eland/eland/ndframe.py
2020-05-04 12:07:21 -05:00

495 lines
14 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Licensed to Elasticsearch B.V under one or more agreements.
# Elasticsearch B.V licenses this file to you under the Apache 2.0 License.
# See the LICENSE file in the project root for more information
import sys
from abc import ABC, abstractmethod
from eland.query_compiler import QueryCompiler
"""
NDFrame
---------
Abstract base class for eland.DataFrame and eland.Series.
The underlying data resides in Elasticsearch and the API aligns as much as
possible with pandas APIs.
This allows the eland.DataFrame to access large datasets stored in Elasticsearch,
without storing the dataset in local memory.
Implementation Details
----------------------
Elasticsearch indexes can be configured in many different ways, and these indexes
utilise different data structures to pandas.
eland.DataFrame operations that return individual rows (e.g. df.head()) return
_source data. If _source is not enabled, this data is not accessible.
Similarly, only Elasticsearch searchable fields can be searched or filtered, and
only Elasticsearch aggregatable fields can be aggregated or grouped.
"""
class NDFrame(ABC):
def __init__(
self,
client=None,
index_pattern=None,
columns=None,
index_field=None,
query_compiler=None,
):
"""
pandas.DataFrame/Series like API that proxies into Elasticsearch index(es).
Parameters
----------
client : elasticsearch.Elasticsearch
A reference to a Elasticsearch python client
"""
if query_compiler is None:
query_compiler = QueryCompiler(
client=client,
index_pattern=index_pattern,
display_names=columns,
index_field=index_field,
)
self._query_compiler = query_compiler
def _get_index(self):
"""
Return eland index referencing Elasticsearch field to index a DataFrame/Series
Returns
-------
eland.Index:
Note eland.Index has a very limited API compared to pandas.Index
See Also
--------
:pandas_api_docs:`pandas.DataFrame.index`
:pandas_api_docs:`pandas.Series.index`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> assert isinstance(df.index, ed.Index)
>>> df.index.index_field
'_id'
>>> s = df['Carrier']
>>> assert isinstance(s.index, ed.Index)
>>> s.index.index_field
'_id'
"""
return self._query_compiler.index
index = property(_get_index)
@property
def dtypes(self):
"""
Return the pandas dtypes in the DataFrame. Elasticsearch types are mapped
to pandas dtypes via Mappings._es_dtype_to_pd_dtype.__doc__
Returns
-------
pandas.Series
The data type of each column.
See Also
--------
:pandas_api_docs:`pandas.DataFrame.dtypes`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights', columns=['Origin', 'AvgTicketPrice', 'timestamp', 'dayOfWeek'])
>>> df.dtypes
Origin object
AvgTicketPrice float64
timestamp datetime64[ns]
dayOfWeek int64
dtype: object
"""
return self._query_compiler.dtypes
def _build_repr(self, num_rows):
# self could be Series or DataFrame
if len(self.index) <= num_rows:
return self._to_pandas()
num_rows = num_rows
head_rows = int(num_rows / 2) + num_rows % 2
tail_rows = num_rows - head_rows
head = self.head(head_rows)._to_pandas()
tail = self.tail(tail_rows)._to_pandas()
return head.append(tail)
def __sizeof__(self):
# Don't default to pandas, just return approximation TODO - make this more accurate
return sys.getsizeof(self._query_compiler)
def __len__(self):
"""Gets the length of the DataFrame.
Returns:
Returns an integer length of the DataFrame object.
"""
return len(self.index)
def _info_es(self, buf):
self._query_compiler.info_es(buf)
def mean(self, numeric_only=True):
"""
Return mean value for each numeric column
TODO - implement remainder of pandas arguments, currently non-numerics are not supported
Returns
-------
pandas.Series
mean value for each numeric column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.mean`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> df.mean()
AvgTicketPrice 628.253689
Cancelled 0.128494
DistanceKilometers 7092.142457
DistanceMiles 4406.853010
FlightDelay 0.251168
FlightDelayMin 47.335171
FlightTimeHour 8.518797
FlightTimeMin 511.127842
dayOfWeek 2.835975
dtype: float64
"""
return self._query_compiler.mean(numeric_only=numeric_only)
def sum(self, numeric_only=True):
"""
Return sum for each numeric column
TODO - implement remainder of pandas arguments, currently non-numerics are not supported
Returns
-------
pandas.Series
sum for each numeric column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.sum`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> df.sum()
AvgTicketPrice 8.204365e+06
Cancelled 1.678000e+03
DistanceKilometers 9.261629e+07
DistanceMiles 5.754909e+07
FlightDelay 3.280000e+03
FlightDelayMin 6.181500e+05
FlightTimeHour 1.112470e+05
FlightTimeMin 6.674818e+06
dayOfWeek 3.703500e+04
dtype: float64
"""
return self._query_compiler.sum(numeric_only=numeric_only)
def min(self, numeric_only=True):
"""
Return the minimum value for each numeric column
TODO - implement remainder of pandas arguments, currently non-numerics are not supported
Returns
-------
pandas.Series
min value for each numeric column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.min`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> df.min()
AvgTicketPrice 100.021
Cancelled False
DistanceKilometers 0
DistanceMiles 0
FlightDelay False
FlightDelayMin 0
FlightTimeHour 0
FlightTimeMin 0
dayOfWeek 0
dtype: object
"""
return self._query_compiler.min(numeric_only=numeric_only)
def var(self, numeric_only=True):
"""
Return variance for each numeric column
Returns
-------
pandas.Series
The value of the variance for each numeric column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.var`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> df.var() # doctest: +SKIP
AvgTicketPrice 7.096185e+04
Cancelled 1.119831e-01
DistanceKilometers 2.096049e+07
DistanceMiles 8.092892e+06
FlightDelay 1.880825e-01
FlightDelayMin 9.359209e+03
FlightTimeHour 3.112545e+01
FlightTimeMin 1.120516e+05
dayOfWeek 3.761135e+00
dtype: float64
"""
return self._query_compiler.var(numeric_only=numeric_only)
def std(self, numeric_only=True):
"""
Return standard deviation for each numeric column
Returns
-------
pandas.Series
The value of the standard deviation for each numeric column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.std`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> df.std() # doctest: +SKIP
AvgTicketPrice 266.386661
Cancelled 0.334639
DistanceKilometers 4578.263193
DistanceMiles 2844.800855
FlightDelay 0.433685
FlightDelayMin 96.743006
FlightTimeHour 5.579019
FlightTimeMin 334.741135
dayOfWeek 1.939365
dtype: float64
"""
return self._query_compiler.std(numeric_only=numeric_only)
def median(self, numeric_only=True):
"""
Return the median value for each numeric column
Returns
-------
pandas.Series
median value for each numeric column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.median`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> df.median() # doctest: +SKIP
AvgTicketPrice 640.387285
Cancelled 0.000000
DistanceKilometers 7612.072403
DistanceMiles 4729.922470
FlightDelay 0.000000
FlightDelayMin 0.000000
FlightTimeHour 8.383113
FlightTimeMin 503.148975
dayOfWeek 3.000000
dtype: float64
"""
return self._query_compiler.median(numeric_only=numeric_only)
def max(self, numeric_only=True):
"""
Return the maximum value for each numeric column
TODO - implement remainder of pandas arguments, currently non-numerics are not supported
Returns
-------
pandas.Series
max value for each numeric column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.max`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> df.max()
AvgTicketPrice 1199.73
Cancelled True
DistanceKilometers 19881.5
DistanceMiles 12353.8
FlightDelay True
FlightDelayMin 360
FlightTimeHour 31.715
FlightTimeMin 1902.9
dayOfWeek 6
dtype: object
"""
return self._query_compiler.max(numeric_only=numeric_only)
def nunique(self):
"""
Return cardinality of each field.
**Note we can only do this for aggregatable Elasticsearch fields - (in general) numeric and keyword
rather than text fields**
This method will try and field aggregatable fields if possible if mapping has::
"customer_first_name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
we will aggregate ``customer_first_name`` columns using ``customer_first_name.keyword``.
TODO - implement remainder of pandas arguments
Returns
-------
pandas.Series
cardinality of each column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.nunique`
Examples
--------
>>> columns = ['category', 'currency', 'customer_birth_date', 'customer_first_name', 'user']
>>> df = ed.DataFrame('localhost', 'ecommerce', columns=columns)
>>> df.nunique()
category 6
currency 1
customer_birth_date 0
customer_first_name 46
user 46
dtype: int64
"""
return self._query_compiler.nunique()
def mad(self, numeric_only=True):
"""
Return standard deviation for each numeric column
Returns
-------
pandas.Series
The value of the standard deviation for each numeric column
See Also
--------
:pandas_api_docs:`pandas.DataFrame.std`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights')
>>> df.mad() # doctest: +SKIP
AvgTicketPrice 213.368709
Cancelled 0.000000
DistanceKilometers 2946.168236
DistanceMiles 1830.987236
FlightDelay 0.000000
FlightDelayMin 0.000000
FlightTimeHour 3.819435
FlightTimeMin 229.142297
dayOfWeek 2.000000
dtype: float64
"""
return self._query_compiler.mad(numeric_only=numeric_only)
def _hist(self, num_bins):
return self._query_compiler._hist(num_bins)
def describe(self):
"""
Generate descriptive statistics that summarize the central tendency, dispersion and shape of a
datasets distribution, excluding NaN values.
Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types.
The output will vary depending on what is provided. Refer to the notes below for more detail.
TODO - add additional arguments (current only numeric values supported)
Returns
-------
pandas.Dataframe:
Summary information
See Also
--------
:pandas_api_docs:`pandas.DataFrame.describe`
Examples
--------
>>> df = ed.DataFrame('localhost', 'flights', columns=['AvgTicketPrice', 'FlightDelayMin'])
>>> df.describe() # ignoring percentiles as they don't generate consistent results
AvgTicketPrice FlightDelayMin
count 13059.000000 13059.000000
mean 628.253689 47.335171
std 266.386661 96.743006
min 100.020531 0.000000
...
...
...
max 1199.729004 360.000000
"""
return self._query_compiler.describe()
@abstractmethod
def _to_pandas(self, show_progress=False):
pass
@abstractmethod
def head(self, n=5):
pass
@abstractmethod
def tail(self, n=5):
pass
@abstractmethod
def sample(self, n=None, frac=None, random_state=None):
pass