mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
208 lines
7.7 KiB
Python
208 lines
7.7 KiB
Python
# Licensed to Elasticsearch B.V. under one or more contributor
|
|
# license agreements. See the NOTICE file distributed with
|
|
# this work for additional information regarding copyright
|
|
# ownership. Elasticsearch B.V. licenses this file to you under
|
|
# the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
# File called _pytest for PyCharm compatibility
|
|
|
|
import pytest
|
|
import numpy as np
|
|
import pandas as pd
|
|
from pandas.testing import assert_series_equal
|
|
|
|
from eland.tests.common import TestData
|
|
|
|
|
|
class TestDataFrameMetrics(TestData):
|
|
funcs = ["max", "min", "mean", "sum"]
|
|
extended_funcs = ["median", "mad", "var", "std"]
|
|
|
|
@pytest.mark.parametrize("numeric_only", [False, None])
|
|
def test_flights_metrics(self, numeric_only):
|
|
pd_flights = self.pd_flights()
|
|
ed_flights = self.ed_flights()
|
|
|
|
for func in self.funcs:
|
|
# Pandas v1.0 doesn't support mean() on datetime
|
|
# Pandas and Eland don't support sum() on datetime
|
|
if not numeric_only:
|
|
dtype_include = (
|
|
[np.number, np.datetime64]
|
|
if func not in ("mean", "sum")
|
|
else [np.number]
|
|
)
|
|
pd_flights = pd_flights.select_dtypes(include=dtype_include)
|
|
ed_flights = ed_flights.select_dtypes(include=dtype_include)
|
|
|
|
pd_metric = getattr(pd_flights, func)(numeric_only=numeric_only)
|
|
ed_metric = getattr(ed_flights, func)(numeric_only=numeric_only)
|
|
|
|
assert_series_equal(pd_metric, ed_metric)
|
|
|
|
def test_flights_extended_metrics(self):
|
|
pd_flights = self.pd_flights()
|
|
ed_flights = self.ed_flights()
|
|
|
|
# Test on reduced set of data for more consistent
|
|
# median behaviour + better var, std test for sample vs population
|
|
pd_flights = pd_flights[["AvgTicketPrice"]]
|
|
ed_flights = ed_flights[["AvgTicketPrice"]]
|
|
|
|
import logging
|
|
|
|
logger = logging.getLogger("elasticsearch")
|
|
logger.addHandler(logging.StreamHandler())
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
for func in self.extended_funcs:
|
|
pd_metric = getattr(pd_flights, func)(
|
|
**({"numeric_only": True} if func != "mad" else {})
|
|
)
|
|
ed_metric = getattr(ed_flights, func)(numeric_only=True)
|
|
|
|
pd_value = pd_metric["AvgTicketPrice"]
|
|
ed_value = ed_metric["AvgTicketPrice"]
|
|
assert (ed_value * 0.9) <= pd_value <= (ed_value * 1.1) # +/-10%
|
|
|
|
def test_flights_extended_metrics_nan(self):
|
|
pd_flights = self.pd_flights()
|
|
ed_flights = self.ed_flights()
|
|
|
|
# Test on single row to test NaN behaviour of sample std/variance
|
|
pd_flights_1 = pd_flights[pd_flights.FlightNum == "9HY9SWR"][["AvgTicketPrice"]]
|
|
ed_flights_1 = ed_flights[ed_flights.FlightNum == "9HY9SWR"][["AvgTicketPrice"]]
|
|
|
|
for func in self.extended_funcs:
|
|
pd_metric = getattr(pd_flights_1, func)()
|
|
ed_metric = getattr(ed_flights_1, func)()
|
|
|
|
assert_series_equal(
|
|
pd_metric, ed_metric, check_exact=False, check_less_precise=True
|
|
)
|
|
|
|
# Test on zero rows to test NaN behaviour of sample std/variance
|
|
pd_flights_0 = pd_flights[pd_flights.FlightNum == "XXX"][["AvgTicketPrice"]]
|
|
ed_flights_0 = ed_flights[ed_flights.FlightNum == "XXX"][["AvgTicketPrice"]]
|
|
|
|
for func in self.extended_funcs:
|
|
pd_metric = getattr(pd_flights_0, func)()
|
|
ed_metric = getattr(ed_flights_0, func)()
|
|
|
|
assert_series_equal(
|
|
pd_metric, ed_metric, check_exact=False, check_less_precise=True
|
|
)
|
|
|
|
def test_ecommerce_selected_non_numeric_source_fields(self):
|
|
# None of these are numeric
|
|
columns = [
|
|
"category",
|
|
"currency",
|
|
"customer_birth_date",
|
|
"customer_first_name",
|
|
"user",
|
|
]
|
|
|
|
pd_ecommerce = self.pd_ecommerce()[columns]
|
|
ed_ecommerce = self.ed_ecommerce()[columns]
|
|
|
|
for func in self.funcs:
|
|
assert_series_equal(
|
|
getattr(pd_ecommerce, func)(numeric_only=True),
|
|
getattr(ed_ecommerce, func)(numeric_only=True),
|
|
check_less_precise=True,
|
|
)
|
|
|
|
def test_ecommerce_selected_mixed_numeric_source_fields(self):
|
|
# Some of these are numeric
|
|
columns = [
|
|
"category",
|
|
"currency",
|
|
"taxless_total_price",
|
|
"customer_birth_date",
|
|
"total_quantity",
|
|
"customer_first_name",
|
|
"user",
|
|
]
|
|
|
|
pd_ecommerce = self.pd_ecommerce()[columns]
|
|
ed_ecommerce = self.ed_ecommerce()[columns]
|
|
|
|
for func in self.funcs:
|
|
assert_series_equal(
|
|
getattr(pd_ecommerce, func)(numeric_only=True),
|
|
getattr(ed_ecommerce, func)(numeric_only=True),
|
|
check_less_precise=True,
|
|
)
|
|
|
|
def test_ecommerce_selected_all_numeric_source_fields(self):
|
|
# All of these are numeric
|
|
columns = ["total_quantity", "taxful_total_price", "taxless_total_price"]
|
|
|
|
pd_ecommerce = self.pd_ecommerce()[columns]
|
|
ed_ecommerce = self.ed_ecommerce()[columns]
|
|
|
|
for func in self.funcs:
|
|
assert_series_equal(
|
|
getattr(pd_ecommerce, func)(numeric_only=True),
|
|
getattr(ed_ecommerce, func)(numeric_only=True),
|
|
check_less_precise=True,
|
|
)
|
|
|
|
def test_flights_datetime_metrics_agg(self):
|
|
ed_timestamps = self.ed_flights()[["timestamp"]]
|
|
expected_values = {
|
|
"timestamp": {
|
|
"min": pd.Timestamp("2018-01-01 00:00:00"),
|
|
"mean": pd.Timestamp("2018-01-21 19:20:45.564438232"),
|
|
"max": pd.Timestamp("2018-02-11 23:50:12"),
|
|
"mad": pd.NaT,
|
|
"median": pd.NaT,
|
|
"std": pd.NaT,
|
|
"sum": pd.NaT,
|
|
"var": pd.NaT,
|
|
"nunique": 12236,
|
|
}
|
|
}
|
|
|
|
ed_metrics = ed_timestamps.agg(self.funcs + self.extended_funcs + ["nunique"])
|
|
assert ed_metrics.to_dict() == expected_values
|
|
|
|
@pytest.mark.parametrize("agg", ["mean", "min", "max"])
|
|
def test_flights_datetime_metrics_single_agg(self, agg):
|
|
ed_timestamps = self.ed_flights()[["timestamp"]]
|
|
expected_values = {
|
|
"min": pd.Timestamp("2018-01-01 00:00:00"),
|
|
"mean": pd.Timestamp("2018-01-21 19:20:45.564438232"),
|
|
"max": pd.Timestamp("2018-02-11 23:50:12"),
|
|
"nunique": 12236,
|
|
}
|
|
ed_metric = ed_timestamps.agg([agg])
|
|
|
|
assert ed_metric.dtypes["timestamp"] == np.dtype("datetime64[ns]")
|
|
assert ed_metric["timestamp"][0] == expected_values[agg]
|
|
|
|
@pytest.mark.parametrize("agg", ["mean", "min", "max"])
|
|
def test_flights_datetime_metrics_agg_func(self, agg):
|
|
ed_timestamps = self.ed_flights()[["timestamp"]]
|
|
expected_values = {
|
|
"min": pd.Timestamp("2018-01-01 00:00:00"),
|
|
"mean": pd.Timestamp("2018-01-21 19:20:45.564438232"),
|
|
"max": pd.Timestamp("2018-02-11 23:50:12"),
|
|
}
|
|
ed_metric = getattr(ed_timestamps, agg)(numeric_only=False)
|
|
|
|
assert ed_metric.dtype == np.dtype("datetime64[ns]")
|
|
assert ed_metric[0] == expected_values[agg]
|