mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
2805 lines
136 KiB
Plaintext
2805 lines
136 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Introduction to Eland Webinar\n",
|
||
"\n",
|
||
"- [Webinar Recording on Youtube](https://www.youtube.com/watch?v=U8fnkzp_sfo)\n",
|
||
"- [Eland Documentation](https://eland.readthedocs.io)\n",
|
||
"- [Source Code on GitHub](https://github.com/elastic/eland)\n",
|
||
"- [Elastic Cloud](https://cloud.elastic.co)\n",
|
||
"- [NYC Open Data dataset](https://data.cityofnewyork.us/Health/DOHMH-New-York-City-Restaurant-Inspection-Results/43nn-pn8j)\n",
|
||
"\n",
|
||
"This Jupyter Notebook goes along with the webinar 'Introduction to Eland' which is available\n",
|
||
"on Youtube. To follow along either create an Elasticsearch deployment on Elastic Cloud (free trial available)\n",
|
||
"or start your own Elasticsearch cluster locally.\n",
|
||
"\n",
|
||
"You'll need to install the following libraries:\n",
|
||
"\n",
|
||
"```bash\n",
|
||
"$ python -m pip install eland numpy pandas\n",
|
||
"```"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## DataFrame Demo"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Standard imports\n",
|
||
"import eland as ed\n",
|
||
"import pandas as pd\n",
|
||
"import numpy as np\n",
|
||
"from elasticsearch import Elasticsearch\n",
|
||
"\n",
|
||
"# Function for pretty-printing JSON\n",
|
||
"def json(x):\n",
|
||
" import json\n",
|
||
" print(json.dumps(x, indent=2, sort_keys=True))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"{\n",
|
||
" \"cluster_name\": \"167e473c7bba4bae85004385d4e0ce46\",\n",
|
||
" \"cluster_uuid\": \"4Y2FwBhRSsWq9uGedb1DmQ\",\n",
|
||
" \"name\": \"instance-0000000000\",\n",
|
||
" \"tagline\": \"You Know, for Search\",\n",
|
||
" \"version\": {\n",
|
||
" \"build_date\": \"2020-06-14T19:35:50.234439Z\",\n",
|
||
" \"build_flavor\": \"default\",\n",
|
||
" \"build_hash\": \"757314695644ea9a1dc2fecd26d1a43856725e65\",\n",
|
||
" \"build_snapshot\": false,\n",
|
||
" \"build_type\": \"docker\",\n",
|
||
" \"lucene_version\": \"8.5.1\",\n",
|
||
" \"minimum_index_compatibility_version\": \"6.0.0-beta1\",\n",
|
||
" \"minimum_wire_compatibility_version\": \"6.8.0\",\n",
|
||
" \"number\": \"7.8.0\"\n",
|
||
" }\n",
|
||
"}\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Connect to an Elastic Cloud instance\n",
|
||
"# or another Elasticsearch index below\n",
|
||
"\n",
|
||
"ELASTIC_CLOUD_ID = \"<cloud-id>\"\n",
|
||
"ELASTIC_CLOUD_PASSWORD = \"<password>\"\n",
|
||
"\n",
|
||
"es = Elasticsearch(\n",
|
||
" cloud_id=ELASTIC_CLOUD_ID,\n",
|
||
" http_auth=(\"elastic\", ELASTIC_CLOUD_PASSWORD) \n",
|
||
")\n",
|
||
"json(es.info())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"Int64Index: 193197 entries, 0 to 400255\n",
|
||
"Data columns (total 26 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 CAMIS 193197 non-null int64 \n",
|
||
" 1 DBA 193197 non-null object \n",
|
||
" 2 BORO 193197 non-null object \n",
|
||
" 3 BUILDING 193197 non-null object \n",
|
||
" 4 STREET 193197 non-null object \n",
|
||
" 5 ZIPCODE 193197 non-null float64\n",
|
||
" 6 PHONE 193197 non-null object \n",
|
||
" 7 CUISINE DESCRIPTION 193197 non-null object \n",
|
||
" 8 INSPECTION DATE 193197 non-null object \n",
|
||
" 9 ACTION 193197 non-null object \n",
|
||
" 10 VIOLATION CODE 193197 non-null object \n",
|
||
" 11 VIOLATION DESCRIPTION 193197 non-null object \n",
|
||
" 12 CRITICAL FLAG 193197 non-null object \n",
|
||
" 13 SCORE 193197 non-null float64\n",
|
||
" 14 GRADE 193197 non-null object \n",
|
||
" 15 GRADE DATE 193197 non-null object \n",
|
||
" 16 RECORD DATE 193197 non-null object \n",
|
||
" 17 INSPECTION TYPE 193197 non-null object \n",
|
||
" 18 Latitude 193197 non-null float64\n",
|
||
" 19 Longitude 193197 non-null float64\n",
|
||
" 20 Community Board 193197 non-null float64\n",
|
||
" 21 Council District 193197 non-null float64\n",
|
||
" 22 Census Tract 193197 non-null float64\n",
|
||
" 23 BIN 193197 non-null float64\n",
|
||
" 24 BBL 193197 non-null float64\n",
|
||
" 25 NTA 193197 non-null object \n",
|
||
"dtypes: float64(9), int64(1), object(16)\n",
|
||
"memory usage: 39.8+ MB\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Load the dataset from NYC Open Data and take a look\n",
|
||
"pd_df = pd.read_csv(\"nyc-restaurants.csv\").dropna()\n",
|
||
"pd_df.info()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"Int64Index: 193197 entries, 0 to 400255\n",
|
||
"Data columns (total 25 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 camis 193197 non-null int64 \n",
|
||
" 1 dba 193197 non-null object \n",
|
||
" 2 boro 193197 non-null object \n",
|
||
" 3 building 193197 non-null object \n",
|
||
" 4 street 193197 non-null object \n",
|
||
" 5 zipcode 193197 non-null float64\n",
|
||
" 6 phone 193197 non-null object \n",
|
||
" 7 cuisine_description 193197 non-null object \n",
|
||
" 8 inspection_date 193197 non-null object \n",
|
||
" 9 action 193197 non-null object \n",
|
||
" 10 violation_code 193197 non-null object \n",
|
||
" 11 violation_description 193197 non-null object \n",
|
||
" 12 critical_flag 193197 non-null object \n",
|
||
" 13 score 193197 non-null float64\n",
|
||
" 14 grade 193197 non-null object \n",
|
||
" 15 grade_date 193197 non-null object \n",
|
||
" 16 record_date 193197 non-null object \n",
|
||
" 17 inspection_type 193197 non-null object \n",
|
||
" 18 community_board 193197 non-null float64\n",
|
||
" 19 council_district 193197 non-null float64\n",
|
||
" 20 census_tract 193197 non-null float64\n",
|
||
" 21 bin 193197 non-null float64\n",
|
||
" 22 bbl 193197 non-null float64\n",
|
||
" 23 nta 193197 non-null object \n",
|
||
" 24 location 193197 non-null object \n",
|
||
"dtypes: float64(7), int64(1), object(17)\n",
|
||
"memory usage: 38.3+ MB\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Rename the columns to be snake_case\n",
|
||
"pd_df.columns = [x.lower().replace(\" \", \"_\") for x in pd_df.columns]\n",
|
||
"\n",
|
||
"# Combine the 'latitude' and 'longitude' columns into one column 'location' for 'geo_point'\n",
|
||
"pd_df[\"location\"] = pd_df[[\"latitude\", \"longitude\"]].apply(lambda x: \",\".join(str(item) for item in x), axis=1)\n",
|
||
"\n",
|
||
"# Drop the old columns in favor of 'location'\n",
|
||
"pd_df.drop([\"latitude\", \"longitude\"], axis=1, inplace=True)\n",
|
||
"\n",
|
||
"pd_df.info()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<class 'eland.dataframe.DataFrame'>\n",
|
||
"Index: 193197 entries, 10388 to 398749\n",
|
||
"Data columns (total 25 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 camis 193197 non-null int64 \n",
|
||
" 1 dba 193197 non-null object \n",
|
||
" 2 boro 193197 non-null object \n",
|
||
" 3 building 193197 non-null object \n",
|
||
" 4 street 193197 non-null object \n",
|
||
" 5 zipcode 193197 non-null int64 \n",
|
||
" 6 phone 193197 non-null object \n",
|
||
" 7 cuisine_description 193197 non-null object \n",
|
||
" 8 inspection_date 193197 non-null object \n",
|
||
" 9 action 193197 non-null object \n",
|
||
" 10 violation_code 193197 non-null object \n",
|
||
" 11 violation_description 193197 non-null object \n",
|
||
" 12 critical_flag 193197 non-null object \n",
|
||
" 13 score 193197 non-null float64\n",
|
||
" 14 grade 193197 non-null object \n",
|
||
" 15 grade_date 193197 non-null object \n",
|
||
" 16 record_date 193197 non-null object \n",
|
||
" 17 inspection_type 193197 non-null object \n",
|
||
" 18 community_board 193197 non-null float64\n",
|
||
" 19 council_district 193197 non-null float64\n",
|
||
" 20 census_tract 193197 non-null float64\n",
|
||
" 21 bin 193197 non-null float64\n",
|
||
" 22 bbl 193197 non-null float64\n",
|
||
" 23 nta 193197 non-null object \n",
|
||
" 24 location 193197 non-null object \n",
|
||
"dtypes: float64(6), int64(2), object(17)\n",
|
||
"memory usage: 80.0 bytes\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"df = ed.pandas_to_eland(\n",
|
||
" pd_df=pd_df,\n",
|
||
" es_client=es,\n",
|
||
"\n",
|
||
" # Where the data will live in Elasticsearch\n",
|
||
" es_dest_index=\"nyc-restaurants\",\n",
|
||
" \n",
|
||
" # Type overrides for certain columns, 'location' detected\n",
|
||
" # automatically as 'keyword' but we want these interpreted as 'geo_point'.\n",
|
||
" es_type_overrides={\n",
|
||
" \"location\": \"geo_point\",\n",
|
||
" \"dba\": \"text\",\n",
|
||
" \"zipcode\": \"short\"\n",
|
||
" },\n",
|
||
"\n",
|
||
" # If the index already exists what should we do?\n",
|
||
" es_if_exists=\"replace\",\n",
|
||
" \n",
|
||
" # Wait for data to be indexed before returning\n",
|
||
" es_refresh=True,\n",
|
||
")\n",
|
||
"df.info()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 24,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"{\n",
|
||
" \"nyc-restaurants\": {\n",
|
||
" \"mappings\": {\n",
|
||
" \"properties\": {\n",
|
||
" \"action\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"bbl\": {\n",
|
||
" \"type\": \"double\"\n",
|
||
" },\n",
|
||
" \"bin\": {\n",
|
||
" \"type\": \"double\"\n",
|
||
" },\n",
|
||
" \"boro\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"building\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"camis\": {\n",
|
||
" \"type\": \"long\"\n",
|
||
" },\n",
|
||
" \"census_tract\": {\n",
|
||
" \"type\": \"double\"\n",
|
||
" },\n",
|
||
" \"community_board\": {\n",
|
||
" \"type\": \"double\"\n",
|
||
" },\n",
|
||
" \"council_district\": {\n",
|
||
" \"type\": \"double\"\n",
|
||
" },\n",
|
||
" \"critical_flag\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"cuisine_description\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"dba\": {\n",
|
||
" \"type\": \"text\"\n",
|
||
" },\n",
|
||
" \"grade\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"grade_date\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"inspection_date\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"inspection_type\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"location\": {\n",
|
||
" \"type\": \"geo_point\"\n",
|
||
" },\n",
|
||
" \"nta\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"phone\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"record_date\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"score\": {\n",
|
||
" \"type\": \"double\"\n",
|
||
" },\n",
|
||
" \"street\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"violation_code\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"violation_description\": {\n",
|
||
" \"type\": \"keyword\"\n",
|
||
" },\n",
|
||
" \"zipcode\": {\n",
|
||
" \"type\": \"short\"\n",
|
||
" }\n",
|
||
" }\n",
|
||
" }\n",
|
||
" }\n",
|
||
"}\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"json(es.indices.get_mapping(index=\"nyc-restaurants\"))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 25,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"(193197, 25)"
|
||
]
|
||
},
|
||
"execution_count": 25,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Shape is determined by using count API\n",
|
||
"df.shape"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 34,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"es_index_pattern: nyc-restaurants\n",
|
||
"Index:\n",
|
||
" es_index_field: _id\n",
|
||
" is_source_field: False\n",
|
||
"Mappings:\n",
|
||
" capabilities:\n",
|
||
" es_field_name is_source es_dtype es_date_format pd_dtype is_searchable is_aggregatable is_scripted aggregatable_es_field_name\n",
|
||
"camis camis True long None int64 True True False camis\n",
|
||
"dba dba True text None object True False False None\n",
|
||
"boro boro True keyword None object True True False boro\n",
|
||
"building building True keyword None object True True False building\n",
|
||
"street street True keyword None object True True False street\n",
|
||
"zipcode zipcode True short None int64 True True False zipcode\n",
|
||
"phone phone True keyword None object True True False phone\n",
|
||
"cuisine_description cuisine_description True keyword None object True True False cuisine_description\n",
|
||
"inspection_date inspection_date True keyword None object True True False inspection_date\n",
|
||
"action action True keyword None object True True False action\n",
|
||
"violation_code violation_code True keyword None object True True False violation_code\n",
|
||
"violation_description violation_description True keyword None object True True False violation_description\n",
|
||
"critical_flag critical_flag True keyword None object True True False critical_flag\n",
|
||
"score score True double None float64 True True False score\n",
|
||
"grade grade True keyword None object True True False grade\n",
|
||
"grade_date grade_date True keyword None object True True False grade_date\n",
|
||
"record_date record_date True keyword None object True True False record_date\n",
|
||
"inspection_type inspection_type True keyword None object True True False inspection_type\n",
|
||
"community_board community_board True double None float64 True True False community_board\n",
|
||
"council_district council_district True double None float64 True True False council_district\n",
|
||
"census_tract census_tract True double None float64 True True False census_tract\n",
|
||
"bin bin True double None float64 True True False bin\n",
|
||
"bbl bbl True double None float64 True True False bbl\n",
|
||
"nta nta True keyword None object True True False nta\n",
|
||
"location location True geo_point None object True True False location\n",
|
||
"Operations:\n",
|
||
" tasks: [('tail': ('sort_field': '_doc', 'count': 10))]\n",
|
||
" size: 10\n",
|
||
" sort_params: _doc:desc\n",
|
||
" _source: ['camis', 'dba', 'boro', 'building', 'street', 'zipcode', 'phone', 'cuisine_description', 'inspection_date', 'action', 'violation_code', 'violation_description', 'critical_flag', 'score', 'grade', 'grade_date', 'record_date', 'inspection_type', 'community_board', 'council_district', 'census_tract', 'bin', 'bbl', 'nta', 'location']\n",
|
||
" body: {}\n",
|
||
" post_processing: [('sort_index')]\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# DataFrame has many APIs compatible with Pandas\n",
|
||
"\n",
|
||
"#df.head(10)\n",
|
||
"#df.columns\n",
|
||
"#df.dba\n",
|
||
"#df[\"grade\"]\n",
|
||
"#df[df.grade.isin([\"A\", \"B\"])]\n",
|
||
"#print(df[df.grade.isin([\"A\", \"B\"])].es_info())\n",
|
||
"#print(df.tail(10).es_info())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 39,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>camis</th>\n",
|
||
" <th>zipcode</th>\n",
|
||
" <th>score</th>\n",
|
||
" <th>community_board</th>\n",
|
||
" <th>council_district</th>\n",
|
||
" <th>census_tract</th>\n",
|
||
" <th>bin</th>\n",
|
||
" <th>bbl</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>count</th>\n",
|
||
" <td>1.931970e+05</td>\n",
|
||
" <td>193197.000000</td>\n",
|
||
" <td>193197.000000</td>\n",
|
||
" <td>193197.000000</td>\n",
|
||
" <td>193197.000000</td>\n",
|
||
" <td>193197.000000</td>\n",
|
||
" <td>1.931970e+05</td>\n",
|
||
" <td>1.931970e+05</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>mean</th>\n",
|
||
" <td>4.605010e+07</td>\n",
|
||
" <td>10677.212540</td>\n",
|
||
" <td>12.947680</td>\n",
|
||
" <td>248.602603</td>\n",
|
||
" <td>20.020715</td>\n",
|
||
" <td>28796.048298</td>\n",
|
||
" <td>2.513373e+06</td>\n",
|
||
" <td>2.450622e+09</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>std</th>\n",
|
||
" <td>4.415232e+06</td>\n",
|
||
" <td>595.142246</td>\n",
|
||
" <td>8.180244</td>\n",
|
||
" <td>130.697014</td>\n",
|
||
" <td>15.809664</td>\n",
|
||
" <td>30672.683469</td>\n",
|
||
" <td>1.351134e+06</td>\n",
|
||
" <td>1.313578e+09</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>min</th>\n",
|
||
" <td>3.011234e+07</td>\n",
|
||
" <td>10000.000000</td>\n",
|
||
" <td>-1.000000</td>\n",
|
||
" <td>101.000000</td>\n",
|
||
" <td>1.000000</td>\n",
|
||
" <td>100.000000</td>\n",
|
||
" <td>1.000000e+06</td>\n",
|
||
" <td>1.000000e+09</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>25%</th>\n",
|
||
" <td>4.138051e+07</td>\n",
|
||
" <td>10022.000000</td>\n",
|
||
" <td>9.000000</td>\n",
|
||
" <td>105.000000</td>\n",
|
||
" <td>4.000000</td>\n",
|
||
" <td>7895.605691</td>\n",
|
||
" <td>1.042708e+06</td>\n",
|
||
" <td>1.011024e+09</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>50%</th>\n",
|
||
" <td>5.000527e+07</td>\n",
|
||
" <td>10468.006114</td>\n",
|
||
" <td>12.000000</td>\n",
|
||
" <td>301.000000</td>\n",
|
||
" <td>19.747529</td>\n",
|
||
" <td>16022.917106</td>\n",
|
||
" <td>3.007191e+06</td>\n",
|
||
" <td>3.002924e+09</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>75%</th>\n",
|
||
" <td>5.005661e+07</td>\n",
|
||
" <td>11228.624535</td>\n",
|
||
" <td>13.000000</td>\n",
|
||
" <td>401.000000</td>\n",
|
||
" <td>34.000000</td>\n",
|
||
" <td>40246.000337</td>\n",
|
||
" <td>4.002294e+06</td>\n",
|
||
" <td>4.003343e+09</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>max</th>\n",
|
||
" <td>5.010416e+07</td>\n",
|
||
" <td>12345.000000</td>\n",
|
||
" <td>99.000000</td>\n",
|
||
" <td>503.000000</td>\n",
|
||
" <td>51.000000</td>\n",
|
||
" <td>162100.000000</td>\n",
|
||
" <td>5.799501e+06</td>\n",
|
||
" <td>5.270001e+09</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" camis zipcode score community_board \\\n",
|
||
"count 1.931970e+05 193197.000000 193197.000000 193197.000000 \n",
|
||
"mean 4.605010e+07 10677.212540 12.947680 248.602603 \n",
|
||
"std 4.415232e+06 595.142246 8.180244 130.697014 \n",
|
||
"min 3.011234e+07 10000.000000 -1.000000 101.000000 \n",
|
||
"25% 4.138051e+07 10022.000000 9.000000 105.000000 \n",
|
||
"50% 5.000527e+07 10468.006114 12.000000 301.000000 \n",
|
||
"75% 5.005661e+07 11228.624535 13.000000 401.000000 \n",
|
||
"max 5.010416e+07 12345.000000 99.000000 503.000000 \n",
|
||
"\n",
|
||
" council_district census_tract bin bbl \n",
|
||
"count 193197.000000 193197.000000 1.931970e+05 1.931970e+05 \n",
|
||
"mean 20.020715 28796.048298 2.513373e+06 2.450622e+09 \n",
|
||
"std 15.809664 30672.683469 1.351134e+06 1.313578e+09 \n",
|
||
"min 1.000000 100.000000 1.000000e+06 1.000000e+09 \n",
|
||
"25% 4.000000 7895.605691 1.042708e+06 1.011024e+09 \n",
|
||
"50% 19.747529 16022.917106 3.007191e+06 3.002924e+09 \n",
|
||
"75% 34.000000 40246.000337 4.002294e+06 4.003343e+09 \n",
|
||
"max 51.000000 162100.000000 5.799501e+06 5.270001e+09 "
|
||
]
|
||
},
|
||
"execution_count": 39,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Aggregating values\n",
|
||
"df.describe()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 40,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAJOCAYAAADs2JBcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df7DldX3f8de7rBA1VVDTrVlIltStKZGkMVshMZO5Ixld1AanowZLA1gSpg0mJkPHrGmntDHM6DTV6FSdYYSIjhUpsZUREkLR27SdgQAhVQEJG0RZAqLyQ1ejZs2nf5zvJifLXdB7L/e+793HY+bOPedzvud8P3c/nN0n53u+99QYIwAA9PJ31nsCAAA8mkgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBrAKasbfqcCq8RcKcFipql+rqnur6itVdUdVnVJVR1TVr1fVn03jN1fVcdP2P1FVN1bVI9P3n5h7rMWqurCq/m+SryX5gar6waq6tqoenB7/1ev1swIbW/lYKOBwUVXPTfI/k5w0xvjzqtqe5Igk/yzJmUlemeRPk/xwkr1JRpI/S/LLST6Y5FVJ3pXkOWOML1XVYpIfSHJqkjuSPDXJp5L8+yTvT3JikmuT/NQY47Y1+SGBTcMracDh5FtJjkpyQlU9aYxx9xjjz5L8fJJ/N8a4Y8z8vzHGl5K8LMmdY4z3jzH2jzE+mOTTSf7p3GO+d4xx6xhjf5JdSe4eY/zOtP0tSX43s7gD+I6INOCwMcbYk+RXkvyHJA9U1WVV9b1JjsvsFbODfW+Szx409tkk2+au3zN3+fuTnFRVDx/4SnJGkr+/Sj8CcBgRacBhZYzxX8cYP5lZUI0kb8kstP7BEpv/+bTdvO9Lcu/8Q85dvifJ/xpjHD339d1jjH+9ej8BcLgQacBho6qeW1Uvqqqjknw9yV8k+ask70nypqraMZ2l+cNV9cwkVyf5h1X1z6tqS1X9bJITknz0ELv46LT9z1XVk6avf1JV/2gNfjxgkxFpwOHkqCRvTvLFJPcn+XtJ3pjkrUkuT/IHSb6c5OIkT57el/byJOcn+VKSNyR5+Rjji0s9+BjjK0lenOT0zF6Fuz+zV+qOeuJ+JGCzcnYnAEBDXkkDAGhIpAEANCTSAAAaEmkAAA1tWe8JrLZnPetZY/v27Wu+369+9at56lOfuub75bFZl36sSU/WpR9r0tNqr8vNN9/8xTHG9yx126aLtO3bt+emm25a8/0uLi5mYWFhzffLY7Mu/ViTnqxLP9akp9Vel6o6+FNN/prDnQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABrast4TYH1t333Vek9h1dz95pet9xQAYNV4JQ0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANPS4kVZVl1TVA1X1qbmx/1RVn66qT1TVf6+qo+due2NV7amqO6rqJXPju6axPVW1e278+Kq6YRr/UFUdOY0fNV3fM92+fbV+aACA7r6dV9Lem2TXQWPXJnneGOOHk/xpkjcmSVWdkOT0JD803eddVXVEVR2R5J1JTk1yQpLXTNsmyVuSvG2M8ZwkDyU5Zxo/J8lD0/jbpu0AAA4LjxtpY4w/TPLgQWN/MMbYP129Psmx0+XTklw2xvjGGOMzSfYkecH0tWeMcdcY45tJLktyWlVVkhcluWK6/6VJXjH3WJdOl69Icsq0PQDAprdlFR7jXyb50HR5W2bRdsDeaSxJ7jlo/KQkz0zy8FzwzW+/7cB9xhj7q+qRafsvHjyBqjo3yblJsnXr1iwuLq7sJ1qGffv2rct+V+r8E/c//kYbxFJ//ht1XTYza9KTdenHmvS0luuyokirqn+bZH+SD6zOdJZnjHFRkouSZOfOnWNhYWHN57C4uJj12O9Knb37qvWewqq5+4yFR41t1HXZzKxJT9alH2vS01quy7IjrarOTvLyJKeMMcY0fG+S4+Y2O3YayyHGv5Tk6KraMr2aNr/9gcfaW1Vbkjx92h4AYNNb1q/gqKpdSd6Q5GfGGF+bu+nKJKdPZ2Yen2RHkj9KcmOSHdOZnEdmdnLBlVPcfTzJK6f7n5XkI3OPddZ0+ZVJPjYXgwAAm9rjvpJWVR9MspDkWVW1N8kFmZ3NeVSSa6f38l8/xvhXY4xbq+ryJLdldhj0vDHGt6bHeV2Sa5IckeSSMcat0y5+LcllVfWbSW5JcvE0fnGS91fVnsxOXDh9FX5eAIAN4XEjbYzxmiWGL15i7MD2Fya5cInxq5NcvcT4XZmd/Xnw+NeTvOrx5gcAsBn5xAEAgIZEGgBAQyINAKAhkQYA0JBIAwBoSKQBADQk0gAAGhJpAAANiTQAgIZEGgBAQyINAKAhkQYA0JBIAwBoSKQBADQk0gAAGhJpAAANiTQAgIZEGgBAQyINAKAhkQYA0JBIAwBoSKQBADQk0gAAGhJpAAANiTQAgIZEGgBAQyINAKAhkQYA0JBIAwBoSKQBADQk0gAAGhJpAAANiTQAgIZEGgBAQyINAKAhkQYA0JBIAwBoSKQBADQk0gAAGhJpAAANiTQAgIZEGgBAQyINAKAhkQYA0JBIAwBoSKQBADQk0gAAGhJpAAANiTQAgIZEGgBAQyINAKAhkQYA0JBIAwBoSKQBADQk0gAAGhJpAAANiTQAgIZEGgBAQyINAKAhkQYA0JBIAwBoSKQBADQk0gAAGhJpAAANiTQAgIZEGgBAQyINAKAhkQYA0JBIAwBoSKQBADQk0gAAGhJpAAANPW6kVdUlVfVAVX1qbuwZVXVtVd05fT9mGq+qekdV7amqT1TV8+fuc9a0/Z1Vddbc+I9V1Sen+7yjquqx9gEAcDj4dl5Je2+SXQeN7U5y3RhjR5LrputJcmqSHdPXuUnencyCK8kFSU5K8oIkF8xF17uT/MLc/XY9zj4AADa9x420McYfJnnwoOHTklw6Xb40ySvmxt83Zq5PcnRVPTvJS5JcO8Z4cIzxUJJrk+yabnvaGOP6McZI8r6DHmupfQAAbHpblnm/rWOM+6bL9yfZOl3eluSeue32TmOPNb53ifHH2sejVNW5mb1yl61bt2ZxcfE7/HFWbt++feuy35U6/8T96z2FVbPUn/9GXZfNzJr0ZF36sSY9reW6LDfS/toYY1TVWI3JLHcfY4yLklyUJDt37hwLCwtP5HSWtLi4mPXY70qdvfuq9Z7Cqrn7jIVHjW3UddnMrElP1qUfa9LTWq7Lcs/u/Px0qDLT9wem8XuTHDe33bHT2GONH7vE+GPtAwBg01tupF2Z5MAZmmcl+cjc+JnTWZ4nJ3lkOmR5TZIXV9Ux0wkDL05yzXTbl6vq5OmszjMPeqyl9gEAsOk97uHOqvpgkoUkz6qqvZmdpfnmJJdX1TlJPpvk1dPmVyd5aZI9Sb6W5LVJMsZ4sKrelOTGabvfGGMcOBnhFzM7g/TJSX5v+spj7AMAYNN73EgbY7zmEDedssS2I8l5h3icS5JcssT4TUmet8T4l5baBwDA4cAnDgAANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhoRZFWVb9aVbdW1aeq6oNV9V1VdXxV3VBVe6rqQ1V15LTtUdP1PdPt2+ce543T+B1V9ZK58V3T2J6q2r2SuQIAbCTLjrSq2pbkl5PsHGM8L8kRSU5P8pYkbxtjPCfJQ0nOme5yTpKHpvG3Tdulqk6Y7vdDSXYleVdVHVFVRyR5Z5JTk5yQ5DXTtgAAm95KD3duSfLkqtqS5ClJ7kvyoiRXTLdfmuQV0+XTpuuZbj+lqmoav2yM8Y0xxmeS7EnygulrzxjjrjHGN5NcNm0LALDpbVnuHccY91bVbyX5XJK/SPIHSW5O8vAYY/+02d4k26bL25LcM913f1U9kuSZ0/j1cw89f597Dho/aam5VNW5Sc5Nkq1bt2ZxcXG5P9ay7du3b132u1Lnn7j/8TfaIJb689+o67KZWZOerEs/1qSntVyXZUdaVR2T2Stbxyd5OMl/y+xw5ZobY1yU5KIk2blz51hYWFjzOSwuLmY99rtSZ+++ar2nsGruPmPhUWMbdV02M2vSk3Xpx5r0tJbrspLDnT+d5DNjjC+MMf4yyYeTvDDJ0dPhzyQ5Nsm90+V7kxyXJNPtT0/ypfnxg+5zqHEAgE1vJZH2uSQnV9VTpveWnZLktiQfT/LKaZuzknxkunzldD3T7R8bY4xp/PTp7M/jk+xI8kdJbkyyYzpb9MjMTi64cgXzBQDYMFbynrQbquqKJH+cZH+SWzI75HhVksuq6jensYunu1yc5P1VtSfJg5lFV8YYt1bV5ZkF3v4k540xvpUkVfW6JNdkduboJWOMW5c7XwCAjWTZkZYkY4wLklxw0PBdmZ2ZefC2X0/yqkM8zoVJLlxi/OokV69kjgAAG5FPHAAAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANDQiiKtqo6uqiuq6tNVdXtV/XhVPaOqrq2qO6fvx0zbVlW9o6r2VNUnqur5c49z1rT9nVV11tz4j1XVJ6f7vKOqaiXzBQDYKFb6Strbk/z+GOMHk/xIktuT7E5y3RhjR5LrputJcmqSHdPXuUnenSRV9YwkFyQ5KckLklxwIOymbX5h7n67VjhfAIANYdmRVlVPT/JTSS5OkjHGN8cYDyc5Lcml02aXJnnFdPm0JO8bM9cnObqqnp3kJUmuHWM8OMZ4KMm1SXZNtz1tjHH9GGMked/cYwEAbGpbVnDf45N8IcnvVNWPJLk5yeuTbB1j3Ddtc3+SrdPlbUnumbv/3mnsscb3LjH+KFV1bmavzmXr1q1ZXFxc9g+1XPv27VuX/a7U+SfuX+8prJql/vw36rpsZtakJ+vSjzXpaS3XZSWRtiXJ85P80hjjhqp6e/7m0GaSZIwxqmqsZILfjjHGRUkuSpKdO3eOhYWFJ3qXj7K4uJj12O9Knb37qvWewqq5+4yFR41t1HXZzKxJT9alH2vS01quy0rek7Y3yd4xxg3T9Ssyi7bPT4cqM31/YLr93iTHzd3/2GnsscaPXWIcAGDTW3akjTHuT3JPVT13GjolyW1Jrkxy4AzNs5J8ZLp8ZZIzp7M8T07yyHRY9JokL66qY6YTBl6c5Jrpti9X1cnTWZ1nzj0WAMCmtpLDnUnyS0k+UFVHJrkryWszC7/Lq+qcJJ9N8upp26uTvDTJniRfm7bNGOPBqnpTkhun7X5jjPHgdPkXk7w3yZOT/N70BQCw6a0o0sYYf5Jk5xI3nbLEtiPJeYd4nEuSXLLE+E1JnreSOQIAbEQ+cQAAoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDK460qjqiqm6pqo9O14+vqhuqak9VfaiqjpzGj5qu75lu3z73GG+cxu+oqpfMje+axvZU1e6VzhUAYKNYjVfSXp/k9rnrb0nytjHGc5I8lOScafycJA9N42+btktVnZDk9CQ/lGRXkndN4XdEkncmOTXJCUleM20LALDprSjSqurYJC9L8p7peiV5UZIrpk0uTfKK6fJp0/VMt58ybX9aksvGGN8YY3wmyZ4kL5i+9owx7hpjfDPJZdO2AACb3pYV3v+3k7whyd+drj8zycNjjP3T9b1Jtk2XtyW5J0nGGPur6pFp+21Jrp97zPn73HPQ+ElLTaKqzk1ybpJs3bo1i4uLy/+Jlmnfvn3rst+VOv/E/Y+/0Qax1J//Rl2Xzcya9GRd+rEmPa3luiw70qrq5UkeGGPcXFULqzel79wY46IkFyXJzp07x8LC2k9ncXEx67HflTp791XrPYVVc/cZC48a26jrsplZk56sSz/WpKe1XJeVvJL2wiQ/U1UvTfJdSZ6W5O1Jjq6qLdOraccmuXfa/t4kxyXZW1Vbkjw9yZfmxg+Yv8+hxgEANrVlvydtjPHGMcaxY4ztmb3x/2NjjDOSfDzJK6fNzkrykenyldP1TLd/bIwxpvHTp7M/j0+yI8kfJbkxyY7pbNEjp31cudz5AgBsJCt9T9pSfi3JZVX1m0luSXLxNH5xkvdX1Z4kD2YWXRlj3FpVlye5Lcn+JOeNMb6VJFX1uiTXJDkiySVjjFufgPkCALSzKpE2xlhMsjhdviuzMzMP3ubrSV51iPtfmOTCJcavTnL1aswRAGAj8YkDAAANiTQAgIZEGgBAQ0/EiQOb3vYlfrfY+Sfu31S/cwwAWF9eSQMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaEikAQA0JNIAABoSaQAADS070qrquKr6eFXdVlW3VtXrp/FnVNW1VXXn9P2Yabyq6h1VtaeqPlFVz597rLOm7e+sqrPmxn+sqj453ecdVVUr+WEBADaKlbyStj/J+WOME5KcnOS8qjohye4k140xdiS5brqeJKcm2TF9nZvk3cks6pJckOSkJC9IcsGBsJu2+YW5++1awXwBADaMZUfaGOO+McYfT5e/kuT2JNuSnJbk0mmzS5O8Yrp8WpL3jZnrkxxdVc9O8pIk144xHhxjPJTk2iS7ptueNsa4fowxkrxv7rEAADa1LavxIFW1PcmPJrkhydYxxn3TTfcn2Tpd3pbknrm77Z3GHmt87xLjS+3/3MxencvWrVuzuLi47J/l23H+ifsfNbb1yUuPs3aWWvd9+/Y94f898J2xJj1Zl36sSU9ruS4rjrSq+u4kv5vkV8YYX55/29gYY1TVWOk+Hs8Y46IkFyXJzp07x8LCwhO6v7N3X/WosfNP3J///MlVaV6W6e4zFh41tri4mCf6vwe+M9akJ+vSjzXpaS3XZUVnd1bVkzILtA+MMT48DX9+OlSZ6fsD0/i9SY6bu/ux09hjjR+7xDgAwKa3krM7K8nFSW4fY7x17qYrkxw4Q/OsJB+ZGz9zOsvz5CSPTIdFr0ny4qo6Zjph4MVJrplu+3JVnTzt68y5xwIA2NRWcnzuhUl+Lsknq+pPprFfT/LmJJdX1TlJPpvk1dNtVyd5aZI9Sb6W5LVJMsZ4sKrelOTGabvfGGM8OF3+xSTvTfLkJL83fcGSth/iMPRSh6c7u/vNL1vvKQDQwLIjbYzxf5Ic6veWnbLE9iPJeYd4rEuSXLLE+E1JnrfcOQIAbFQ+cQAAoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCGRBgDQkEgDAGhIpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDW9Z7AsDftn33Ves9hVVz95tftt5TANiwvJIGANCQSAMAaEikAQA0JNIAABoSaQAADYk0AICGRBoAQEN+TxrwhFnqd76df+L+nL0Bfxec3/kGrDWvpAEANCTSAAAaEmkAAA2JNACAhkQaAEBDIg0AoCG/ggPg27DUrxPZqPw6EdgY2r+SVlW7quqOqtpTVbvXez4AAGuhdaRV1RFJ3pnk1CQnJHlNVZ2wvrMCAHjidT/c+YIke8YYdyVJVV2W5LQkt63rrAA2sM30SRCbxWY6BO2tAaunxhjrOoHHUlWvTLJrjPHz0/WfS3LSGON1B213bpJzp6vPTXLHmk505llJvrgO++WxWZd+rElP1qUfa9LTaq/L948xvmepG7q/kvZtGWNclOSi9ZxDVd00xti5nnPg0axLP9akJ+vSjzXpaS3XpfV70pLcm+S4uevHTmMAAJta90i7McmOqjq+qo5McnqSK9d5TgAAT7jWhzvHGPur6nVJrklyRJJLxhi3rvO0DmVdD7dySNalH2vSk3Xpx5r0tGbr0vrEAQCAw1X3w50AAIclkQYA0JBIWwU+umr9VdVxVfXxqrqtqm6tqtdP48+oqmur6s7p+zHrPdfDTVUdUVW3VNVHp+vHV9UN0/PlQ9NJQayhqjq6qq6oqk9X1e1V9eOeK+uvqn51+vvrU1X1war6Ls+XtVVVl1TVA1X1qbmxJZ8bNfOOaW0+UVXPX+35iLQV8tFVbexPcv4Y44QkJyc5b1qH3UmuG2PsSHLddJ219fokt89df0uSt40xnpPkoSTnrMusDm9vT/L7Y4wfTPIjma2P58o6qqptSX45yc4xxvMyO1nu9Hi+rLX3Jtl10NihnhunJtkxfZ2b5N2rPRmRtnJ//dFVY4xvJjnw0VWsoTHGfWOMP54ufyWzf3S2ZbYWl06bXZrkFeszw8NTVR2b5GVJ3jNdryQvSnLFtIk1WWNV9fQkP5Xk4iQZY3xzjPFwPFc62JLkyVW1JclTktwXz5c1Ncb4wyQPHjR8qOfGaUneN2auT3J0VT17Necj0lZuW5J75q7vncZYJ1W1PcmPJrkhydYxxn3TTfcn2bpO0zpc/XaSNyT5q+n6M5M8PMbYP133fFl7xyf5QpLfmQ5Dv6eqnhrPlXU1xrg3yW8l+VxmcfZIkpvj+dLBoZ4bT/i//yKNTaWqvjvJ7yb5lTHGl+dvG7PfN+N3zqyRqnp5kgfGGDev91z4W7YkeX6Sd48xfjTJV3PQoU3PlbU3vc/ptMwi+nuTPDWPPuzGOlvr54ZIWzkfXdVEVT0ps0D7wBjjw9Pw5w+8/Dx9f2C95ncYemGSn6mquzN7G8CLMnsv1NHT4ZzE82U97E2yd4xxw3T9isyizXNlff10ks+MMb4wxvjLJB/O7Dnk+bL+DvXceML//RdpK+ejqxqY3ut0cZLbxxhvnbvpyiRnTZfPSvKRtZ7b4WqM8cYxxrFjjO2ZPS8+NsY4I8nHk7xy2syarLExxv1J7qmq505DpyS5LZ4r6+1zSU6uqqdMf58dWBfPl/V3qOfGlUnOnM7yPDnJI3OHRVeFTxxYBVX10szee3Pgo6suXOcpHXaq6ieT/O8kn8zfvP/p1zN7X9rlSb4vyWeTvHqMcfCbQnmCVdVCkn8zxnh5Vf1AZq+sPSPJLUn+xRjjG+s5v8NNVf3jzAPm+1AAAAB2SURBVE7mODLJXUlem9n/tHuurKOq+o9Jfjazs9VvSfLzmb3HyfNljVTVB5MsJHlWks8nuSDJ/8gSz40ppv9LZoelv5bktWOMm1Z1PiINAKAfhzsBABoSaQAADYk0AICGRBoAQEMiDQCgIZEGANCQSAMAaOj/A8jJNNoTQHk2AAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 720x720 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"needs_background": "light"
|
||
},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Plotting with matplotlib\n",
|
||
"from matplotlib import pyplot as plt\n",
|
||
"\n",
|
||
"df[[\"score\"]].hist(figsize=[10,10])\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 42,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>camis</th>\n",
|
||
" <th>dba</th>\n",
|
||
" <th>boro</th>\n",
|
||
" <th>building</th>\n",
|
||
" <th>street</th>\n",
|
||
" <th>zipcode</th>\n",
|
||
" <th>phone</th>\n",
|
||
" <th>cuisine_description</th>\n",
|
||
" <th>inspection_date</th>\n",
|
||
" <th>action</th>\n",
|
||
" <th>...</th>\n",
|
||
" <th>grade_date</th>\n",
|
||
" <th>record_date</th>\n",
|
||
" <th>inspection_type</th>\n",
|
||
" <th>community_board</th>\n",
|
||
" <th>council_district</th>\n",
|
||
" <th>census_tract</th>\n",
|
||
" <th>bin</th>\n",
|
||
" <th>bbl</th>\n",
|
||
" <th>nta</th>\n",
|
||
" <th>location</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>53127</th>\n",
|
||
" <td>41144258</td>\n",
|
||
" <td>BURGER KING</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5212</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7187650844</td>\n",
|
||
" <td>Hamburgers</td>\n",
|
||
" <td>12/26/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>12/26/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>7600.0</td>\n",
|
||
" <td>3329902.0</td>\n",
|
||
" <td>3.008070e+09</td>\n",
|
||
" <td>BK32</td>\n",
|
||
" <td>40.643852716573,-74.011628212186</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>61268</th>\n",
|
||
" <td>41144258</td>\n",
|
||
" <td>BURGER KING</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5212</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7187650844</td>\n",
|
||
" <td>Hamburgers</td>\n",
|
||
" <td>07/20/2017</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>07/20/2017</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>7600.0</td>\n",
|
||
" <td>3329902.0</td>\n",
|
||
" <td>3.008070e+09</td>\n",
|
||
" <td>BK32</td>\n",
|
||
" <td>40.643852716573,-74.011628212186</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>20717</th>\n",
|
||
" <td>41144258</td>\n",
|
||
" <td>BURGER KING</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5212</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7187650844</td>\n",
|
||
" <td>Hamburgers</td>\n",
|
||
" <td>03/04/2020</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>03/04/2020</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>7600.0</td>\n",
|
||
" <td>3329902.0</td>\n",
|
||
" <td>3.008070e+09</td>\n",
|
||
" <td>BK32</td>\n",
|
||
" <td>40.643852716573,-74.011628212186</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4648</th>\n",
|
||
" <td>41271801</td>\n",
|
||
" <td>PINO'S</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5201</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184396012</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>05/25/2019</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>05/25/2019</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013942.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643888405293005,-74.011563356969</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>224</th>\n",
|
||
" <td>41271801</td>\n",
|
||
" <td>PINO'S</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5201</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184396012</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>05/25/2019</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>05/25/2019</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013942.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643888405293005,-74.011563356969</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>9465</th>\n",
|
||
" <td>41144258</td>\n",
|
||
" <td>BURGER KING</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5212</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7187650844</td>\n",
|
||
" <td>Hamburgers</td>\n",
|
||
" <td>03/04/2020</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>03/04/2020</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>7600.0</td>\n",
|
||
" <td>3329902.0</td>\n",
|
||
" <td>3.008070e+09</td>\n",
|
||
" <td>BK32</td>\n",
|
||
" <td>40.643852716573,-74.011628212186</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>104512</th>\n",
|
||
" <td>40396492</td>\n",
|
||
" <td>ROYAL KING'S PIZZA</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5211</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184923846</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>12/19/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>12/19/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013939.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643849974348996,-74.01160298782</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>106728</th>\n",
|
||
" <td>41271801</td>\n",
|
||
" <td>PINO'S</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5201</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184396012</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>01/25/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>01/25/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013942.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643888405293005,-74.011563356969</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>62748</th>\n",
|
||
" <td>50004330</td>\n",
|
||
" <td>KFC</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5223</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184922813</td>\n",
|
||
" <td>Chicken</td>\n",
|
||
" <td>05/28/2019</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>05/28/2019</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013937.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643800563168,-74.01165342693001</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>79211</th>\n",
|
||
" <td>41271801</td>\n",
|
||
" <td>PINO'S</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5201</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184396012</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>11/05/2016</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>11/05/2016</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013942.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643888405293005,-74.011563356969</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>218545</th>\n",
|
||
" <td>50004330</td>\n",
|
||
" <td>KFC</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5223</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184922813</td>\n",
|
||
" <td>Chicken</td>\n",
|
||
" <td>01/10/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>01/10/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013937.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643800563168,-74.01165342693001</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>238663</th>\n",
|
||
" <td>41271801</td>\n",
|
||
" <td>PINO'S</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5201</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184396012</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>11/05/2016</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>11/05/2016</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013942.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643888405293005,-74.011563356969</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>245205</th>\n",
|
||
" <td>40396492</td>\n",
|
||
" <td>ROYAL KING'S PIZZA</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5211</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184923846</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>12/19/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>12/19/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013939.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643849974348996,-74.01160298782</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>245233</th>\n",
|
||
" <td>41271801</td>\n",
|
||
" <td>PINO'S</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5201</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184396012</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>01/25/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>01/25/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013942.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643888405293005,-74.011563356969</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>247417</th>\n",
|
||
" <td>50004330</td>\n",
|
||
" <td>KFC</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5223</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184922813</td>\n",
|
||
" <td>Chicken</td>\n",
|
||
" <td>05/05/2017</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>05/05/2017</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013937.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643800563168,-74.01165342693001</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>186874</th>\n",
|
||
" <td>50099704</td>\n",
|
||
" <td>MASTER'S PIZZERIA</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5201</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184396012</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>11/18/2019</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>11/18/2019</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Pre-permit (Operational) / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013942.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643888405293005,-74.011563356969</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>198104</th>\n",
|
||
" <td>40396492</td>\n",
|
||
" <td>ROYAL KING'S PIZZA</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5211</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184923846</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>12/28/2017</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>12/28/2017</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013939.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643849974348996,-74.01160298782</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>213425</th>\n",
|
||
" <td>40396492</td>\n",
|
||
" <td>ROYAL KING'S PIZZA</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5211</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184923846</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>12/19/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>12/19/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013939.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643849974348996,-74.01160298782</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>202363</th>\n",
|
||
" <td>50004330</td>\n",
|
||
" <td>KFC</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5223</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184922813</td>\n",
|
||
" <td>Chicken</td>\n",
|
||
" <td>05/28/2019</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>05/28/2019</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013937.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643800563168,-74.01165342693001</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>158059</th>\n",
|
||
" <td>40396492</td>\n",
|
||
" <td>ROYAL KING'S PIZZA</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5211</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184923846</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>12/19/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>12/19/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013939.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643849974348996,-74.01160298782</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>163672</th>\n",
|
||
" <td>41144258</td>\n",
|
||
" <td>BURGER KING</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5212</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7187650844</td>\n",
|
||
" <td>Hamburgers</td>\n",
|
||
" <td>08/13/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>08/13/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>7600.0</td>\n",
|
||
" <td>3329902.0</td>\n",
|
||
" <td>3.008070e+09</td>\n",
|
||
" <td>BK32</td>\n",
|
||
" <td>40.643852716573,-74.011628212186</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>138508</th>\n",
|
||
" <td>40396492</td>\n",
|
||
" <td>ROYAL KING'S PIZZA</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5211</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184923846</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>01/29/2020</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>01/29/2020</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013939.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643849974348996,-74.01160298782</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>140940</th>\n",
|
||
" <td>41144258</td>\n",
|
||
" <td>BURGER KING</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5212</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7187650844</td>\n",
|
||
" <td>Hamburgers</td>\n",
|
||
" <td>07/20/2017</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>07/20/2017</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>7600.0</td>\n",
|
||
" <td>3329902.0</td>\n",
|
||
" <td>3.008070e+09</td>\n",
|
||
" <td>BK32</td>\n",
|
||
" <td>40.643852716573,-74.011628212186</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>143157</th>\n",
|
||
" <td>50004330</td>\n",
|
||
" <td>KFC</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5223</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184922813</td>\n",
|
||
" <td>Chicken</td>\n",
|
||
" <td>01/10/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>01/10/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013937.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643800563168,-74.01165342693001</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>149548</th>\n",
|
||
" <td>41144258</td>\n",
|
||
" <td>BURGER KING</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5212</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7187650844</td>\n",
|
||
" <td>Hamburgers</td>\n",
|
||
" <td>07/20/2017</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>07/20/2017</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>7600.0</td>\n",
|
||
" <td>3329902.0</td>\n",
|
||
" <td>3.008070e+09</td>\n",
|
||
" <td>BK32</td>\n",
|
||
" <td>40.643852716573,-74.011628212186</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>149742</th>\n",
|
||
" <td>50004330</td>\n",
|
||
" <td>KFC</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5223</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184922813</td>\n",
|
||
" <td>Chicken</td>\n",
|
||
" <td>05/31/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>05/31/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013937.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643800563168,-74.01165342693001</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>249994</th>\n",
|
||
" <td>41271801</td>\n",
|
||
" <td>PINO'S</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5201</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184396012</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>01/25/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>01/25/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013942.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643888405293005,-74.011563356969</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>257603</th>\n",
|
||
" <td>41144258</td>\n",
|
||
" <td>BURGER KING</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5212</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7187650844</td>\n",
|
||
" <td>Hamburgers</td>\n",
|
||
" <td>08/13/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>08/13/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>7600.0</td>\n",
|
||
" <td>3329902.0</td>\n",
|
||
" <td>3.008070e+09</td>\n",
|
||
" <td>BK32</td>\n",
|
||
" <td>40.643852716573,-74.011628212186</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>268823</th>\n",
|
||
" <td>50004330</td>\n",
|
||
" <td>KFC</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5223</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184922813</td>\n",
|
||
" <td>Chicken</td>\n",
|
||
" <td>01/10/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>01/10/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013937.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643800563168,-74.01165342693001</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>269521</th>\n",
|
||
" <td>41144258</td>\n",
|
||
" <td>BURGER KING</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5212</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7187650844</td>\n",
|
||
" <td>Hamburgers</td>\n",
|
||
" <td>12/17/2019</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>12/17/2019</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>7600.0</td>\n",
|
||
" <td>3329902.0</td>\n",
|
||
" <td>3.008070e+09</td>\n",
|
||
" <td>BK32</td>\n",
|
||
" <td>40.643852716573,-74.011628212186</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>277500</th>\n",
|
||
" <td>50099704</td>\n",
|
||
" <td>MASTER'S PIZZERIA</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5201</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184396012</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>11/18/2019</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>11/18/2019</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Pre-permit (Operational) / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013942.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643888405293005,-74.011563356969</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>279503</th>\n",
|
||
" <td>40396492</td>\n",
|
||
" <td>ROYAL KING'S PIZZA</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5211</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184923846</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>01/29/2020</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>01/29/2020</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013939.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643849974348996,-74.01160298782</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>299863</th>\n",
|
||
" <td>41144258</td>\n",
|
||
" <td>BURGER KING</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5212</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7187650844</td>\n",
|
||
" <td>Hamburgers</td>\n",
|
||
" <td>12/26/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>12/26/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>7600.0</td>\n",
|
||
" <td>3329902.0</td>\n",
|
||
" <td>3.008070e+09</td>\n",
|
||
" <td>BK32</td>\n",
|
||
" <td>40.643852716573,-74.011628212186</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>319787</th>\n",
|
||
" <td>41271801</td>\n",
|
||
" <td>PINO'S</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5201</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184396012</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>05/25/2019</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>05/25/2019</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013942.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643888405293005,-74.011563356969</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>336570</th>\n",
|
||
" <td>50004330</td>\n",
|
||
" <td>KFC</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5223</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184922813</td>\n",
|
||
" <td>Chicken</td>\n",
|
||
" <td>01/10/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>01/10/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013937.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643800563168,-74.01165342693001</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>340551</th>\n",
|
||
" <td>50004330</td>\n",
|
||
" <td>KFC</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5223</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184922813</td>\n",
|
||
" <td>Chicken</td>\n",
|
||
" <td>04/10/2017</td>\n",
|
||
" <td>Establishment re-opened by DOHMH</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>04/10/2017</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Reopening Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013937.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643800563168,-74.01165342693001</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>395508</th>\n",
|
||
" <td>41144258</td>\n",
|
||
" <td>BURGER KING</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5212</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7187650844</td>\n",
|
||
" <td>Hamburgers</td>\n",
|
||
" <td>12/17/2019</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>12/17/2019</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>7600.0</td>\n",
|
||
" <td>3329902.0</td>\n",
|
||
" <td>3.008070e+09</td>\n",
|
||
" <td>BK32</td>\n",
|
||
" <td>40.643852716573,-74.011628212186</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>309366</th>\n",
|
||
" <td>40396492</td>\n",
|
||
" <td>ROYAL KING'S PIZZA</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5211</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184923846</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>12/28/2017</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>12/28/2017</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013939.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643849974348996,-74.01160298782</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>340857</th>\n",
|
||
" <td>40396492</td>\n",
|
||
" <td>ROYAL KING'S PIZZA</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5211</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184923846</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>01/29/2020</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>01/29/2020</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013939.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643849974348996,-74.01160298782</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>358660</th>\n",
|
||
" <td>50004330</td>\n",
|
||
" <td>KFC</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5223</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184922813</td>\n",
|
||
" <td>Chicken</td>\n",
|
||
" <td>05/31/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>05/31/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013937.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643800563168,-74.01165342693001</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>393451</th>\n",
|
||
" <td>41271801</td>\n",
|
||
" <td>PINO'S</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>5201</td>\n",
|
||
" <td>5 AVENUE</td>\n",
|
||
" <td>11220.0</td>\n",
|
||
" <td>7184396012</td>\n",
|
||
" <td>Pizza</td>\n",
|
||
" <td>06/05/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>06/05/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>307.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>10000.0</td>\n",
|
||
" <td>3013942.0</td>\n",
|
||
" <td>3.008080e+09</td>\n",
|
||
" <td>BK34</td>\n",
|
||
" <td>40.643888405293005,-74.011563356969</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>\n",
|
||
"<p>41 rows × 25 columns</p>"
|
||
],
|
||
"text/plain": [
|
||
" camis dba boro building street zipcode \\\n",
|
||
"53127 41144258 BURGER KING Brooklyn 5212 5 AVENUE 11220.0 \n",
|
||
"61268 41144258 BURGER KING Brooklyn 5212 5 AVENUE 11220.0 \n",
|
||
"20717 41144258 BURGER KING Brooklyn 5212 5 AVENUE 11220.0 \n",
|
||
"4648 41271801 PINO'S Brooklyn 5201 5 AVENUE 11220.0 \n",
|
||
"224 41271801 PINO'S Brooklyn 5201 5 AVENUE 11220.0 \n",
|
||
"9465 41144258 BURGER KING Brooklyn 5212 5 AVENUE 11220.0 \n",
|
||
"104512 40396492 ROYAL KING'S PIZZA Brooklyn 5211 5 AVENUE 11220.0 \n",
|
||
"106728 41271801 PINO'S Brooklyn 5201 5 AVENUE 11220.0 \n",
|
||
"62748 50004330 KFC Brooklyn 5223 5 AVENUE 11220.0 \n",
|
||
"79211 41271801 PINO'S Brooklyn 5201 5 AVENUE 11220.0 \n",
|
||
"218545 50004330 KFC Brooklyn 5223 5 AVENUE 11220.0 \n",
|
||
"238663 41271801 PINO'S Brooklyn 5201 5 AVENUE 11220.0 \n",
|
||
"245205 40396492 ROYAL KING'S PIZZA Brooklyn 5211 5 AVENUE 11220.0 \n",
|
||
"245233 41271801 PINO'S Brooklyn 5201 5 AVENUE 11220.0 \n",
|
||
"247417 50004330 KFC Brooklyn 5223 5 AVENUE 11220.0 \n",
|
||
"186874 50099704 MASTER'S PIZZERIA Brooklyn 5201 5 AVENUE 11220.0 \n",
|
||
"198104 40396492 ROYAL KING'S PIZZA Brooklyn 5211 5 AVENUE 11220.0 \n",
|
||
"213425 40396492 ROYAL KING'S PIZZA Brooklyn 5211 5 AVENUE 11220.0 \n",
|
||
"202363 50004330 KFC Brooklyn 5223 5 AVENUE 11220.0 \n",
|
||
"158059 40396492 ROYAL KING'S PIZZA Brooklyn 5211 5 AVENUE 11220.0 \n",
|
||
"163672 41144258 BURGER KING Brooklyn 5212 5 AVENUE 11220.0 \n",
|
||
"138508 40396492 ROYAL KING'S PIZZA Brooklyn 5211 5 AVENUE 11220.0 \n",
|
||
"140940 41144258 BURGER KING Brooklyn 5212 5 AVENUE 11220.0 \n",
|
||
"143157 50004330 KFC Brooklyn 5223 5 AVENUE 11220.0 \n",
|
||
"149548 41144258 BURGER KING Brooklyn 5212 5 AVENUE 11220.0 \n",
|
||
"149742 50004330 KFC Brooklyn 5223 5 AVENUE 11220.0 \n",
|
||
"249994 41271801 PINO'S Brooklyn 5201 5 AVENUE 11220.0 \n",
|
||
"257603 41144258 BURGER KING Brooklyn 5212 5 AVENUE 11220.0 \n",
|
||
"268823 50004330 KFC Brooklyn 5223 5 AVENUE 11220.0 \n",
|
||
"269521 41144258 BURGER KING Brooklyn 5212 5 AVENUE 11220.0 \n",
|
||
"277500 50099704 MASTER'S PIZZERIA Brooklyn 5201 5 AVENUE 11220.0 \n",
|
||
"279503 40396492 ROYAL KING'S PIZZA Brooklyn 5211 5 AVENUE 11220.0 \n",
|
||
"299863 41144258 BURGER KING Brooklyn 5212 5 AVENUE 11220.0 \n",
|
||
"319787 41271801 PINO'S Brooklyn 5201 5 AVENUE 11220.0 \n",
|
||
"336570 50004330 KFC Brooklyn 5223 5 AVENUE 11220.0 \n",
|
||
"340551 50004330 KFC Brooklyn 5223 5 AVENUE 11220.0 \n",
|
||
"395508 41144258 BURGER KING Brooklyn 5212 5 AVENUE 11220.0 \n",
|
||
"309366 40396492 ROYAL KING'S PIZZA Brooklyn 5211 5 AVENUE 11220.0 \n",
|
||
"340857 40396492 ROYAL KING'S PIZZA Brooklyn 5211 5 AVENUE 11220.0 \n",
|
||
"358660 50004330 KFC Brooklyn 5223 5 AVENUE 11220.0 \n",
|
||
"393451 41271801 PINO'S Brooklyn 5201 5 AVENUE 11220.0 \n",
|
||
"\n",
|
||
" phone cuisine_description inspection_date \\\n",
|
||
"53127 7187650844 Hamburgers 12/26/2018 \n",
|
||
"61268 7187650844 Hamburgers 07/20/2017 \n",
|
||
"20717 7187650844 Hamburgers 03/04/2020 \n",
|
||
"4648 7184396012 Pizza 05/25/2019 \n",
|
||
"224 7184396012 Pizza 05/25/2019 \n",
|
||
"9465 7187650844 Hamburgers 03/04/2020 \n",
|
||
"104512 7184923846 Pizza 12/19/2018 \n",
|
||
"106728 7184396012 Pizza 01/25/2018 \n",
|
||
"62748 7184922813 Chicken 05/28/2019 \n",
|
||
"79211 7184396012 Pizza 11/05/2016 \n",
|
||
"218545 7184922813 Chicken 01/10/2018 \n",
|
||
"238663 7184396012 Pizza 11/05/2016 \n",
|
||
"245205 7184923846 Pizza 12/19/2018 \n",
|
||
"245233 7184396012 Pizza 01/25/2018 \n",
|
||
"247417 7184922813 Chicken 05/05/2017 \n",
|
||
"186874 7184396012 Pizza 11/18/2019 \n",
|
||
"198104 7184923846 Pizza 12/28/2017 \n",
|
||
"213425 7184923846 Pizza 12/19/2018 \n",
|
||
"202363 7184922813 Chicken 05/28/2019 \n",
|
||
"158059 7184923846 Pizza 12/19/2018 \n",
|
||
"163672 7187650844 Hamburgers 08/13/2018 \n",
|
||
"138508 7184923846 Pizza 01/29/2020 \n",
|
||
"140940 7187650844 Hamburgers 07/20/2017 \n",
|
||
"143157 7184922813 Chicken 01/10/2018 \n",
|
||
"149548 7187650844 Hamburgers 07/20/2017 \n",
|
||
"149742 7184922813 Chicken 05/31/2018 \n",
|
||
"249994 7184396012 Pizza 01/25/2018 \n",
|
||
"257603 7187650844 Hamburgers 08/13/2018 \n",
|
||
"268823 7184922813 Chicken 01/10/2018 \n",
|
||
"269521 7187650844 Hamburgers 12/17/2019 \n",
|
||
"277500 7184396012 Pizza 11/18/2019 \n",
|
||
"279503 7184923846 Pizza 01/29/2020 \n",
|
||
"299863 7187650844 Hamburgers 12/26/2018 \n",
|
||
"319787 7184396012 Pizza 05/25/2019 \n",
|
||
"336570 7184922813 Chicken 01/10/2018 \n",
|
||
"340551 7184922813 Chicken 04/10/2017 \n",
|
||
"395508 7187650844 Hamburgers 12/17/2019 \n",
|
||
"309366 7184923846 Pizza 12/28/2017 \n",
|
||
"340857 7184923846 Pizza 01/29/2020 \n",
|
||
"358660 7184922813 Chicken 05/31/2018 \n",
|
||
"393451 7184396012 Pizza 06/05/2018 \n",
|
||
"\n",
|
||
" action ... grade_date \\\n",
|
||
"53127 Violations were cited in the following area(s). ... 12/26/2018 \n",
|
||
"61268 Violations were cited in the following area(s). ... 07/20/2017 \n",
|
||
"20717 Violations were cited in the following area(s). ... 03/04/2020 \n",
|
||
"4648 Violations were cited in the following area(s). ... 05/25/2019 \n",
|
||
"224 Violations were cited in the following area(s). ... 05/25/2019 \n",
|
||
"9465 Violations were cited in the following area(s). ... 03/04/2020 \n",
|
||
"104512 Violations were cited in the following area(s). ... 12/19/2018 \n",
|
||
"106728 Violations were cited in the following area(s). ... 01/25/2018 \n",
|
||
"62748 Violations were cited in the following area(s). ... 05/28/2019 \n",
|
||
"79211 Violations were cited in the following area(s). ... 11/05/2016 \n",
|
||
"218545 Violations were cited in the following area(s). ... 01/10/2018 \n",
|
||
"238663 Violations were cited in the following area(s). ... 11/05/2016 \n",
|
||
"245205 Violations were cited in the following area(s). ... 12/19/2018 \n",
|
||
"245233 Violations were cited in the following area(s). ... 01/25/2018 \n",
|
||
"247417 Violations were cited in the following area(s). ... 05/05/2017 \n",
|
||
"186874 Violations were cited in the following area(s). ... 11/18/2019 \n",
|
||
"198104 Violations were cited in the following area(s). ... 12/28/2017 \n",
|
||
"213425 Violations were cited in the following area(s). ... 12/19/2018 \n",
|
||
"202363 Violations were cited in the following area(s). ... 05/28/2019 \n",
|
||
"158059 Violations were cited in the following area(s). ... 12/19/2018 \n",
|
||
"163672 Violations were cited in the following area(s). ... 08/13/2018 \n",
|
||
"138508 Violations were cited in the following area(s). ... 01/29/2020 \n",
|
||
"140940 Violations were cited in the following area(s). ... 07/20/2017 \n",
|
||
"143157 Violations were cited in the following area(s). ... 01/10/2018 \n",
|
||
"149548 Violations were cited in the following area(s). ... 07/20/2017 \n",
|
||
"149742 Violations were cited in the following area(s). ... 05/31/2018 \n",
|
||
"249994 Violations were cited in the following area(s). ... 01/25/2018 \n",
|
||
"257603 Violations were cited in the following area(s). ... 08/13/2018 \n",
|
||
"268823 Violations were cited in the following area(s). ... 01/10/2018 \n",
|
||
"269521 Violations were cited in the following area(s). ... 12/17/2019 \n",
|
||
"277500 Violations were cited in the following area(s). ... 11/18/2019 \n",
|
||
"279503 Violations were cited in the following area(s). ... 01/29/2020 \n",
|
||
"299863 Violations were cited in the following area(s). ... 12/26/2018 \n",
|
||
"319787 Violations were cited in the following area(s). ... 05/25/2019 \n",
|
||
"336570 Violations were cited in the following area(s). ... 01/10/2018 \n",
|
||
"340551 Establishment re-opened by DOHMH ... 04/10/2017 \n",
|
||
"395508 Violations were cited in the following area(s). ... 12/17/2019 \n",
|
||
"309366 Violations were cited in the following area(s). ... 12/28/2017 \n",
|
||
"340857 Violations were cited in the following area(s). ... 01/29/2020 \n",
|
||
"358660 Violations were cited in the following area(s). ... 05/31/2018 \n",
|
||
"393451 Violations were cited in the following area(s). ... 06/05/2018 \n",
|
||
"\n",
|
||
" record_date inspection_type \\\n",
|
||
"53127 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"61268 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"20717 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"4648 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"224 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"9465 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"104512 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"106728 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"62748 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"79211 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"218545 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"238663 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"245205 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"245233 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"247417 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"186874 07/07/2020 Pre-permit (Operational) / Initial Inspection \n",
|
||
"198104 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"213425 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"202363 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"158059 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"163672 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"138508 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"140940 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"143157 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"149548 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"149742 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"249994 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"257603 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"268823 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"269521 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"277500 07/07/2020 Pre-permit (Operational) / Initial Inspection \n",
|
||
"279503 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"299863 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"319787 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"336570 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"340551 07/07/2020 Cycle Inspection / Reopening Inspection \n",
|
||
"395508 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"309366 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"340857 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"358660 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"393451 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"\n",
|
||
" community_board council_district census_tract bin \\\n",
|
||
"53127 307.0 38.0 7600.0 3329902.0 \n",
|
||
"61268 307.0 38.0 7600.0 3329902.0 \n",
|
||
"20717 307.0 38.0 7600.0 3329902.0 \n",
|
||
"4648 307.0 38.0 10000.0 3013942.0 \n",
|
||
"224 307.0 38.0 10000.0 3013942.0 \n",
|
||
"9465 307.0 38.0 7600.0 3329902.0 \n",
|
||
"104512 307.0 38.0 10000.0 3013939.0 \n",
|
||
"106728 307.0 38.0 10000.0 3013942.0 \n",
|
||
"62748 307.0 38.0 10000.0 3013937.0 \n",
|
||
"79211 307.0 38.0 10000.0 3013942.0 \n",
|
||
"218545 307.0 38.0 10000.0 3013937.0 \n",
|
||
"238663 307.0 38.0 10000.0 3013942.0 \n",
|
||
"245205 307.0 38.0 10000.0 3013939.0 \n",
|
||
"245233 307.0 38.0 10000.0 3013942.0 \n",
|
||
"247417 307.0 38.0 10000.0 3013937.0 \n",
|
||
"186874 307.0 38.0 10000.0 3013942.0 \n",
|
||
"198104 307.0 38.0 10000.0 3013939.0 \n",
|
||
"213425 307.0 38.0 10000.0 3013939.0 \n",
|
||
"202363 307.0 38.0 10000.0 3013937.0 \n",
|
||
"158059 307.0 38.0 10000.0 3013939.0 \n",
|
||
"163672 307.0 38.0 7600.0 3329902.0 \n",
|
||
"138508 307.0 38.0 10000.0 3013939.0 \n",
|
||
"140940 307.0 38.0 7600.0 3329902.0 \n",
|
||
"143157 307.0 38.0 10000.0 3013937.0 \n",
|
||
"149548 307.0 38.0 7600.0 3329902.0 \n",
|
||
"149742 307.0 38.0 10000.0 3013937.0 \n",
|
||
"249994 307.0 38.0 10000.0 3013942.0 \n",
|
||
"257603 307.0 38.0 7600.0 3329902.0 \n",
|
||
"268823 307.0 38.0 10000.0 3013937.0 \n",
|
||
"269521 307.0 38.0 7600.0 3329902.0 \n",
|
||
"277500 307.0 38.0 10000.0 3013942.0 \n",
|
||
"279503 307.0 38.0 10000.0 3013939.0 \n",
|
||
"299863 307.0 38.0 7600.0 3329902.0 \n",
|
||
"319787 307.0 38.0 10000.0 3013942.0 \n",
|
||
"336570 307.0 38.0 10000.0 3013937.0 \n",
|
||
"340551 307.0 38.0 10000.0 3013937.0 \n",
|
||
"395508 307.0 38.0 7600.0 3329902.0 \n",
|
||
"309366 307.0 38.0 10000.0 3013939.0 \n",
|
||
"340857 307.0 38.0 10000.0 3013939.0 \n",
|
||
"358660 307.0 38.0 10000.0 3013937.0 \n",
|
||
"393451 307.0 38.0 10000.0 3013942.0 \n",
|
||
"\n",
|
||
" bbl nta location \n",
|
||
"53127 3.008070e+09 BK32 40.643852716573,-74.011628212186 \n",
|
||
"61268 3.008070e+09 BK32 40.643852716573,-74.011628212186 \n",
|
||
"20717 3.008070e+09 BK32 40.643852716573,-74.011628212186 \n",
|
||
"4648 3.008080e+09 BK34 40.643888405293005,-74.011563356969 \n",
|
||
"224 3.008080e+09 BK34 40.643888405293005,-74.011563356969 \n",
|
||
"9465 3.008070e+09 BK32 40.643852716573,-74.011628212186 \n",
|
||
"104512 3.008080e+09 BK34 40.643849974348996,-74.01160298782 \n",
|
||
"106728 3.008080e+09 BK34 40.643888405293005,-74.011563356969 \n",
|
||
"62748 3.008080e+09 BK34 40.643800563168,-74.01165342693001 \n",
|
||
"79211 3.008080e+09 BK34 40.643888405293005,-74.011563356969 \n",
|
||
"218545 3.008080e+09 BK34 40.643800563168,-74.01165342693001 \n",
|
||
"238663 3.008080e+09 BK34 40.643888405293005,-74.011563356969 \n",
|
||
"245205 3.008080e+09 BK34 40.643849974348996,-74.01160298782 \n",
|
||
"245233 3.008080e+09 BK34 40.643888405293005,-74.011563356969 \n",
|
||
"247417 3.008080e+09 BK34 40.643800563168,-74.01165342693001 \n",
|
||
"186874 3.008080e+09 BK34 40.643888405293005,-74.011563356969 \n",
|
||
"198104 3.008080e+09 BK34 40.643849974348996,-74.01160298782 \n",
|
||
"213425 3.008080e+09 BK34 40.643849974348996,-74.01160298782 \n",
|
||
"202363 3.008080e+09 BK34 40.643800563168,-74.01165342693001 \n",
|
||
"158059 3.008080e+09 BK34 40.643849974348996,-74.01160298782 \n",
|
||
"163672 3.008070e+09 BK32 40.643852716573,-74.011628212186 \n",
|
||
"138508 3.008080e+09 BK34 40.643849974348996,-74.01160298782 \n",
|
||
"140940 3.008070e+09 BK32 40.643852716573,-74.011628212186 \n",
|
||
"143157 3.008080e+09 BK34 40.643800563168,-74.01165342693001 \n",
|
||
"149548 3.008070e+09 BK32 40.643852716573,-74.011628212186 \n",
|
||
"149742 3.008080e+09 BK34 40.643800563168,-74.01165342693001 \n",
|
||
"249994 3.008080e+09 BK34 40.643888405293005,-74.011563356969 \n",
|
||
"257603 3.008070e+09 BK32 40.643852716573,-74.011628212186 \n",
|
||
"268823 3.008080e+09 BK34 40.643800563168,-74.01165342693001 \n",
|
||
"269521 3.008070e+09 BK32 40.643852716573,-74.011628212186 \n",
|
||
"277500 3.008080e+09 BK34 40.643888405293005,-74.011563356969 \n",
|
||
"279503 3.008080e+09 BK34 40.643849974348996,-74.01160298782 \n",
|
||
"299863 3.008070e+09 BK32 40.643852716573,-74.011628212186 \n",
|
||
"319787 3.008080e+09 BK34 40.643888405293005,-74.011563356969 \n",
|
||
"336570 3.008080e+09 BK34 40.643800563168,-74.01165342693001 \n",
|
||
"340551 3.008080e+09 BK34 40.643800563168,-74.01165342693001 \n",
|
||
"395508 3.008070e+09 BK32 40.643852716573,-74.011628212186 \n",
|
||
"309366 3.008080e+09 BK34 40.643849974348996,-74.01160298782 \n",
|
||
"340857 3.008080e+09 BK34 40.643849974348996,-74.01160298782 \n",
|
||
"358660 3.008080e+09 BK34 40.643800563168,-74.01165342693001 \n",
|
||
"393451 3.008080e+09 BK34 40.643888405293005,-74.011563356969 \n",
|
||
"\n",
|
||
"[41 rows x 25 columns]"
|
||
]
|
||
},
|
||
"execution_count": 42,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# es_query() allows for the full Elasticsearch querying capabilities\n",
|
||
"df.es_query({\n",
|
||
" \"geo_distance\": {\n",
|
||
" \"distance\": \"50m\",\n",
|
||
" \"location\": {\n",
|
||
" \"lat\": 40.643852716573,\n",
|
||
" \"lon\": -74.011628212186\n",
|
||
" }\n",
|
||
" }\n",
|
||
"})"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 43,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>camis</th>\n",
|
||
" <th>dba</th>\n",
|
||
" <th>boro</th>\n",
|
||
" <th>building</th>\n",
|
||
" <th>street</th>\n",
|
||
" <th>zipcode</th>\n",
|
||
" <th>phone</th>\n",
|
||
" <th>cuisine_description</th>\n",
|
||
" <th>inspection_date</th>\n",
|
||
" <th>action</th>\n",
|
||
" <th>...</th>\n",
|
||
" <th>grade_date</th>\n",
|
||
" <th>record_date</th>\n",
|
||
" <th>inspection_type</th>\n",
|
||
" <th>community_board</th>\n",
|
||
" <th>council_district</th>\n",
|
||
" <th>census_tract</th>\n",
|
||
" <th>bin</th>\n",
|
||
" <th>bbl</th>\n",
|
||
" <th>nta</th>\n",
|
||
" <th>location</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>5765</th>\n",
|
||
" <td>50033781</td>\n",
|
||
" <td>RED HOOK LOBSTER POUND</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>284</td>\n",
|
||
" <td>VAN BRUNT STREET</td>\n",
|
||
" <td>11231.0</td>\n",
|
||
" <td>7188587650</td>\n",
|
||
" <td>Seafood</td>\n",
|
||
" <td>04/19/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>04/19/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>306.0</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>5900.0</td>\n",
|
||
" <td>3008365.0</td>\n",
|
||
" <td>3.005290e+09</td>\n",
|
||
" <td>BK33</td>\n",
|
||
" <td>40.67974632809,-74.010098611838</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>12379</th>\n",
|
||
" <td>50058053</td>\n",
|
||
" <td>RED HOT II</td>\n",
|
||
" <td>Brooklyn</td>\n",
|
||
" <td>349</td>\n",
|
||
" <td>7 AVENUE</td>\n",
|
||
" <td>11215.0</td>\n",
|
||
" <td>7183692577</td>\n",
|
||
" <td>Chinese</td>\n",
|
||
" <td>05/17/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>05/17/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>306.0</td>\n",
|
||
" <td>39.0</td>\n",
|
||
" <td>15100.0</td>\n",
|
||
" <td>3026127.0</td>\n",
|
||
" <td>3.010940e+09</td>\n",
|
||
" <td>BK37</td>\n",
|
||
" <td>40.666194419994,-73.98214269199799</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>12978</th>\n",
|
||
" <td>50059700</td>\n",
|
||
" <td>RED POKE</td>\n",
|
||
" <td>Manhattan</td>\n",
|
||
" <td>600</td>\n",
|
||
" <td>9 AVENUE</td>\n",
|
||
" <td>10036.0</td>\n",
|
||
" <td>2129748100</td>\n",
|
||
" <td>Hawaiian</td>\n",
|
||
" <td>03/21/2017</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>03/21/2017</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Pre-permit (Operational) / Re-inspection</td>\n",
|
||
" <td>104.0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>12100.0</td>\n",
|
||
" <td>1088997.0</td>\n",
|
||
" <td>1.010330e+09</td>\n",
|
||
" <td>MN15</td>\n",
|
||
" <td>40.758993434643,-73.992203122611</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>16759</th>\n",
|
||
" <td>40365239</td>\n",
|
||
" <td>DORRIAN'S RED HAND RESTAURANT</td>\n",
|
||
" <td>Manhattan</td>\n",
|
||
" <td>1616</td>\n",
|
||
" <td>2 AVENUE</td>\n",
|
||
" <td>10028.0</td>\n",
|
||
" <td>2127726660</td>\n",
|
||
" <td>Irish</td>\n",
|
||
" <td>11/08/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>11/08/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>108.0</td>\n",
|
||
" <td>5.0</td>\n",
|
||
" <td>13800.0</td>\n",
|
||
" <td>1049947.0</td>\n",
|
||
" <td>1.015460e+09</td>\n",
|
||
" <td>MN32</td>\n",
|
||
" <td>40.776404966262,-73.952802065662</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>18624</th>\n",
|
||
" <td>50095340</td>\n",
|
||
" <td>RED PEONY CHINESE CUISINE</td>\n",
|
||
" <td>Manhattan</td>\n",
|
||
" <td>24</td>\n",
|
||
" <td>WEST 56 STREET</td>\n",
|
||
" <td>10019.0</td>\n",
|
||
" <td>2123808883</td>\n",
|
||
" <td>Chinese</td>\n",
|
||
" <td>11/21/2019</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>11/21/2019</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Pre-permit (Operational) / Re-inspection</td>\n",
|
||
" <td>105.0</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>10400.0</td>\n",
|
||
" <td>1034840.0</td>\n",
|
||
" <td>1.012710e+09</td>\n",
|
||
" <td>MN17</td>\n",
|
||
" <td>40.762699245064,-73.975463733228</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>...</th>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>391229</th>\n",
|
||
" <td>50061162</td>\n",
|
||
" <td>CODE RED</td>\n",
|
||
" <td>Bronx</td>\n",
|
||
" <td>1320</td>\n",
|
||
" <td>EAST GUN HILL ROAD</td>\n",
|
||
" <td>10469.0</td>\n",
|
||
" <td>7188811808</td>\n",
|
||
" <td>Caribbean</td>\n",
|
||
" <td>05/14/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>05/14/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>211.0</td>\n",
|
||
" <td>12.0</td>\n",
|
||
" <td>35000.0</td>\n",
|
||
" <td>2056100.0</td>\n",
|
||
" <td>2.045890e+09</td>\n",
|
||
" <td>BX31</td>\n",
|
||
" <td>40.871378316318996,-73.848028279305</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>393531</th>\n",
|
||
" <td>50014078</td>\n",
|
||
" <td>RED LOBSTER</td>\n",
|
||
" <td>Manhattan</td>\n",
|
||
" <td>5</td>\n",
|
||
" <td>TIMES SQ</td>\n",
|
||
" <td>10036.0</td>\n",
|
||
" <td>2127306706</td>\n",
|
||
" <td>Seafood</td>\n",
|
||
" <td>11/08/2017</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>11/08/2017</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>105.0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>11300.0</td>\n",
|
||
" <td>1024656.0</td>\n",
|
||
" <td>1.010130e+09</td>\n",
|
||
" <td>MN17</td>\n",
|
||
" <td>40.755702020307005,-73.987207980138</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>396171</th>\n",
|
||
" <td>40368313</td>\n",
|
||
" <td>RED FLAME DINER</td>\n",
|
||
" <td>Manhattan</td>\n",
|
||
" <td>67</td>\n",
|
||
" <td>WEST 44 STREET</td>\n",
|
||
" <td>10036.0</td>\n",
|
||
" <td>2128693965</td>\n",
|
||
" <td>American</td>\n",
|
||
" <td>02/16/2018</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>02/16/2018</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Initial Inspection</td>\n",
|
||
" <td>105.0</td>\n",
|
||
" <td>4.0</td>\n",
|
||
" <td>9600.0</td>\n",
|
||
" <td>1034217.0</td>\n",
|
||
" <td>1.012600e+09</td>\n",
|
||
" <td>MN17</td>\n",
|
||
" <td>40.755627203336,-73.981938150269</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>396501</th>\n",
|
||
" <td>50068499</td>\n",
|
||
" <td>RED GINGER</td>\n",
|
||
" <td>Staten Island</td>\n",
|
||
" <td>1650</td>\n",
|
||
" <td>RICHMOND AVENUE</td>\n",
|
||
" <td>10314.0</td>\n",
|
||
" <td>7189828808</td>\n",
|
||
" <td>Other</td>\n",
|
||
" <td>09/19/2017</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>09/19/2017</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Pre-permit (Operational) / Initial Inspection</td>\n",
|
||
" <td>502.0</td>\n",
|
||
" <td>50.0</td>\n",
|
||
" <td>29103.0</td>\n",
|
||
" <td>5037014.0</td>\n",
|
||
" <td>5.022360e+09</td>\n",
|
||
" <td>SI05</td>\n",
|
||
" <td>40.608078102502,-74.162260908042</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>398950</th>\n",
|
||
" <td>50059700</td>\n",
|
||
" <td>RED POKE</td>\n",
|
||
" <td>Manhattan</td>\n",
|
||
" <td>600</td>\n",
|
||
" <td>9 AVENUE</td>\n",
|
||
" <td>10036.0</td>\n",
|
||
" <td>2129748100</td>\n",
|
||
" <td>Hawaiian</td>\n",
|
||
" <td>12/08/2017</td>\n",
|
||
" <td>Violations were cited in the following area(s).</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>12/08/2017</td>\n",
|
||
" <td>07/07/2020</td>\n",
|
||
" <td>Cycle Inspection / Re-inspection</td>\n",
|
||
" <td>104.0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>12100.0</td>\n",
|
||
" <td>1088997.0</td>\n",
|
||
" <td>1.010330e+09</td>\n",
|
||
" <td>MN15</td>\n",
|
||
" <td>40.758993434643,-73.992203122611</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"</div>\n",
|
||
"<p>573 rows × 25 columns</p>"
|
||
],
|
||
"text/plain": [
|
||
" camis dba boro building \\\n",
|
||
"5765 50033781 RED HOOK LOBSTER POUND Brooklyn 284 \n",
|
||
"12379 50058053 RED HOT II Brooklyn 349 \n",
|
||
"12978 50059700 RED POKE Manhattan 600 \n",
|
||
"16759 40365239 DORRIAN'S RED HAND RESTAURANT Manhattan 1616 \n",
|
||
"18624 50095340 RED PEONY CHINESE CUISINE Manhattan 24 \n",
|
||
"... ... ... ... ... \n",
|
||
"391229 50061162 CODE RED Bronx 1320 \n",
|
||
"393531 50014078 RED LOBSTER Manhattan 5 \n",
|
||
"396171 40368313 RED FLAME DINER Manhattan 67 \n",
|
||
"396501 50068499 RED GINGER Staten Island 1650 \n",
|
||
"398950 50059700 RED POKE Manhattan 600 \n",
|
||
"\n",
|
||
" street zipcode phone cuisine_description \\\n",
|
||
"5765 VAN BRUNT STREET 11231.0 7188587650 Seafood \n",
|
||
"12379 7 AVENUE 11215.0 7183692577 Chinese \n",
|
||
"12978 9 AVENUE 10036.0 2129748100 Hawaiian \n",
|
||
"16759 2 AVENUE 10028.0 2127726660 Irish \n",
|
||
"18624 WEST 56 STREET 10019.0 2123808883 Chinese \n",
|
||
"... ... ... ... ... \n",
|
||
"391229 EAST GUN HILL ROAD 10469.0 7188811808 Caribbean \n",
|
||
"393531 TIMES SQ 10036.0 2127306706 Seafood \n",
|
||
"396171 WEST 44 STREET 10036.0 2128693965 American \n",
|
||
"396501 RICHMOND AVENUE 10314.0 7189828808 Other \n",
|
||
"398950 9 AVENUE 10036.0 2129748100 Hawaiian \n",
|
||
"\n",
|
||
" inspection_date action ... \\\n",
|
||
"5765 04/19/2018 Violations were cited in the following area(s). ... \n",
|
||
"12379 05/17/2018 Violations were cited in the following area(s). ... \n",
|
||
"12978 03/21/2017 Violations were cited in the following area(s). ... \n",
|
||
"16759 11/08/2018 Violations were cited in the following area(s). ... \n",
|
||
"18624 11/21/2019 Violations were cited in the following area(s). ... \n",
|
||
"... ... ... ... \n",
|
||
"391229 05/14/2018 Violations were cited in the following area(s). ... \n",
|
||
"393531 11/08/2017 Violations were cited in the following area(s). ... \n",
|
||
"396171 02/16/2018 Violations were cited in the following area(s). ... \n",
|
||
"396501 09/19/2017 Violations were cited in the following area(s). ... \n",
|
||
"398950 12/08/2017 Violations were cited in the following area(s). ... \n",
|
||
"\n",
|
||
" grade_date record_date inspection_type \\\n",
|
||
"5765 04/19/2018 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"12379 05/17/2018 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"12978 03/21/2017 07/07/2020 Pre-permit (Operational) / Re-inspection \n",
|
||
"16759 11/08/2018 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"18624 11/21/2019 07/07/2020 Pre-permit (Operational) / Re-inspection \n",
|
||
"... ... ... ... \n",
|
||
"391229 05/14/2018 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"393531 11/08/2017 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"396171 02/16/2018 07/07/2020 Cycle Inspection / Initial Inspection \n",
|
||
"396501 09/19/2017 07/07/2020 Pre-permit (Operational) / Initial Inspection \n",
|
||
"398950 12/08/2017 07/07/2020 Cycle Inspection / Re-inspection \n",
|
||
"\n",
|
||
" community_board council_district census_tract bin \\\n",
|
||
"5765 306.0 38.0 5900.0 3008365.0 \n",
|
||
"12379 306.0 39.0 15100.0 3026127.0 \n",
|
||
"12978 104.0 3.0 12100.0 1088997.0 \n",
|
||
"16759 108.0 5.0 13800.0 1049947.0 \n",
|
||
"18624 105.0 4.0 10400.0 1034840.0 \n",
|
||
"... ... ... ... ... \n",
|
||
"391229 211.0 12.0 35000.0 2056100.0 \n",
|
||
"393531 105.0 3.0 11300.0 1024656.0 \n",
|
||
"396171 105.0 4.0 9600.0 1034217.0 \n",
|
||
"396501 502.0 50.0 29103.0 5037014.0 \n",
|
||
"398950 104.0 3.0 12100.0 1088997.0 \n",
|
||
"\n",
|
||
" bbl nta location \n",
|
||
"5765 3.005290e+09 BK33 40.67974632809,-74.010098611838 \n",
|
||
"12379 3.010940e+09 BK37 40.666194419994,-73.98214269199799 \n",
|
||
"12978 1.010330e+09 MN15 40.758993434643,-73.992203122611 \n",
|
||
"16759 1.015460e+09 MN32 40.776404966262,-73.952802065662 \n",
|
||
"18624 1.012710e+09 MN17 40.762699245064,-73.975463733228 \n",
|
||
"... ... ... ... \n",
|
||
"391229 2.045890e+09 BX31 40.871378316318996,-73.848028279305 \n",
|
||
"393531 1.010130e+09 MN17 40.755702020307005,-73.987207980138 \n",
|
||
"396171 1.012600e+09 MN17 40.755627203336,-73.981938150269 \n",
|
||
"396501 5.022360e+09 SI05 40.608078102502,-74.162260908042 \n",
|
||
"398950 1.010330e+09 MN15 40.758993434643,-73.992203122611 \n",
|
||
"\n",
|
||
"[573 rows x 25 columns]"
|
||
]
|
||
},
|
||
"execution_count": 43,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Full-text search example\n",
|
||
"df.es_query({\"match\": {\"dba\": \"red\"}})"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 44,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"<class 'pandas.core.frame.DataFrame'>\n",
|
||
"Index: 100 entries, 107677 to 96813\n",
|
||
"Data columns (total 25 columns):\n",
|
||
" # Column Non-Null Count Dtype \n",
|
||
"--- ------ -------------- ----- \n",
|
||
" 0 camis 100 non-null int64 \n",
|
||
" 1 dba 100 non-null object \n",
|
||
" 2 boro 100 non-null object \n",
|
||
" 3 building 100 non-null object \n",
|
||
" 4 street 100 non-null object \n",
|
||
" 5 zipcode 100 non-null float64\n",
|
||
" 6 phone 100 non-null object \n",
|
||
" 7 cuisine_description 100 non-null object \n",
|
||
" 8 inspection_date 100 non-null object \n",
|
||
" 9 action 100 non-null object \n",
|
||
" 10 violation_code 100 non-null object \n",
|
||
" 11 violation_description 100 non-null object \n",
|
||
" 12 critical_flag 100 non-null object \n",
|
||
" 13 score 100 non-null float64\n",
|
||
" 14 grade 100 non-null object \n",
|
||
" 15 grade_date 100 non-null object \n",
|
||
" 16 record_date 100 non-null object \n",
|
||
" 17 inspection_type 100 non-null object \n",
|
||
" 18 community_board 100 non-null float64\n",
|
||
" 19 council_district 100 non-null float64\n",
|
||
" 20 census_tract 100 non-null float64\n",
|
||
" 21 bin 100 non-null float64\n",
|
||
" 22 bbl 100 non-null float64\n",
|
||
" 23 nta 100 non-null object \n",
|
||
" 24 location 100 non-null object \n",
|
||
"dtypes: float64(7), int64(1), object(17)\n",
|
||
"memory usage: 20.3+ KB\n",
|
||
"<class 'pandas.core.frame.DataFrame'>\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Pull a subset of your data for building graphs / operations locally.\n",
|
||
"sample_df = df[df.grade == \"B\"].sample(100).to_pandas()\n",
|
||
"sample_df.info()\n",
|
||
"print(type(sample_df))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Machine Learning Demo"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 45,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Feature Names: ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']\n",
|
||
"Data example: [1.423e+01 1.710e+00 2.430e+00 1.560e+01 1.270e+02 2.800e+00 3.060e+00\n",
|
||
" 2.800e-01 2.290e+00 5.640e+00 1.040e+00 3.920e+00 1.065e+03]\n",
|
||
"[0 1 2]\n",
|
||
"[0 1 2]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Import scikit-learn and train a dataset locally\n",
|
||
"from sklearn import datasets\n",
|
||
"from sklearn.tree import DecisionTreeClassifier\n",
|
||
"\n",
|
||
"# Train the data locally\n",
|
||
"digits = datasets.load_wine()\n",
|
||
"print(\"Feature Names:\", digits.feature_names)\n",
|
||
"print(\"Data example:\", digits.data[0])\n",
|
||
"\n",
|
||
"# Save 10, 80, and 140 for testing our model\n",
|
||
"data = [x for i, x in enumerate(digits.data) if i not in (10, 80, 140)]\n",
|
||
"target = [x for i, x in enumerate(digits.target) if i not in (10, 80, 140)]\n",
|
||
"\n",
|
||
"sk_classifier = DecisionTreeClassifier()\n",
|
||
"sk_classifier.fit(data, target)\n",
|
||
"\n",
|
||
"# Test out our model against the three targets\n",
|
||
"print(sk_classifier.predict(digits.data[[10, 80, 140]]))\n",
|
||
"print(digits.target[[10, 80, 140]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 46,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"POST https://167e473c7bba4bae85004385d4e0ce46.us-central1.gcp.cloud.es.io/_ingest/pipeline/_simulate [status:200 request:0.053s]\n",
|
||
"> {\"pipeline\":{\"processors\":[{\"inference\":{\"model_id\":\"wine-classifier\",\"inference_config\":{\"classification\":{}},\"field_map\":{}}}]},\"docs\":[{\"_source\":{\"alcohol\":14.1,\"malic_acid\":2.16,\"ash\":2.3,\"alcalinity_of_ash\":18.0,\"magnesium\":105.0,\"total_phenols\":2.95,\"flavanoids\":3.32,\"nonflavanoid_phenols\":0.22,\"proanthocyanins\":2.38,\"color_intensity\":5.75,\"hue\":1.25,\"od280/od315_of_diluted_wines\":3.17,\"proline\":1510.0}},{\"_source\":{\"alcohol\":12.0,\"malic_acid\":0.92,\"ash\":2.0,\"alcalinity_of_ash\":19.0,\"magnesium\":86.0,\"total_phenols\":2.42,\"flavanoids\":2.26,\"nonflavanoid_phenols\":0.3,\"proanthocyanins\":1.43,\"color_intensity\":2.5,\"hue\":1.38,\"od280/od315_of_diluted_wines\":3.12,\"proline\":278.0}},{\"_source\":{\"alcohol\":12.93,\"malic_acid\":2.81,\"ash\":2.7,\"alcalinity_of_ash\":21.0,\"magnesium\":96.0,\"total_phenols\":1.54,\"flavanoids\":0.5,\"nonflavanoid_phenols\":0.53,\"proanthocyanins\":0.75,\"color_intensity\":4.6,\"hue\":0.77,\"od280/od315_of_diluted_wines\":2.31,\"proline\":600.0}}]}\n",
|
||
"< {\"docs\":[{\"doc\":{\"_index\":\"_index\",\"_type\":\"_doc\",\"_id\":\"_id\",\"_source\":{\"alcohol\":14.1,\"alcalinity_of_ash\":18.0,\"proanthocyanins\":2.38,\"od280/od315_of_diluted_wines\":3.17,\"total_phenols\":2.95,\"magnesium\":105.0,\"flavanoids\":3.32,\"proline\":1510.0,\"malic_acid\":2.16,\"ash\":2.3,\"nonflavanoid_phenols\":0.22,\"hue\":1.25,\"color_intensity\":5.75,\"ml\":{\"inference\":{\"predicted_value\":\"0\",\"model_id\":\"wine-classifier\"}}},\"_ingest\":{\"timestamp\":\"2020-07-08T15:35:49.98965Z\"}}},{\"doc\":{\"_index\":\"_index\",\"_type\":\"_doc\",\"_id\":\"_id\",\"_source\":{\"alcohol\":12.0,\"alcalinity_of_ash\":19.0,\"proanthocyanins\":1.43,\"od280/od315_of_diluted_wines\":3.12,\"total_phenols\":2.42,\"magnesium\":86.0,\"flavanoids\":2.26,\"proline\":278.0,\"malic_acid\":0.92,\"ash\":2.0,\"nonflavanoid_phenols\":0.3,\"hue\":1.38,\"color_intensity\":2.5,\"ml\":{\"inference\":{\"predicted_value\":\"1\",\"model_id\":\"wine-classifier\"}}},\"_ingest\":{\"timestamp\":\"2020-07-08T15:35:49.98966Z\"}}},{\"doc\":{\"_index\":\"_index\",\"_type\":\"_doc\",\"_id\":\"_id\",\"_source\":{\"alcohol\":12.93,\"alcalinity_of_ash\":21.0,\"proanthocyanins\":0.75,\"od280/od315_of_diluted_wines\":2.31,\"total_phenols\":1.54,\"magnesium\":96.0,\"flavanoids\":0.5,\"proline\":600.0,\"malic_acid\":2.81,\"ash\":2.7,\"nonflavanoid_phenols\":0.53,\"hue\":0.77,\"color_intensity\":4.6,\"ml\":{\"inference\":{\"predicted_value\":\"2\",\"model_id\":\"wine-classifier\"}}},\"_ingest\":{\"timestamp\":\"2020-07-08T15:35:49.989672Z\"}}}]}\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[0 1 2]\n",
|
||
"[0 1 2]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from eland.ml import MLModel\n",
|
||
"\n",
|
||
"# Serialize the scikit-learn model into Elasticsearch\n",
|
||
"ed_classifier = MLModel.import_model(\n",
|
||
" es_client=es,\n",
|
||
" model_id=\"wine-classifier\",\n",
|
||
" model=sk_classifier,\n",
|
||
" feature_names=digits.feature_names,\n",
|
||
" overwrite=True\n",
|
||
")\n",
|
||
"\n",
|
||
"# Capture the Elasticsearch API call w/ logging\n",
|
||
"import logging\n",
|
||
"logger = logging.getLogger(\"elasticsearch\")\n",
|
||
"logger.setLevel(logging.DEBUG)\n",
|
||
"logger.addHandler(logging.StreamHandler())\n",
|
||
"\n",
|
||
"# Use the same data as before, but now with the model in Elasticsearch\n",
|
||
"print(ed_classifier.predict(digits.data[[10, 80, 140]].tolist()))\n",
|
||
"print(digits.target[[10, 80, 140]])\n",
|
||
"\n",
|
||
"logger.handlers = []"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 47,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"{\n",
|
||
" \"docs\": [\n",
|
||
" {\n",
|
||
" \"_source\": {\n",
|
||
" \"alcalinity_of_ash\": 18.0,\n",
|
||
" \"alcohol\": 14.1,\n",
|
||
" \"ash\": 2.3,\n",
|
||
" \"color_intensity\": 5.75,\n",
|
||
" \"flavanoids\": 3.32,\n",
|
||
" \"hue\": 1.25,\n",
|
||
" \"magnesium\": 105.0,\n",
|
||
" \"malic_acid\": 2.16,\n",
|
||
" \"nonflavanoid_phenols\": 0.22,\n",
|
||
" \"od280/od315_of_diluted_wines\": 3.17,\n",
|
||
" \"proanthocyanins\": 2.38,\n",
|
||
" \"proline\": 1510.0,\n",
|
||
" \"total_phenols\": 2.95\n",
|
||
" }\n",
|
||
" },\n",
|
||
" {\n",
|
||
" \"_source\": {\n",
|
||
" \"alcalinity_of_ash\": 19.0,\n",
|
||
" \"alcohol\": 12.0,\n",
|
||
" \"ash\": 2.0,\n",
|
||
" \"color_intensity\": 2.5,\n",
|
||
" \"flavanoids\": 2.26,\n",
|
||
" \"hue\": 1.38,\n",
|
||
" \"magnesium\": 86.0,\n",
|
||
" \"malic_acid\": 0.92,\n",
|
||
" \"nonflavanoid_phenols\": 0.3,\n",
|
||
" \"od280/od315_of_diluted_wines\": 3.12,\n",
|
||
" \"proanthocyanins\": 1.43,\n",
|
||
" \"proline\": 278.0,\n",
|
||
" \"total_phenols\": 2.42\n",
|
||
" }\n",
|
||
" },\n",
|
||
" {\n",
|
||
" \"_source\": {\n",
|
||
" \"alcalinity_of_ash\": 21.0,\n",
|
||
" \"alcohol\": 12.93,\n",
|
||
" \"ash\": 2.7,\n",
|
||
" \"color_intensity\": 4.6,\n",
|
||
" \"flavanoids\": 0.5,\n",
|
||
" \"hue\": 0.77,\n",
|
||
" \"magnesium\": 96.0,\n",
|
||
" \"malic_acid\": 2.81,\n",
|
||
" \"nonflavanoid_phenols\": 0.53,\n",
|
||
" \"od280/od315_of_diluted_wines\": 2.31,\n",
|
||
" \"proanthocyanins\": 0.75,\n",
|
||
" \"proline\": 600.0,\n",
|
||
" \"total_phenols\": 1.54\n",
|
||
" }\n",
|
||
" }\n",
|
||
" ],\n",
|
||
" \"pipeline\": {\n",
|
||
" \"processors\": [\n",
|
||
" {\n",
|
||
" \"inference\": {\n",
|
||
" \"field_map\": {},\n",
|
||
" \"inference_config\": {\n",
|
||
" \"classification\": {}\n",
|
||
" },\n",
|
||
" \"model_id\": \"wine-classifier\"\n",
|
||
" }\n",
|
||
" }\n",
|
||
" ]\n",
|
||
" }\n",
|
||
"}\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"json({\"pipeline\":{\"processors\":[{\"inference\":{\"model_id\":\"wine-classifier\",\"inference_config\":{\"classification\":{}},\"field_map\":{}}}]},\"docs\":[{\"_source\":{\"alcohol\":14.1,\"malic_acid\":2.16,\"ash\":2.3,\"alcalinity_of_ash\":18.0,\"magnesium\":105.0,\"total_phenols\":2.95,\"flavanoids\":3.32,\"nonflavanoid_phenols\":0.22,\"proanthocyanins\":2.38,\"color_intensity\":5.75,\"hue\":1.25,\"od280/od315_of_diluted_wines\":3.17,\"proline\":1510.0}},{\"_source\":{\"alcohol\":12.0,\"malic_acid\":0.92,\"ash\":2.0,\"alcalinity_of_ash\":19.0,\"magnesium\":86.0,\"total_phenols\":2.42,\"flavanoids\":2.26,\"nonflavanoid_phenols\":0.3,\"proanthocyanins\":1.43,\"color_intensity\":2.5,\"hue\":1.38,\"od280/od315_of_diluted_wines\":3.12,\"proline\":278.0}},{\"_source\":{\"alcohol\":12.93,\"malic_acid\":2.81,\"ash\":2.7,\"alcalinity_of_ash\":21.0,\"magnesium\":96.0,\"total_phenols\":1.54,\"flavanoids\":0.5,\"nonflavanoid_phenols\":0.53,\"proanthocyanins\":0.75,\"color_intensity\":4.6,\"hue\":0.77,\"od280/od315_of_diluted_wines\":2.31,\"proline\":600.0}}]})"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 48,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"{\n",
|
||
" \"docs\": [\n",
|
||
" {\n",
|
||
" \"doc\": {\n",
|
||
" \"_id\": \"_id\",\n",
|
||
" \"_index\": \"_index\",\n",
|
||
" \"_ingest\": {\n",
|
||
" \"timestamp\": \"2020-07-08T15:35:49.98965Z\"\n",
|
||
" },\n",
|
||
" \"_source\": {\n",
|
||
" \"alcalinity_of_ash\": 18.0,\n",
|
||
" \"alcohol\": 14.1,\n",
|
||
" \"ash\": 2.3,\n",
|
||
" \"color_intensity\": 5.75,\n",
|
||
" \"flavanoids\": 3.32,\n",
|
||
" \"hue\": 1.25,\n",
|
||
" \"magnesium\": 105.0,\n",
|
||
" \"malic_acid\": 2.16,\n",
|
||
" \"ml\": {\n",
|
||
" \"inference\": {\n",
|
||
" \"model_id\": \"wine-classifier\",\n",
|
||
" \"predicted_value\": \"0\"\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"nonflavanoid_phenols\": 0.22,\n",
|
||
" \"od280/od315_of_diluted_wines\": 3.17,\n",
|
||
" \"proanthocyanins\": 2.38,\n",
|
||
" \"proline\": 1510.0,\n",
|
||
" \"total_phenols\": 2.95\n",
|
||
" },\n",
|
||
" \"_type\": \"_doc\"\n",
|
||
" }\n",
|
||
" },\n",
|
||
" {\n",
|
||
" \"doc\": {\n",
|
||
" \"_id\": \"_id\",\n",
|
||
" \"_index\": \"_index\",\n",
|
||
" \"_ingest\": {\n",
|
||
" \"timestamp\": \"2020-07-08T15:35:49.98966Z\"\n",
|
||
" },\n",
|
||
" \"_source\": {\n",
|
||
" \"alcalinity_of_ash\": 19.0,\n",
|
||
" \"alcohol\": 12.0,\n",
|
||
" \"ash\": 2.0,\n",
|
||
" \"color_intensity\": 2.5,\n",
|
||
" \"flavanoids\": 2.26,\n",
|
||
" \"hue\": 1.38,\n",
|
||
" \"magnesium\": 86.0,\n",
|
||
" \"malic_acid\": 0.92,\n",
|
||
" \"ml\": {\n",
|
||
" \"inference\": {\n",
|
||
" \"model_id\": \"wine-classifier\",\n",
|
||
" \"predicted_value\": \"1\"\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"nonflavanoid_phenols\": 0.3,\n",
|
||
" \"od280/od315_of_diluted_wines\": 3.12,\n",
|
||
" \"proanthocyanins\": 1.43,\n",
|
||
" \"proline\": 278.0,\n",
|
||
" \"total_phenols\": 2.42\n",
|
||
" },\n",
|
||
" \"_type\": \"_doc\"\n",
|
||
" }\n",
|
||
" },\n",
|
||
" {\n",
|
||
" \"doc\": {\n",
|
||
" \"_id\": \"_id\",\n",
|
||
" \"_index\": \"_index\",\n",
|
||
" \"_ingest\": {\n",
|
||
" \"timestamp\": \"2020-07-08T15:35:49.989672Z\"\n",
|
||
" },\n",
|
||
" \"_source\": {\n",
|
||
" \"alcalinity_of_ash\": 21.0,\n",
|
||
" \"alcohol\": 12.93,\n",
|
||
" \"ash\": 2.7,\n",
|
||
" \"color_intensity\": 4.6,\n",
|
||
" \"flavanoids\": 0.5,\n",
|
||
" \"hue\": 0.77,\n",
|
||
" \"magnesium\": 96.0,\n",
|
||
" \"malic_acid\": 2.81,\n",
|
||
" \"ml\": {\n",
|
||
" \"inference\": {\n",
|
||
" \"model_id\": \"wine-classifier\",\n",
|
||
" \"predicted_value\": \"2\"\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"nonflavanoid_phenols\": 0.53,\n",
|
||
" \"od280/od315_of_diluted_wines\": 2.31,\n",
|
||
" \"proanthocyanins\": 0.75,\n",
|
||
" \"proline\": 600.0,\n",
|
||
" \"total_phenols\": 1.54\n",
|
||
" },\n",
|
||
" \"_type\": \"_doc\"\n",
|
||
" }\n",
|
||
" }\n",
|
||
" ]\n",
|
||
"}\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"json({\"docs\":[{\"doc\":{\"_index\":\"_index\",\"_type\":\"_doc\",\"_id\":\"_id\",\"_source\":{\"alcohol\":14.1,\"alcalinity_of_ash\":18.0,\"proanthocyanins\":2.38,\"od280/od315_of_diluted_wines\":3.17,\"total_phenols\":2.95,\"magnesium\":105.0,\"flavanoids\":3.32,\"proline\":1510.0,\"malic_acid\":2.16,\"ash\":2.3,\"nonflavanoid_phenols\":0.22,\"hue\":1.25,\"color_intensity\":5.75,\"ml\":{\"inference\":{\"predicted_value\":\"0\",\"model_id\":\"wine-classifier\"}}},\"_ingest\":{\"timestamp\":\"2020-07-08T15:35:49.98965Z\"}}},{\"doc\":{\"_index\":\"_index\",\"_type\":\"_doc\",\"_id\":\"_id\",\"_source\":{\"alcohol\":12.0,\"alcalinity_of_ash\":19.0,\"proanthocyanins\":1.43,\"od280/od315_of_diluted_wines\":3.12,\"total_phenols\":2.42,\"magnesium\":86.0,\"flavanoids\":2.26,\"proline\":278.0,\"malic_acid\":0.92,\"ash\":2.0,\"nonflavanoid_phenols\":0.3,\"hue\":1.38,\"color_intensity\":2.5,\"ml\":{\"inference\":{\"predicted_value\":\"1\",\"model_id\":\"wine-classifier\"}}},\"_ingest\":{\"timestamp\":\"2020-07-08T15:35:49.98966Z\"}}},{\"doc\":{\"_index\":\"_index\",\"_type\":\"_doc\",\"_id\":\"_id\",\"_source\":{\"alcohol\":12.93,\"alcalinity_of_ash\":21.0,\"proanthocyanins\":0.75,\"od280/od315_of_diluted_wines\":2.31,\"total_phenols\":1.54,\"magnesium\":96.0,\"flavanoids\":0.5,\"proline\":600.0,\"malic_acid\":2.81,\"ash\":2.7,\"nonflavanoid_phenols\":0.53,\"hue\":0.77,\"color_intensity\":4.6,\"ml\":{\"inference\":{\"predicted_value\":\"2\",\"model_id\":\"wine-classifier\"}}},\"_ingest\":{\"timestamp\":\"2020-07-08T15:35:49.989672Z\"}}}]})"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 50,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"es_index_pattern: nyc-restaurants\n",
|
||
"Index:\n",
|
||
" es_index_field: _id\n",
|
||
" is_source_field: False\n",
|
||
"Mappings:\n",
|
||
" capabilities:\n",
|
||
" es_field_name is_source es_dtype es_date_format pd_dtype is_searchable is_aggregatable is_scripted aggregatable_es_field_name\n",
|
||
"camis camis True long None int64 True True False camis\n",
|
||
"dba dba True text None object True False False None\n",
|
||
"boro boro True keyword None object True True False boro\n",
|
||
"building building True keyword None object True True False building\n",
|
||
"street street True keyword None object True True False street\n",
|
||
"zipcode zipcode True short None int64 True True False zipcode\n",
|
||
"phone phone True keyword None object True True False phone\n",
|
||
"cuisine_description cuisine_description True keyword None object True True False cuisine_description\n",
|
||
"inspection_date inspection_date True keyword None object True True False inspection_date\n",
|
||
"action action True keyword None object True True False action\n",
|
||
"violation_code violation_code True keyword None object True True False violation_code\n",
|
||
"violation_description violation_description True keyword None object True True False violation_description\n",
|
||
"critical_flag critical_flag True keyword None object True True False critical_flag\n",
|
||
"score score True double None float64 True True False score\n",
|
||
"grade grade True keyword None object True True False grade\n",
|
||
"grade_date grade_date True keyword None object True True False grade_date\n",
|
||
"record_date record_date True keyword None object True True False record_date\n",
|
||
"inspection_type inspection_type True keyword None object True True False inspection_type\n",
|
||
"community_board community_board True double None float64 True True False community_board\n",
|
||
"council_district council_district True double None float64 True True False council_district\n",
|
||
"census_tract census_tract True double None float64 True True False census_tract\n",
|
||
"bin bin True double None float64 True True False bin\n",
|
||
"bbl bbl True double None float64 True True False bbl\n",
|
||
"nta nta True keyword None object True True False nta\n",
|
||
"location location True geo_point None object True True False location\n",
|
||
"Operations:\n",
|
||
" tasks: [('boolean_filter': ('boolean_filter': {'script': {'script': {'source': \"doc['zipcode'].value > doc['score'].value\", 'lang': 'painless'}}}))]\n",
|
||
" size: None\n",
|
||
" sort_params: None\n",
|
||
" _source: ['camis', 'dba', 'boro', 'building', 'street', 'zipcode', 'phone', 'cuisine_description', 'inspection_date', 'action', 'violation_code', 'violation_description', 'critical_flag', 'score', 'grade', 'grade_date', 'record_date', 'inspection_type', 'community_board', 'council_district', 'census_tract', 'bin', 'bbl', 'nta', 'location']\n",
|
||
" body: {'query': {'script': {'script': {'source': \"doc['zipcode'].value > doc['score'].value\", 'lang': 'painless'}}}}\n",
|
||
" post_processing: []\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(df[df[\"zipcode\"] > df[\"score\"]].es_info())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.6.9"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|