eland/tests/series/test_metrics_pytest.py
Bart Broere 75c57b0775
Support Pandas 2 (#742)
* Fix test setup to match pandas 2.0 demands

* Use the now deprecated _append method

(Better solution might exist)

* Deal with numeric_only being removed in metrics test

* Skip mad metric for other pandas versions

* Account for differences between pandas versions in describe methods

* Run black

* Check Pandas version first

* Mirror behaviour of installed Pandas version when running value_counts

* Allow passing arguments to the individual asserters

* Fix for method _construct_axes_from_arguments no longer existing

* Skip mad metric if it does not exist

* Account for pandas 2.0 timestamp default behaviour

* Deal with empty vs other inferred data types

* Account for default datetime precision change

* Run Black

* Solution for differences in inferred_type only

* Fix csv and json issues

* Skip two doctests

* Passing a set as indexer is no longer allowed

* Don't validate output where it differs between Pandas versions in the environment

* Update test matrix and packaging metadata

* Update version of Python in the docs

* Update Python version in demo notebook

* Match noxfile

* Symmetry

* Fix trailing comma in JSON

* Revert some changes in setup.py to fix building the documentation

* Revert "Revert some changes in setup.py to fix building the documentation"

This reverts commit ea9879753129d8d8390b3cbbce57155a8b4fb346.

* Use PANDAS_VERSION from eland.common

* Still skip the doctest, but make the output pandas 2 instead of 1

* Still skip doctest, but switch to pandas 2 output

* Prepare for pandas 3

* Reference the right column

* Ignore output in tests but switch to pandas 2 output

* Add line comment about NBVAL_IGNORE_OUTPUT

* Restore missing line and add stderr cell

* Use non-private method instead

* Fix indentation and parameter issues

* If index is not specified, and pandas 1 is present, set it to True

From pandas 2 and upwards, index is set to None by default

* Run black

* Newer version of black might have different opinions?

* Add line comment

* Remove unused import

* Add reason for ignore statement

* Add reason for skip

---------

Co-authored-by: Quentin Pradet <quentin.pradet@elastic.co>
2025-02-04 17:43:43 +04:00

195 lines
7.4 KiB
Python

# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# File called _pytest for PyCharm compatability
from datetime import timedelta
import numpy as np
import pandas as pd
import pytest
from pandas.testing import assert_series_equal
from eland.common import PANDAS_VERSION
from tests.common import TestData, assert_almost_equal
class TestSeriesMetrics(TestData):
all_funcs = ["max", "min", "mean", "sum", "nunique", "var", "std", "mad"]
timestamp_funcs = ["max", "min", "mean", "nunique"]
def assert_almost_equal_for_agg(self, func, pd_metric, ed_metric):
if func in ("nunique", "var", "mad"):
np.testing.assert_almost_equal(pd_metric, ed_metric, decimal=-3)
else:
np.testing.assert_almost_equal(pd_metric, ed_metric, decimal=2)
def test_flights_metrics(self):
pd_flights = self.pd_flights()["AvgTicketPrice"]
ed_flights = self.ed_flights()["AvgTicketPrice"]
for func in self.all_funcs:
if PANDAS_VERSION[0] >= 2 and func == "mad":
continue
pd_metric = getattr(pd_flights, func)()
ed_metric = getattr(ed_flights, func)()
self.assert_almost_equal_for_agg(func, pd_metric, ed_metric)
def test_flights_timestamp(self):
pd_flights = self.pd_flights()["timestamp"]
ed_flights = self.ed_flights()["timestamp"]
for func in self.timestamp_funcs:
pd_metric = getattr(pd_flights, func)()
ed_metric = getattr(ed_flights, func)()
if func == "nunique":
print(pd_metric, ed_metric)
self.assert_almost_equal_for_agg(func, pd_metric, ed_metric)
elif func == "mean":
offset = timedelta(seconds=0.001)
assert (ed_metric - offset) < pd_metric < (ed_metric + offset)
else:
assert pd_metric == ed_metric
def test_ecommerce_selected_non_numeric_source_fields(self):
# None of these are numeric, will result in NaNs
column = "category"
ed_ecommerce = self.ed_ecommerce()[column]
for func in self.all_funcs:
if func == "nunique": # nunique never returns 'NaN'
continue
ed_metric = getattr(ed_ecommerce, func)(numeric_only=False)
print(func, ed_metric)
assert np.isnan(ed_metric)
def test_ecommerce_selected_all_numeric_source_fields(self):
# All of these are numeric
columns = ["total_quantity", "taxful_total_price", "taxless_total_price"]
for column in columns:
pd_ecommerce = self.pd_ecommerce()[column]
ed_ecommerce = self.ed_ecommerce()[column]
for func in self.all_funcs:
if PANDAS_VERSION[0] >= 2 and func == "mad":
continue
pd_metric = getattr(pd_ecommerce, func)()
ed_metric = getattr(ed_ecommerce, func)(
**({"numeric_only": True} if (func != "nunique") else {})
)
self.assert_almost_equal_for_agg(func, pd_metric, ed_metric)
@pytest.mark.parametrize("agg", ["mean", "min", "max"])
def test_flights_datetime_metrics_agg(self, agg):
ed_timestamps = self.ed_flights()["timestamp"]
expected_values = {
"min": pd.Timestamp("2018-01-01 00:00:00"),
"mean": pd.Timestamp("2018-01-21 19:20:45.564438232"),
"max": pd.Timestamp("2018-02-11 23:50:12"),
}
ed_metric = getattr(ed_timestamps, agg)()
assert_almost_equal(ed_metric, expected_values[agg])
@pytest.mark.parametrize("agg", ["median", "quantile"])
def test_flights_datetime_median_metric(self, agg):
ed_series = self.ed_flights_small()["timestamp"]
agg_value = getattr(ed_series, agg)()
assert isinstance(agg_value, pd.Timestamp)
assert (
pd.to_datetime("2018-01-01 10:00:00.000")
<= agg_value
<= pd.to_datetime("2018-01-01 12:00:00.000")
)
@pytest.mark.parametrize(
"column", ["day_of_week", "geoip.region_name", "taxful_total_price", "user"]
)
def test_ecommerce_mode(self, column):
ed_series = self.ed_ecommerce()
pd_series = self.pd_ecommerce()
ed_mode = ed_series[column].mode()
pd_mode = pd_series[column].mode()
assert_series_equal(ed_mode, pd_mode)
@pytest.mark.parametrize("es_size", [1, 2, 10, 20])
def test_ecommerce_mode_es_size(self, es_size):
ed_series = self.ed_ecommerce()
pd_series = self.pd_ecommerce()
pd_mode = pd_series["order_date"].mode()[:es_size]
ed_mode = ed_series["order_date"].mode(es_size)
assert_series_equal(pd_mode, ed_mode)
@pytest.mark.parametrize(
"quantile_list", [0.2, 0.5, [0.2, 0.5], [0.75, 0.2, 0.1, 0.5]]
)
@pytest.mark.parametrize(
"column", ["AvgTicketPrice", "FlightDelayMin", "dayOfWeek"]
)
def test_flights_quantile(self, column, quantile_list):
pd_flights = self.pd_flights()[column]
ed_flights = self.ed_flights()[column]
pd_quantile = pd_flights.quantile(quantile_list)
ed_quantile = ed_flights.quantile(quantile_list)
if isinstance(quantile_list, list):
assert_series_equal(pd_quantile, ed_quantile, check_exact=False, rtol=2)
else:
assert pd_quantile * 0.9 <= ed_quantile <= pd_quantile * 1.1
@pytest.mark.parametrize("column", ["FlightDelayMin", "dayOfWeek"])
def test_flights_unique_numeric(self, column):
pd_flights = self.pd_flights()[column]
ed_flights = self.ed_flights()[column]
# Pandas returns unique values in order of their appearance
# ES returns results in ascending order, hence sort the pandas array to check equality
pd_unique = np.sort(pd_flights.unique())
ed_unique = ed_flights.unique()
np.testing.assert_allclose(pd_unique, ed_unique)
@pytest.mark.parametrize("column", ["Cancelled", "DestCountry"])
def test_flights_unique_strings(self, column):
pd_flights = self.pd_flights()[column]
ed_flights = self.ed_flights()[column]
# Pandas returns unique values in order of their appearance
# ES returns results in ascending order, hence sort the pandas array to check equality
pd_unique = np.sort(pd_flights.unique())
ed_unique = ed_flights.unique()
np.equal(pd_unique, ed_unique)
@pytest.mark.parametrize("quantiles_list", [[np.array([1, 2])], ["1", 2]])
def test_quantile_non_numeric_values(self, quantiles_list):
ed_flights = self.ed_flights()["dayOfWeek"]
match = "quantile should be of type int or float"
with pytest.raises(TypeError, match=match):
ed_flights.quantile(q=quantiles_list)