go-stock/backend/data/openai_api.go
spark 7b93d4d8ca feat(data): 添加 AIResponseResult模型并实现相关功能
感谢 @gnim2600 的建议!

- 新增 AIResponseResult 模型用于保存 AI 分析结果
- 实现 SaveAIResponseResult 和 GetAIResponseResult 函数
- 在前端添加 AI 分析功能,包括保存和获取分析结果
-优化 AI 分析界面,增加分析时间显示和再次分析按钮
2025-02-08 11:13:17 +08:00

468 lines
15 KiB
Go
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package data
import (
"bufio"
"context"
"encoding/json"
"fmt"
"github.com/PuerkitoBio/goquery"
"github.com/chromedp/chromedp"
"github.com/duke-git/lancet/v2/strutil"
"github.com/go-resty/resty/v2"
"go-stock/backend/db"
"go-stock/backend/logger"
"go-stock/backend/models"
"strings"
"sync"
"time"
)
// @Author spark
// @Date 2025/1/16 13:19
// @Desc
// -----------------------------------------------------------------------------------
type OpenAi struct {
BaseUrl string `json:"base_url"`
ApiKey string `json:"api_key"`
Model string `json:"model"`
MaxTokens int `json:"max_tokens"`
Temperature float64 `json:"temperature"`
Prompt string `json:"prompt"`
TimeOut int `json:"time_out"`
}
func NewDeepSeekOpenAi() *OpenAi {
config := getConfig()
return &OpenAi{
BaseUrl: config.OpenAiBaseUrl,
ApiKey: config.OpenAiApiKey,
Model: config.OpenAiModelName,
MaxTokens: config.OpenAiMaxTokens,
Temperature: config.OpenAiTemperature,
Prompt: config.Prompt,
TimeOut: config.OpenAiApiTimeOut,
}
}
type THSTokenResponse struct {
Code int `json:"code"`
Message string `json:"message"`
Data string `json:"data"`
}
type AiResponse struct {
Id string `json:"id"`
Object string `json:"object"`
Created int `json:"created"`
Model string `json:"model"`
Choices []struct {
Index int `json:"index"`
Message struct {
Role string `json:"role"`
Content string `json:"content"`
} `json:"message"`
Logprobs interface{} `json:"logprobs"`
FinishReason string `json:"finish_reason"`
} `json:"choices"`
Usage struct {
PromptTokens int `json:"prompt_tokens"`
CompletionTokens int `json:"completion_tokens"`
TotalTokens int `json:"total_tokens"`
PromptCacheHitTokens int `json:"prompt_cache_hit_tokens"`
PromptCacheMissTokens int `json:"prompt_cache_miss_tokens"`
} `json:"usage"`
SystemFingerprint string `json:"system_fingerprint"`
}
func (o OpenAi) NewChat(stock string) string {
client := resty.New()
client.SetBaseURL(o.BaseUrl)
client.SetHeader("Authorization", "Bearer "+o.ApiKey)
client.SetHeader("Content-Type", "application/json")
res := &AiResponse{}
_, err := client.R().
SetResult(res).
SetBody(map[string]interface{}{
"model": o.Model,
"max_tokens": o.MaxTokens,
"temperature": o.Temperature,
"messages": []map[string]interface{}{
{
"role": "system",
"content": "作为一位专业的A股市场分析师和投资顾问,请你根据以下信息提供详细的技术分析和投资策略建议:" +
"1. 市场背景:\n" +
"- 当前A股市场整体走势(如:牛市、熊市、震荡市)\n " +
"- 近期影响市场的主要宏观经济因素\n " +
"- 市场情绪指标(如:融资融券余额、成交量变化) " +
"2. 技术指标分析: " +
"- 当前股价水平" +
"- 所在boll区间" +
"- 上证指数的MA(移动平均线)、MACD、KDJ指标分析\n " +
"- 行业板块轮动情况\n " +
"- 近期市场热点和龙头股票的技术形态 " +
"3. 风险评估:\n " +
"- 当前市场主要风险因素\n " +
"- 如何设置止损和止盈位\n " +
"- 资金管理建议(如:仓位控制) " +
"4. 投资策略:\n " +
"- 短期(1-2周)、中期(1-3月)和长期(3-6月)的市场预期\n " +
"- 不同风险偏好投资者的策略建议\n " +
"- 值得关注的行业板块和个股推荐(请给出2-3个具体例子,包括股票代码和名称) " +
"5. 技术面和基本面结合:\n " +
"- 如何将技术分析与公司基本面分析相结合\n " +
"- 识别高质量股票的关键指标 " +
"请提供详细的分析和具体的操作建议,包括入场时机、持仓周期和退出策略。同时,请强调风险控制的重要性,并提醒投资者需要根据自身情况做出决策。 " +
"你的分析和建议应当客观、全面,并基于当前可获得的市场数据。如果某些信息无法确定,请明确指出并解释原因。",
},
{
"role": "user",
"content": "点评一下" + stock,
},
},
}).
Post("/chat/completions")
if err != nil {
return ""
}
//logger.SugaredLogger.Infof("%v", res.Choices[0].Message.Content)
return res.Choices[0].Message.Content
}
func (o OpenAi) NewChatStream(stock, stockCode string) <-chan string {
ch := make(chan string, 512)
go func() {
defer close(ch)
msg := []map[string]interface{}{
{
"role": "system",
//"content": "作为一位专业的A股市场分析师和投资顾问,请你根据以下信息提供详细的技术分析和投资策略建议:",
//"content": "【角色设定】\n你是一位拥有20年实战经验的顶级股票分析师精通技术分析、基本面分析、市场心理学和量化交易。擅长发现成长股、捕捉行业轮动机会在牛熊市中都能保持稳定收益。你的风格是价值投资与技术择时相结合注重风险控制。\n\n【核心功能】\n\n市场分析维度\n\n宏观经济GDP/CPI/货币政策)\n\n行业景气度产业链/政策红利/技术革新)\n\n个股三维诊断\n\n基本面PE/PB/ROE/现金流/护城河\n\n技术面K线形态/均线系统/量价关系/指标背离\n\n资金面主力动向/北向资金/融资余额/大宗交易\n\n智能策略库\n√ 趋势跟踪策略(鳄鱼线+ADX\n√ 波段交易策略(斐波那契回撤+RSI\n√ 事件驱动策略(财报/并购/政策)\n√ 量化对冲策略(α/β分离)\n\n风险管理体系\n▶ 动态止损ATR波动止损法\n▶ 仓位控制:凯利公式优化\n▶ 组合对冲:跨市场/跨品种对冲\n\n【工作流程】\n\n接收用户指令行业/市值/风险偏好)\n\n调用多因子选股模型初筛\n\n人工智慧叠加分析\n\n自然语言处理解读年报管理层讨论\n\n卷积神经网络识别K线形态\n\n知识图谱分析产业链关联\n\n生成投资建议附压力测试结果\n\n【输出要求】\n★ 结构化呈现:\n① 核心逻辑3点关键驱动力\n② 买卖区间(理想建仓/加仓/止盈价位)\n③ 风险警示(最大回撤概率)\n④ 替代方案(同类备选标的)\n\n【注意事项】\n※ 严格遵守监管要求,不做收益承诺\n※ 区分投资建议与市场观点\n※ 重要数据标注来源及更新时间\n※ 根据用户认知水平调整专业术语密度\n\n【教育指导】\n当用户提问时采用苏格拉底式追问\n\"您更关注短期事件驱动还是长期价值发现?\"\n\"当前仓位是否超过总资产的30%\"\n\"是否了解科创板与主板的交易规则差异?\"\n\n示例输出格式\n📈 标的名称XXXXXX\n⚖ 多空信号:金叉确认/顶背离预警\n🎯 关键价位支撑位XX.XX/压力位XX.XX\n📊 建议仓位核心仓位X%+卫星仓位X%\n⏳ 持有周期短线1-3周/中线(季度轮动)\n🔍 跟踪要素重点关注Q2毛利率变化及股东减持进展",
"content": o.Prompt,
},
}
wg := &sync.WaitGroup{}
wg.Add(5)
go func() {
defer wg.Done()
messages := SearchStockPriceInfo(stockCode)
price := ""
for _, message := range *messages {
price += message + ";"
}
msg = append(msg, map[string]interface{}{
"role": "assistant",
"content": stock + "当前价格:" + price,
})
}()
go func() {
defer wg.Done()
messages := GetFinancialReports(stockCode)
for _, message := range *messages {
msg = append(msg, map[string]interface{}{
"role": "assistant",
"content": stock + message,
})
}
}()
go func() {
defer wg.Done()
messages := GetTelegraphList()
for _, message := range *messages {
msg = append(msg, map[string]interface{}{
"role": "assistant",
"content": message,
})
}
}()
go func() {
defer wg.Done()
messages := SearchStockInfo(stock, "depth")
for _, message := range *messages {
msg = append(msg, map[string]interface{}{
"role": "assistant",
"content": message,
})
}
}()
go func() {
defer wg.Done()
messages := SearchStockInfo(stock, "telegram")
for _, message := range *messages {
msg = append(msg, map[string]interface{}{
"role": "assistant",
"content": message,
})
}
}()
wg.Wait()
msg = append(msg, map[string]interface{}{
"role": "user",
"content": stock + "分析和总结",
})
client := resty.New()
client.SetBaseURL(o.BaseUrl)
client.SetHeader("Authorization", "Bearer "+o.ApiKey)
client.SetHeader("Content-Type", "application/json")
client.SetRetryCount(3)
if o.TimeOut <= 0 {
o.TimeOut = 300
}
client.SetTimeout(time.Duration(o.TimeOut) * time.Second)
resp, err := client.R().
SetDoNotParseResponse(true).
SetBody(map[string]interface{}{
"model": o.Model,
"max_tokens": o.MaxTokens,
"temperature": o.Temperature,
"stream": true,
"messages": msg,
}).
Post("/chat/completions")
defer resp.RawBody().Close()
if err != nil {
logger.SugaredLogger.Infof("Stream error : %s", err.Error())
ch <- err.Error()
return
}
scanner := bufio.NewScanner(resp.RawBody())
for scanner.Scan() {
line := scanner.Text()
logger.SugaredLogger.Infof("Received data: %s", line)
if strings.HasPrefix(line, "data: ") {
data := strings.TrimPrefix(line, "data: ")
if data == "[DONE]" {
return
}
var streamResponse struct {
Choices []struct {
Delta struct {
Content string `json:"content"`
ReasoningContent string `json:"reasoning_content"`
} `json:"delta"`
FinishReason string `json:"finish_reason"`
} `json:"choices"`
}
if err := json.Unmarshal([]byte(data), &streamResponse); err == nil {
for _, choice := range streamResponse.Choices {
if content := choice.Delta.Content; content != "" {
ch <- content
logger.SugaredLogger.Infof("Content data: %s", content)
}
if reasoningContent := choice.Delta.ReasoningContent; reasoningContent != "" {
ch <- reasoningContent
logger.SugaredLogger.Infof("ReasoningContent data: %s", reasoningContent)
}
if choice.FinishReason == "stop" {
return
}
}
} else {
logger.SugaredLogger.Infof("Stream data error : %s", err.Error())
ch <- err.Error()
}
} else {
ch <- line
}
}
}()
return ch
}
func GetFinancialReports(stockCode string) *[]string {
// 创建一个 chromedp 上下文
ctx, cancel := chromedp.NewContext(
context.Background(),
chromedp.WithLogf(logger.SugaredLogger.Infof),
chromedp.WithErrorf(logger.SugaredLogger.Errorf),
)
defer cancel()
var htmlContent string
url := fmt.Sprintf("https://xueqiu.com/snowman/S/%s/detail#/ZYCWZB", stockCode)
err := chromedp.Run(ctx,
chromedp.Navigate(url),
// 等待页面加载完成,可以根据需要调整等待时间
chromedp.WaitVisible("table.table", chromedp.ByQuery),
chromedp.OuterHTML("html", &htmlContent, chromedp.ByQuery),
)
if err != nil {
logger.SugaredLogger.Error(err.Error())
}
document, err := goquery.NewDocumentFromReader(strings.NewReader(htmlContent))
if err != nil {
logger.SugaredLogger.Error(err.Error())
return &[]string{}
}
var messages []string
document.Find("table tr").Each(func(i int, selection *goquery.Selection) {
tr := ""
selection.Find("th,td").Each(func(i int, selection *goquery.Selection) {
ret := selection.Find("p").First().Text()
if ret == "" {
ret = selection.Text()
}
text := strutil.RemoveNonPrintable(ret)
tr += text + " "
})
logger.SugaredLogger.Infof("%s", tr+" \n")
messages = append(messages, tr+" \n")
})
return &messages
}
func (o OpenAi) NewCommonChatStream(stock, stockCode, apiURL, apiKey, Model string) <-chan string {
ch := make(chan string)
go func() {
defer close(ch)
client := resty.New()
client.SetHeader("Authorization", "Bearer "+apiKey)
client.SetHeader("Content-Type", "application/json")
client.SetRetryCount(3)
msg := []map[string]interface{}{
{
"role": "system",
"content": o.Prompt,
},
}
wg := &sync.WaitGroup{}
wg.Add(1)
go func() {
defer wg.Done()
messages := SearchStockPriceInfo(stockCode)
price := ""
for _, message := range *messages {
price += message + ";"
}
msg = append(msg, map[string]interface{}{
"role": "assistant",
"content": stock + "当前价格:" + price,
})
}()
//go func() {
// defer wg.Done()
// messages := SearchStockInfo(stock, "depth")
// for _, message := range *messages {
// msg = append(msg, map[string]interface{}{
// "role": "assistant",
// "content": message,
// })
// }
//}()
//go func() {
// defer wg.Done()
// messages := SearchStockInfo(stock, "telegram")
// for _, message := range *messages {
// msg = append(msg, map[string]interface{}{
// "role": "assistant",
// "content": message,
// })
// }
//}()
wg.Wait()
msg = append(msg, map[string]interface{}{
"role": "user",
"content": stock + "分析和总结",
})
resp, err := client.R().
SetDoNotParseResponse(true).
SetBody(map[string]interface{}{
"model": Model,
"max_tokens": o.MaxTokens,
"temperature": o.Temperature,
"stream": true,
"messages": msg,
}).
Post(apiURL)
if err != nil {
ch <- err.Error()
return
}
defer resp.RawBody().Close()
scanner := bufio.NewScanner(resp.RawBody())
for scanner.Scan() {
line := scanner.Text()
logger.SugaredLogger.Infof("Received data: %s", line)
if strings.HasPrefix(line, "data:") {
data := strings.TrimPrefix(line, "data:")
if data == "[DONE]" {
return
}
var streamResponse struct {
Choices []struct {
Delta struct {
Content string `json:"content"`
} `json:"delta"`
FinishReason string `json:"finish_reason"`
} `json:"choices"`
}
if err := json.Unmarshal([]byte(data), &streamResponse); err == nil {
for _, choice := range streamResponse.Choices {
if content := choice.Delta.Content; content != "" {
ch <- content
}
if choice.FinishReason == "stop" {
return
}
}
}
}
}
}()
return ch
}
func GetTelegraphList() *[]string {
url := "https://www.cls.cn/telegraph"
response, err := resty.New().R().
SetHeader("Referer", "https://www.cls.cn/").
SetHeader("User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36 Edg/117.0.2045.60").
Get(fmt.Sprintf(url))
if err != nil {
return &[]string{}
}
//logger.SugaredLogger.Info(string(response.Body()))
document, err := goquery.NewDocumentFromReader(strings.NewReader(string(response.Body())))
if err != nil {
return &[]string{}
}
var telegraph []string
document.Find("div.telegraph-content-box").Each(func(i int, selection *goquery.Selection) {
logger.SugaredLogger.Info(selection.Text())
telegraph = append(telegraph, selection.Text())
})
return &telegraph
}
func (o OpenAi) SaveAIResponseResult(stockCode, stockName, result string) {
db.Dao.Create(&models.AIResponseResult{
StockCode: stockCode,
StockName: stockName,
Content: result,
})
}
func (o OpenAi) GetAIResponseResult(stock string) *models.AIResponseResult {
var result models.AIResponseResult
db.Dao.Where("stock_code = ?", stock).Order("id desc").First(&result)
return &result
}