_model = MLModel.import_model(
ES_TEST_CLIENT,
model_id,
classifier,
feature_names,
es_if_exists="replace",
es_compress_model_definition=compress_model_definition,
)
check_prediction_equality(
es_model, classifier, random_rows(training_data[0], 20)
)
# Clean up
es_model.delete_model()
# If both overwrite and es_if_exists is given.
@requires_sklearn
@pytest.mark.parametrize("compress_model_definition", [True, False])
@pytest.mark.parametrize("es_if_exists", ["fail", "replace"])
@pytest.mark.parametrize("overwrite", [True, False])
def test_imported_mlmodel_bothparams(
self, compress_model_definition, es_if_exists, overwrite
):
# Train model
training_data = datasets.make_regression(n_features=5)
regressor = RandomForestRegressor()
regressor.fit(training_data[0], training_data[1])
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_random_forest_regressor"
match = "Using 'overwrite' and 'es_if_exists' together is invalid, use only 'es_if_exists'"
with pytest.raises(ValueError, match=match):
MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
es_if_exists=es_if_exists,
overwrite=overwrite,
es_compress_model_definition=compress_model_definition,
)
# Deprecation warning for overwrite parameter
@requires_sklearn
@pytest.mark.parametrize("compress_model_definition", [True, False])
@pytest.mark.parametrize("overwrite", [True])
def test_imported_mlmodel_overwrite_true(
self, compress_model_definition, overwrite
):
# Train model
training_data = datasets.make_regression(n_features=5)
regressor = RandomForestRegressor()
regressor.fit(training_data[0], training_data[1])
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_random_forest_regressor"
match = "'overwrite' parameter is deprecated, use 'es_if_exists' instead"
with pytest.warns(DeprecationWarning, match=match):
MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
overwrite=overwrite,
es_compress_model_definition=compress_model_definition,
)
@requires_sklearn
@pytest.mark.parametrize("compress_model_definition", [True, False])
@pytest.mark.parametrize("overwrite", [False])
def test_imported_mlmodel_overwrite_false(
self, compress_model_definition, overwrite
):
# Train model
training_data = datasets.make_regression(n_features=5)
regressor = RandomForestRegressor()
regressor.fit(training_data[0], training_data[1])
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_random_forest_regressor"
match_error = f"Trained machine learning model {model_id} already exists"
match_warning = (
"'overwrite' parameter is deprecated, use 'es_if_exists' instead"
)
with pytest.raises(ValueError, match=match_error):
with pytest.warns(DeprecationWarning, match=match_warning):
MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
overwrite=overwrite,
es_compress_model_definition=compress_model_definition,
)
# Raise ValueError if Model exists when es_if_exists = 'fail'
@requires_sklearn
@pytest.mark.parametrize("compress_model_definition", [True, False])
def test_es_if_exists_fail(self, compress_model_definition):
# Train model
training_data = datasets.make_regression(n_features=5)
regressor = RandomForestRegressor()
regressor.fit(training_data[0], training_data[1])
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_random_forest_regressor"
# If both overwrite and es_if_exists is given.
match = f"Trained machine learning model {model_id} already exists"
with pytest.raises(ValueError, match=match):
MLModel.import_model(
ES_TEST_CLIENT,
model_id,
regressor,
feature_names,
es_if_exists="fail",
es_compress_model_definition=compress_model_definition,
)