mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
359 lines
13 KiB
Python
359 lines
13 KiB
Python
# Licensed to Elasticsearch B.V. under one or more contributor
|
|
# license agreements. See the NOTICE file distributed with
|
|
# this work for additional information regarding copyright
|
|
# ownership. Elasticsearch B.V. licenses this file to you under
|
|
# the Apache License, Version 2.0 (the "License"); you may
|
|
# not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing,
|
|
# software distributed under the License is distributed on an
|
|
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
# KIND, either express or implied. See the License for the
|
|
# specific language governing permissions and limitations
|
|
# under the License.
|
|
|
|
from datetime import datetime
|
|
|
|
# File called _pytest for PyCharm compatability
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from eland import Series
|
|
from tests.common import TestData, assert_pandas_eland_series_equal
|
|
|
|
|
|
class TestSeriesArithmetics(TestData):
|
|
def test_ecommerce_datetime_comparisons(self):
|
|
pd_df = self.pd_ecommerce()
|
|
ed_df = self.ed_ecommerce()
|
|
|
|
ops = ["__le__", "__lt__", "__gt__", "__ge__", "__eq__", "__ne__"]
|
|
|
|
# this datetime object is timezone naive
|
|
datetime_obj = datetime(2016, 12, 18)
|
|
|
|
# FIXME: the following timezone conversions are just a temporary fix
|
|
# to run the datetime comparison tests
|
|
#
|
|
# The problem:
|
|
# - the datetime objects of the pandas DataFrame are timezone aware and
|
|
# can't be compared with timezone naive datetime objects
|
|
# - the datetime objects of the eland DataFrame are timezone naive (which
|
|
# should be fixed)
|
|
# - however if the eland DataFrame is converted to a pandas DataFrame
|
|
# (using the `to_pandas` function) the datetime objects become timezone aware
|
|
#
|
|
# This tests converts the datetime objects of the pandas Series to
|
|
# timezone naive ones and utilizes a class to make the datetime objects of the
|
|
# eland Series timezone naive before the result of `to_pandas` is returned.
|
|
# The `to_pandas` function is executed by the `assert_pandas_eland_series_equal`
|
|
# function, which compares the eland and pandas Series
|
|
|
|
# convert to timezone naive datetime object
|
|
pd_df["order_date"] = pd_df["order_date"].dt.tz_localize(None)
|
|
|
|
class ModifiedElandSeries(Series):
|
|
def to_pandas(self):
|
|
"""remove timezone awareness before returning the pandas dataframe"""
|
|
series = super().to_pandas()
|
|
series = series.dt.tz_localize(None)
|
|
return series
|
|
|
|
for op in ops:
|
|
pd_series = pd_df[getattr(pd_df["order_date"], op)(datetime_obj)][
|
|
"order_date"
|
|
]
|
|
ed_series = ed_df[getattr(ed_df["order_date"], op)(datetime_obj)][
|
|
"order_date"
|
|
]
|
|
|
|
# "type cast" to modified class (inherits from ed.Series) that overrides the `to_pandas` function
|
|
ed_series.__class__ = ModifiedElandSeries
|
|
|
|
assert_pandas_eland_series_equal(
|
|
pd_series,
|
|
ed_series,
|
|
check_exact=False,
|
|
rtol=1e-3, # previously known as check_less_precise
|
|
)
|
|
|
|
def test_ecommerce_series_invalid_div(self):
|
|
pd_df = self.pd_ecommerce()
|
|
ed_df = self.ed_ecommerce()
|
|
|
|
# eland / pandas == error
|
|
with pytest.raises(TypeError):
|
|
_ = ed_df["total_quantity"] / pd_df["taxful_total_price"]
|
|
|
|
def test_ecommerce_series_simple_arithmetics(self):
|
|
pd_df = self.pd_ecommerce().head(100)
|
|
ed_df = self.ed_ecommerce().head(100)
|
|
|
|
pd_series = (
|
|
pd_df["taxful_total_price"]
|
|
+ 5
|
|
+ pd_df["total_quantity"] / pd_df["taxless_total_price"]
|
|
- pd_df["total_unique_products"] * 10.0
|
|
+ pd_df["total_quantity"]
|
|
)
|
|
ed_series = (
|
|
ed_df["taxful_total_price"]
|
|
+ 5
|
|
+ ed_df["total_quantity"] / ed_df["taxless_total_price"]
|
|
- ed_df["total_unique_products"] * 10.0
|
|
+ ed_df["total_quantity"]
|
|
)
|
|
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
def test_ecommerce_series_simple_integer_addition(self):
|
|
pd_df = self.pd_ecommerce().head(100)
|
|
ed_df = self.ed_ecommerce().head(100)
|
|
|
|
pd_series = pd_df["taxful_total_price"] + 5
|
|
ed_series = ed_df["taxful_total_price"] + 5
|
|
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
def test_ecommerce_series_simple_series_addition(self):
|
|
pd_df = self.pd_ecommerce().head(100)
|
|
ed_df = self.ed_ecommerce().head(100)
|
|
|
|
pd_series = pd_df["taxful_total_price"] + pd_df["total_quantity"]
|
|
ed_series = ed_df["taxful_total_price"] + ed_df["total_quantity"]
|
|
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
def test_ecommerce_series_basic_arithmetics(self):
|
|
pd_df = self.pd_ecommerce().head(100)
|
|
ed_df = self.ed_ecommerce().head(100)
|
|
|
|
ops = [
|
|
"__add__",
|
|
"__truediv__",
|
|
"__floordiv__",
|
|
"__pow__",
|
|
"__mod__",
|
|
"__mul__",
|
|
"__sub__",
|
|
"add",
|
|
"truediv",
|
|
"floordiv",
|
|
"pow",
|
|
"mod",
|
|
"mul",
|
|
"sub",
|
|
]
|
|
|
|
for op in ops:
|
|
pd_series = getattr(pd_df["taxful_total_price"], op)(
|
|
pd_df["total_quantity"]
|
|
)
|
|
ed_series = getattr(ed_df["taxful_total_price"], op)(
|
|
ed_df["total_quantity"]
|
|
)
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
pd_series = getattr(pd_df["taxful_total_price"], op)(10.56)
|
|
ed_series = getattr(ed_df["taxful_total_price"], op)(10.56)
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
pd_series = getattr(pd_df["taxful_total_price"], op)(np.float32(1.879))
|
|
ed_series = getattr(ed_df["taxful_total_price"], op)(np.float32(1.879))
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
pd_series = getattr(pd_df["taxful_total_price"], op)(int(8))
|
|
ed_series = getattr(ed_df["taxful_total_price"], op)(int(8))
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
def test_supported_series_dtypes_ops(self):
|
|
pd_df = self.pd_ecommerce().head(100)
|
|
ed_df = self.ed_ecommerce().head(100)
|
|
|
|
# Test some specific operations that are and aren't supported
|
|
numeric_ops = [
|
|
"__add__",
|
|
"__truediv__",
|
|
"__floordiv__",
|
|
"__pow__",
|
|
"__mod__",
|
|
"__mul__",
|
|
"__sub__",
|
|
]
|
|
|
|
non_string_numeric_ops = [
|
|
"__add__",
|
|
"__truediv__",
|
|
"__floordiv__",
|
|
"__pow__",
|
|
"__mod__",
|
|
"__sub__",
|
|
]
|
|
# __mul__ is supported for int * str in pandas
|
|
|
|
# float op float
|
|
for op in numeric_ops:
|
|
pd_series = getattr(pd_df["taxful_total_price"], op)(
|
|
pd_df["taxless_total_price"]
|
|
)
|
|
ed_series = getattr(ed_df["taxful_total_price"], op)(
|
|
ed_df["taxless_total_price"]
|
|
)
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
# int op float
|
|
for op in numeric_ops:
|
|
pd_series = getattr(pd_df["total_quantity"], op)(
|
|
pd_df["taxless_total_price"]
|
|
)
|
|
ed_series = getattr(ed_df["total_quantity"], op)(
|
|
ed_df["taxless_total_price"]
|
|
)
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
# float op int
|
|
for op in numeric_ops:
|
|
pd_series = getattr(pd_df["taxful_total_price"], op)(
|
|
pd_df["total_quantity"]
|
|
)
|
|
ed_series = getattr(ed_df["taxful_total_price"], op)(
|
|
ed_df["total_quantity"]
|
|
)
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
# str op int (throws)
|
|
for op in non_string_numeric_ops:
|
|
with pytest.raises(TypeError):
|
|
pd_series = getattr(pd_df["currency"], op)(pd_df["total_quantity"])
|
|
with pytest.raises(TypeError):
|
|
ed_series = getattr(ed_df["currency"], op)(ed_df["total_quantity"])
|
|
with pytest.raises(TypeError):
|
|
pd_series = getattr(pd_df["currency"], op)(1)
|
|
with pytest.raises(TypeError):
|
|
ed_series = getattr(ed_df["currency"], op)(1)
|
|
|
|
# int op str (throws)
|
|
for op in non_string_numeric_ops:
|
|
with pytest.raises(TypeError):
|
|
pd_series = getattr(pd_df["total_quantity"], op)(pd_df["currency"])
|
|
with pytest.raises(TypeError):
|
|
ed_series = getattr(ed_df["total_quantity"], op)(ed_df["currency"])
|
|
|
|
def test_ecommerce_series_basic_rarithmetics(self):
|
|
pd_df = self.pd_ecommerce().head(10)
|
|
ed_df = self.ed_ecommerce().head(10)
|
|
|
|
ops = [
|
|
"__radd__",
|
|
"__rtruediv__",
|
|
"__rfloordiv__",
|
|
"__rpow__",
|
|
"__rmod__",
|
|
"__rmul__",
|
|
"__rsub__",
|
|
"radd",
|
|
"rtruediv",
|
|
"rfloordiv",
|
|
"rpow",
|
|
"rmod",
|
|
"rmul",
|
|
"rsub",
|
|
]
|
|
|
|
for op in ops:
|
|
pd_series = getattr(pd_df["taxful_total_price"], op)(
|
|
pd_df["total_quantity"]
|
|
)
|
|
ed_series = getattr(ed_df["taxful_total_price"], op)(
|
|
ed_df["total_quantity"]
|
|
)
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
pd_series = getattr(pd_df["taxful_total_price"], op)(3.141)
|
|
ed_series = getattr(ed_df["taxful_total_price"], op)(3.141)
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
pd_series = getattr(pd_df["taxful_total_price"], op)(np.float32(2.879))
|
|
ed_series = getattr(ed_df["taxful_total_price"], op)(np.float32(2.879))
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
pd_series = getattr(pd_df["taxful_total_price"], op)(int(6))
|
|
ed_series = getattr(ed_df["taxful_total_price"], op)(int(6))
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
def test_supported_series_dtypes_rops(self):
|
|
pd_df = self.pd_ecommerce().head(100)
|
|
ed_df = self.ed_ecommerce().head(100)
|
|
|
|
# Test some specific operations that are and aren't supported
|
|
numeric_ops = [
|
|
"__radd__",
|
|
"__rtruediv__",
|
|
"__rfloordiv__",
|
|
"__rpow__",
|
|
"__rmod__",
|
|
"__rmul__",
|
|
"__rsub__",
|
|
]
|
|
|
|
non_string_numeric_ops = [
|
|
"__radd__",
|
|
"__rtruediv__",
|
|
"__rfloordiv__",
|
|
"__rpow__",
|
|
"__rmod__",
|
|
"__rsub__",
|
|
]
|
|
# __rmul__ is supported for int * str in pandas
|
|
|
|
# float op float
|
|
for op in numeric_ops:
|
|
pd_series = getattr(pd_df["taxful_total_price"], op)(
|
|
pd_df["taxless_total_price"]
|
|
)
|
|
ed_series = getattr(ed_df["taxful_total_price"], op)(
|
|
ed_df["taxless_total_price"]
|
|
)
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
# int op float
|
|
for op in numeric_ops:
|
|
pd_series = getattr(pd_df["total_quantity"], op)(
|
|
pd_df["taxless_total_price"]
|
|
)
|
|
ed_series = getattr(ed_df["total_quantity"], op)(
|
|
ed_df["taxless_total_price"]
|
|
)
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
# float op int
|
|
for op in numeric_ops:
|
|
pd_series = getattr(pd_df["taxful_total_price"], op)(
|
|
pd_df["total_quantity"]
|
|
)
|
|
ed_series = getattr(ed_df["taxful_total_price"], op)(
|
|
ed_df["total_quantity"]
|
|
)
|
|
assert_pandas_eland_series_equal(pd_series, ed_series, rtol=True)
|
|
|
|
# str op int (throws)
|
|
for op in non_string_numeric_ops:
|
|
with pytest.raises(TypeError):
|
|
pd_series = getattr(pd_df["currency"], op)(pd_df["total_quantity"])
|
|
with pytest.raises(TypeError):
|
|
ed_series = getattr(ed_df["currency"], op)(ed_df["total_quantity"])
|
|
with pytest.raises(TypeError):
|
|
pd_series = getattr(pd_df["currency"], op)(10.0)
|
|
with pytest.raises(TypeError):
|
|
ed_series = getattr(ed_df["currency"], op)(10.0)
|
|
|
|
# int op str (throws)
|
|
for op in non_string_numeric_ops:
|
|
with pytest.raises(TypeError):
|
|
pd_series = getattr(pd_df["total_quantity"], op)(pd_df["currency"])
|
|
with pytest.raises(TypeError):
|
|
ed_series = getattr(ed_df["total_quantity"], op)(ed_df["currency"])
|