eland/eland/query_compiler.py
2019-07-31 09:59:52 +00:00

375 lines
11 KiB
Python

import pandas as pd
from modin.backends.base.query_compiler import BaseQueryCompiler
from eland import Client
from eland import Index
from eland import Mappings
from eland import Operations
from pandas.core.indexes.numeric import Int64Index
from pandas.core.indexes.range import RangeIndex
class ElandQueryCompiler(BaseQueryCompiler):
def __init__(self,
client=None,
index_pattern=None,
columns=None,
index_field=None,
operations=None):
self._client = Client(client)
self._index_pattern = index_pattern
# Get and persist mappings, this allows us to correctly
# map returned types from Elasticsearch to pandas datatypes
self._mappings = Mappings(client=self._client, index_pattern=self._index_pattern)
self._index = Index(self, index_field)
if operations is None:
self._operations = Operations()
else:
self._operations = operations
if columns is not None:
self.columns = columns
def _get_index(self):
return self._index
def _get_columns(self):
columns = self._operations.get_columns()
if columns is None:
# default to all
columns = self._mappings.source_fields()
return pd.Index(columns)
def _set_columns(self, columns):
self._operations.set_columns(columns)
columns = property(_get_columns, _set_columns)
index = property(_get_index)
@property
def dtypes(self):
columns = self._operations.get_columns()
return self._mappings.dtypes(columns)
def get_dtype_counts(self):
columns = self._operations.get_columns()
return self._mappings.get_dtype_counts(columns)
# END Index, columns, and dtypes objects
def _es_results_to_pandas(self, results):
"""
Parameters
----------
results: dict
Elasticsearch results from self.client.search
Returns
-------
df: pandas.DataFrame
_source values extracted from results and mapped to pandas DataFrame
dtypes are mapped via Mapping object
Notes
-----
Fields containing lists in Elasticsearch don't map easily to pandas.DataFrame
For example, an index with mapping:
```
"mappings" : {
"properties" : {
"group" : {
"type" : "keyword"
},
"user" : {
"type" : "nested",
"properties" : {
"first" : {
"type" : "keyword"
},
"last" : {
"type" : "keyword"
}
}
}
}
}
```
Adding a document:
```
"_source" : {
"group" : "amsterdam",
"user" : [
{
"first" : "John",
"last" : "Smith"
},
{
"first" : "Alice",
"last" : "White"
}
]
}
```
(https://www.elastic.co/guide/en/elasticsearch/reference/current/nested.html)
this would be transformed internally (in Elasticsearch) into a document that looks more like this:
```
{
"group" : "amsterdam",
"user.first" : [ "alice", "john" ],
"user.last" : [ "smith", "white" ]
}
```
When mapping this a pandas data frame we mimic this transformation.
Similarly, if a list is added to Elasticsearch:
```
PUT my_index/_doc/1
{
"list" : [
0, 1, 2
]
}
```
The mapping is:
```
"mappings" : {
"properties" : {
"user" : {
"type" : "long"
}
}
}
```
TODO - explain how lists are handled (https://www.elastic.co/guide/en/elasticsearch/reference/current/array.html)
TODO - an option here is to use Elasticsearch's multi-field matching instead of pandas treatment of lists (which isn't great)
NOTE - using this lists is generally not a good way to use this API
"""
if results is None:
return self._empty_pd_ef()
def flatten_dict(y):
out = {}
def flatten(x, name=''):
# We flatten into source fields e.g. if type=geo_point
# location: {lat=52.38, lon=4.90}
if name == '':
is_source_field = False
pd_dtype = 'object'
else:
is_source_field, pd_dtype = self._mappings.source_field_pd_dtype(name[:-1])
if not is_source_field and type(x) is dict:
for a in x:
flatten(x[a], name + a + '.')
elif not is_source_field and type(x) is list:
for a in x:
flatten(a, name)
elif is_source_field == True: # only print source fields from mappings (TODO - not so efficient for large number of fields and filtered mapping)
field_name = name[:-1]
# Coerce types - for now just datetime
if pd_dtype == 'datetime64[ns]':
x = pd.to_datetime(x)
# Elasticsearch can have multiple values for a field. These are represented as lists, so
# create lists for this pivot (see notes above)
if field_name in out:
if type(out[field_name]) is not list:
l = [out[field_name]]
out[field_name] = l
out[field_name].append(x)
else:
out[field_name] = x
flatten(y)
return out
rows = []
index = []
if isinstance(results, dict):
iterator = results['hits']['hits']
else:
iterator = results
for hit in iterator:
row = hit['_source']
# get index value - can be _id or can be field value in source
if self._index.is_source_field:
index_field = row[self._index.index_field]
else:
index_field = hit[self._index.index_field]
index.append(index_field)
# flatten row to map correctly to 2D DataFrame
rows.append(flatten_dict(row))
# Create pandas DataFrame
df = pd.DataFrame(data=rows, index=index)
# _source may not contain all columns in the mapping
# therefore, fill in missing columns
# (note this returns self.columns NOT IN df.columns)
missing_columns = list(set(self.columns) - set(df.columns))
for missing in missing_columns:
is_source_field, pd_dtype = self._mappings.source_field_pd_dtype(missing)
df[missing] = None
df[missing].astype(pd_dtype)
# Sort columns in mapping order
df = df[self.columns]
return df
def _index_count(self):
"""
Returns
-------
index_count: int
Count of docs where index_field exists
"""
return self._operations.index_count(self, self.index.index_field)
def _index_matches_count(self, items):
"""
Returns
-------
index_count: int
Count of docs where items exist
"""
return self._operations.index_matches_count(self, self.index.index_field, items)
def _index_matches(self, items):
"""
Returns
-------
index_count: int
Count of list of the items that match
"""
return self._operations.index_matches(self, self.index.index_field, items)
def _empty_pd_ef(self):
# Return an empty dataframe with correct columns and dtypes
df = pd.DataFrame()
for c, d in zip(self.columns, self.dtypes):
df[c] = pd.Series(dtype=d)
return df
def copy(self):
return self.__constructor__(
client=self._client,
index_pattern=self._index_pattern,
columns=None, # columns are embedded in operations
index_field=self._index.index_field,
operations=self._operations.copy()
)
def head(self, n):
result = self.copy()
result._operations.head(self._index, n)
return result
def tail(self, n):
result = self.copy()
result._operations.tail(self._index, n)
return result
# To/From Pandas
def to_pandas(self):
"""Converts Eland DataFrame to Pandas DataFrame.
Returns:
Pandas DataFrame
"""
return self._operations.to_pandas(self)
# __getitem__ methods
def getitem_column_array(self, key, numeric=False):
"""Get column data for target labels.
Args:
key: Target labels by which to retrieve data.
numeric: A boolean representing whether or not the key passed in represents
the numeric index or the named index.
Returns:
A new QueryCompiler.
"""
result = self.copy()
if numeric:
raise NotImplementedError("Not implemented yet...")
result._operations.set_columns(key)
return result
def squeeze(self, axis=None):
result = self.copy()
result._operations.squeeze(axis)
return result
def view(self, index=None, columns=None):
result = self.copy()
result._operations.iloc(index, columns)
return result
def drop(self, index=None, columns=None):
result = self.copy()
# Drop gets all columns and removes drops
if columns is not None:
# columns is a pandas.Index so we can use pandas drop feature
new_columns = self.columns.drop(columns)
result._operations.set_columns(new_columns.to_list())
if index is not None:
result._operations.drop_index_values(self, self.index.index_field, index)
return result
def count(self):
return self._operations.count(self)
def mean(self):
return self._operations.mean(self)
def sum(self):
return self._operations.sum(self)
def min(self):
return self._operations.min(self)
def max(self):
return self._operations.max(self)
def nunique(self):
return self._operations.nunique(self)
def info_es(self, buf):
buf.write("index_pattern: {index_pattern}\n".format(index_pattern=self._index_pattern))
self._index.info_es(buf)
self._mappings.info_es(buf)
self._operations.info_es(buf)
def describe(self):
return self._operations.describe(self)
def _hist(self, num_bins):
return self._operations.hist(self, num_bins)