eland/eland/ndframe.py
2020-03-27 12:21:15 -05:00

381 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2019 Elasticsearch BV
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from abc import ABC, abstractmethod
from eland import QueryCompiler
"""
NDFrame
---------
Abstract base class for eland.DataFrame and eland.Series.
The underlying data resides in Elasticsearch and the API aligns as much as
possible with pandas APIs.
This allows the eland.DataFrame to access large datasets stored in Elasticsearch,
without storing the dataset in local memory.
Implementation Details
----------------------
Elasticsearch indexes can be configured in many different ways, and these indexes
utilise different data structures to pandas.
eland.DataFrame operations that return individual rows (e.g. df.head()) return
_source data. If _source is not enabled, this data is not accessible.
Similarly, only Elasticsearch searchable fields can be searched or filtered, and
only Elasticsearch aggregatable fields can be aggregated or grouped.
"""
class NDFrame(ABC):
def __init__(
self,
client=None,
index_pattern=None,
columns=None,
index_field=None,
query_compiler=None,
):
"""
pandas.DataFrame/Series like API that proxies into Elasticsearch index(es).
Parameters
----------
client : eland.Client
A reference to a Elasticsearch python client
"""
if query_compiler is None:
query_compiler = QueryCompiler(
client=client,
index_pattern=index_pattern,
display_names=columns,
index_field=index_field,
)
self._query_compiler = query_compiler
def _get_index(self):
"""
Return eland index referencing Elasticsearch field to index a DataFrame/Series
Returns
-------
eland.Index:
Note eland.Index has a very limited API compared to pandas.Index
See Also
--------
:pandas_api_docs:`pandas.DataFrame.index`
:pandas_api_docs:`pandas.Series.index`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> assert isinstance(df.index, ed.Index)
>>> df.index.index_field
'_id'
>>> s = df['Carrier']
>>> assert isinstance(s.index, ed.Index)
>>> s.index.index_field
'_id'
"""
return self._query_compiler.index
index = property(_get_index)
@property
def dtypes(self):
"""
Return the pandas dtypes in the DataFrame. Elasticsearch types are mapped
to pandas dtypes via Mappings._es_dtype_to_pd_dtype.__doc__
Returns
-------
pandas.Series
The data type of each column.
See Also
--------
:pandas_api_docs:`pandas.DataFrame.dtypes`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights', columns=['Origin', 'AvgTicketPrice', 'timestamp', 'dayOfWeek'])
>>> df.dtypes
Origin object
AvgTicketPrice float64
timestamp datetime64[ns]
dayOfWeek int64
dtype: object
"""
return self._query_compiler.dtypes
def _build_repr(self, num_rows):
# self could be Series or DataFrame
if len(self.index) <= num_rows:
return self._to_pandas()
num_rows = num_rows
head_rows = int(num_rows / 2) + num_rows % 2
tail_rows = num_rows - head_rows
head = self.head(head_rows)._to_pandas()
tail = self.tail(tail_rows)._to_pandas()
return head.append(tail)
def __sizeof__(self):
# Don't default to pandas, just return approximation TODO - make this more accurate
return sys.getsizeof(self._query_compiler)
def __len__(self):
"""Gets the length of the DataFrame.
Returns:
Returns an integer length of the DataFrame object.
"""
return len(self.index)
def _info_es(self, buf):
self._query_compiler.info_es(buf)
def mean(self, numeric_only=True):
"""
Return mean value for each numeric column
TODO - implement remainder of pandas arguments, currently non-numerics are not supported
Returns
-------
pandas.Series
mean value for each numeric column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.mean`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> df.mean()
AvgTicketPrice 628.253689
Cancelled 0.128494
DistanceKilometers 7092.142457
DistanceMiles 4406.853010
FlightDelay 0.251168
FlightDelayMin 47.335171
FlightTimeHour 8.518797
FlightTimeMin 511.127842
dayOfWeek 2.835975
dtype: float64
"""
return self._query_compiler.mean(numeric_only=numeric_only)
def sum(self, numeric_only=True):
"""
Return sum for each numeric column
TODO - implement remainder of pandas arguments, currently non-numerics are not supported
Returns
-------
pandas.Series
sum for each numeric column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.sum`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> df.sum()
AvgTicketPrice 8.204365e+06
Cancelled 1.678000e+03
DistanceKilometers 9.261629e+07
DistanceMiles 5.754909e+07
FlightDelay 3.280000e+03
FlightDelayMin 6.181500e+05
FlightTimeHour 1.112470e+05
FlightTimeMin 6.674818e+06
dayOfWeek 3.703500e+04
dtype: float64
"""
return self._query_compiler.sum(numeric_only=numeric_only)
def min(self, numeric_only=True):
"""
Return the minimum value for each numeric column
TODO - implement remainder of pandas arguments, currently non-numerics are not supported
Returns
-------
pandas.Series
min value for each numeric column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.min`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> df.min()
AvgTicketPrice 100.021
Cancelled False
DistanceKilometers 0
DistanceMiles 0
FlightDelay False
FlightDelayMin 0
FlightTimeHour 0
FlightTimeMin 0
dayOfWeek 0
dtype: object
"""
return self._query_compiler.min(numeric_only=numeric_only)
def max(self, numeric_only=True):
"""
Return the maximum value for each numeric column
TODO - implement remainder of pandas arguments, currently non-numerics are not supported
Returns
-------
pandas.Series
max value for each numeric column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.max`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> df.max()
AvgTicketPrice 1199.73
Cancelled True
DistanceKilometers 19881.5
DistanceMiles 12353.8
FlightDelay True
FlightDelayMin 360
FlightTimeHour 31.715
FlightTimeMin 1902.9
dayOfWeek 6
dtype: object
"""
return self._query_compiler.max(numeric_only=numeric_only)
def nunique(self):
"""
Return cardinality of each field.
**Note we can only do this for aggregatable Elasticsearch fields - (in general) numeric and keyword
rather than text fields**
This method will try and field aggregatable fields if possible if mapping has::
"customer_first_name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
we will aggregate ``customer_first_name`` columns using ``customer_first_name.keyword``.
TODO - implement remainder of pandas arguments
Returns
-------
pandas.Series
cardinality of each column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.nunique`
Examples
--------
>>> columns = ['category', 'currency', 'customer_birth_date', 'customer_first_name', 'user']
>>> df = ed.DataFrame('localhost', 'ecommerce', columns=columns)
>>> df.nunique()
category 6
currency 1
customer_birth_date 0
customer_first_name 46
user 46
dtype: int64
"""
return self._query_compiler.nunique()
def _hist(self, num_bins):
return self._query_compiler._hist(num_bins)
def describe(self):
"""
Generate descriptive statistics that summarize the central tendency, dispersion and shape of a
datasets distribution, excluding NaN values.
Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types.
The output will vary depending on what is provided. Refer to the notes below for more detail.
TODO - add additional arguments (current only numeric values supported)
Returns
-------
pandas.Dataframe:
Summary information
See Also
--------
:pandas_api_docs:`pandas.DataFrame.describe`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights', columns=['AvgTicketPrice', 'FlightDelayMin'])
>>> df.describe() # ignoring percentiles as they don't generate consistent results
AvgTicketPrice FlightDelayMin
count 13059.000000 13059.000000
mean 628.253689 47.335171
std 266.386661 96.743006
min 100.020531 0.000000
...
...
...
max 1199.729004 360.000000
"""
return self._query_compiler.describe()
@abstractmethod
def _to_pandas(self, show_progress=False):
pass
@abstractmethod
def head(self, n=5):
pass
@abstractmethod
def tail(self, n=5):
pass