eland/docs/guide/machine-learning.asciidoc

124 lines
4.4 KiB
Plaintext

[[machine-learning]]
== Machine Learning
[discrete]
[[ml-trained-models]]
=== Trained models
Eland allows transforming trained models from scikit-learn, XGBoost,
and LightGBM libraries to be serialized and used as an inference
model in {es}.
[source,python]
------------------------
>>> from xgboost import XGBClassifier
>>> from eland.ml import MLModel
# Train and exercise an XGBoost ML model locally
>>> xgb_model = XGBClassifier(booster="gbtree")
>>> xgb_model.fit(training_data[0], training_data[1])
>>> xgb_model.predict(training_data[0])
[0 1 1 0 1 0 0 0 1 0]
# Import the model into Elasticsearch
>>> es_model = MLModel.import_model(
es_client="http://localhost:9200",
model_id="xgb-classifier",
model=xgb_model,
feature_names=["f0", "f1", "f2", "f3", "f4"],
)
# Exercise the ML model in Elasticsearch with the training data
>>> es_model.predict(training_data[0])
[0 1 1 0 1 0 0 0 1 0]
------------------------
[discrete]
[[ml-nlp-pytorch]]
=== Natural language processing (NLP) with PyTorch
IMPORTANT: You need to use PyTorch `1.11.0` or earlier to import an NLP model.
Run `pip install torch==1.11` to install the aproppriate version of PyTorch.
For NLP tasks, Eland enables you to import PyTorch trained BERT models into {es}.
Models can be either plain PyTorch models, or supported
https://huggingface.co/transformers[transformers] models from the
https://huggingface.co/models[Hugging Face model hub]. For example:
[source,bash]
------------------------
$ eland_import_hub_model <authentication> \ <1>
--url http://localhost:9200/ \ <2>
--hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \ <3>
--task-type ner \ <4>
--start
------------------------
<1> Use an authentication method to access your cluster. Refer to <<ml-nlp-pytorch-auth>>.
<2> The cluster URL. Alternatively, use `--cloud-id`.
<3> Specify the identifier for the model in the Hugging Face model hub.
<4> Specify the type of NLP task. Supported values are `fill_mask`, `ner`,
`question_answering`, text_classification`, `text_embedding`, and `zero_shot_classification`.
[source,python]
------------------------
>>> import elasticsearch
>>> from pathlib import Path
>>> from eland.ml.pytorch import PyTorchModel
>>> from eland.ml.pytorch.transformers import TransformerModel
# Load a Hugging Face transformers model directly from the model hub
>>> tm = TransformerModel("elastic/distilbert-base-cased-finetuned-conll03-english", "ner")
Downloading: 100%|██████████| 257/257 [00:00<00:00, 108kB/s]
Downloading: 100%|██████████| 954/954 [00:00<00:00, 372kB/s]
Downloading: 100%|██████████| 208k/208k [00:00<00:00, 668kB/s]
Downloading: 100%|██████████| 112/112 [00:00<00:00, 43.9kB/s]
Downloading: 100%|██████████| 249M/249M [00:23<00:00, 11.2MB/s]
# Export the model in a TorchScript representation which Elasticsearch uses
>>> tmp_path = "models"
>>> Path(tmp_path).mkdir(parents=True, exist_ok=True)
>>> model_path, config, vocab_path = tm.save(tmp_path)
# Import model into Elasticsearch
>>> es = elasticsearch.Elasticsearch("http://elastic:mlqa_admin@localhost:9200", timeout=300) # 5 minute timeout
>>> ptm = PyTorchModel(es, tm.elasticsearch_model_id())
>>> ptm.import_model(model_path=model_path, config_path=None, vocab_path=vocab_path, config=config)
100%|██████████| 63/63 [00:12<00:00, 5.02it/s]
------------------------
[discrete]
[[ml-nlp-pytorch-auth]]
==== Authentication methods
The following authentication options are available when using the import script:
* username and password authentication (specified with the `-u` and `-p` options):
+
--
[source,bash]
--------------------------------------------------
eland_import_hub_model -u <username> -p <password> --cloud-id <cloud-id> ...
--------------------------------------------------
These `-u` and `-p` options also work when you use `--url`.
--
* username and password authentication (embedded in the URL):
+
--
[source,bash]
--------------------------------------------------
eland_import_hub_model --url https://<user>:<password>@<hostname>:<port> ...
--------------------------------------------------
--
* API key authentication:
+
--
[source,bash]
--------------------------------------------------
eland_import_hub_model --es-api-key <api-key> --url https://<hostname>:<port> ...
--------------------------------------------------
--