go-stock/backend/data/stock_sentiment_analysis.go
ArvinLovegood f6d217e4fd feat(analyze): 添加情感分析功能并优化新闻推送通知
- 在 App.vue 中添加情感分析相关的导入和使用
- 在 app_common.go 中实现 AnalyzeSentiment 方法- 在 market_news_api.go 和 models.go 中集成情感分析结果
- 更新前端通知显示,根据情感分析结果调整通知类型和样式
- 在 go.mod 中添加 gojieba 依赖用于情感分析
2025-06-20 11:33:38 +08:00

283 lines
7.1 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package data
import (
"bufio"
"fmt"
"github.com/yanyiwu/gojieba"
"os"
"strings"
)
// 金融情感词典,包含股票市场相关的专业词汇
var (
// 正面金融词汇及其权重
positiveFinanceWords = map[string]float64{
"上涨": 2.0, "涨停": 3.0, "牛市": 3.0, "反弹": 2.0, "新高": 2.5,
"利好": 2.5, "增持": 2.0, "买入": 2.0, "推荐": 1.5, "看多": 2.0,
"盈利": 2.0, "增长": 2.0, "超预期": 2.5, "强劲": 1.5, "回升": 1.5,
"复苏": 2.0, "突破": 2.0, "创新高": 3.0, "回暖": 1.5, "上扬": 1.5,
"利好消息": 3.0, "收益增长": 2.5, "利润增长": 2.5, "业绩优异": 2.5,
"潜力股": 2.0, "绩优股": 2.0, "强势": 1.5, "走高": 1.5, "攀升": 1.5,
"大涨": 2.5, "飙升": 3.0, "井喷": 3.0, "爆发": 2.5, "暴涨": 3.0,
}
// 负面金融词汇及其权重
negativeFinanceWords = map[string]float64{
"下跌": 2.0, "跌停": 3.0, "熊市": 3.0, "回调": 1.5, "新低": 2.5,
"利空": 2.5, "减持": 2.0, "卖出": 2.0, "看空": 2.0, "亏损": 2.5,
"下滑": 2.0, "萎缩": 2.0, "不及预期": 2.5, "疲软": 1.5, "恶化": 2.0,
"衰退": 2.0, "跌破": 2.0, "创新低": 3.0, "走弱": 1.5, "下挫": 1.5,
"利空消息": 3.0, "收益下降": 2.5, "利润下滑": 2.5, "业绩不佳": 2.5,
"垃圾股": 2.0, "风险股": 2.0, "弱势": 1.5, "走低": 1.5, "缩量": 2.5,
"大跌": 2.5, "暴跌": 3.0, "崩盘": 3.0, "跳水": 3.0, "重挫": 3.0,
}
// 否定词,用于反转情感极性
negationWords = map[string]struct{}{
"不": {}, "没": {}, "无": {}, "非": {}, "未": {}, "别": {}, "勿": {},
}
// 程度副词,用于调整情感强度
degreeWords = map[string]float64{
"非常": 1.8, "极其": 2.2, "太": 1.8, "很": 1.5,
"比较": 0.8, "稍微": 0.6, "有点": 0.7, "显著": 1.5,
"大幅": 1.8, "急剧": 2.0, "轻微": 0.6, "小幅": 0.7,
}
// 转折词,用于识别情感转折
transitionWords = map[string]struct{}{
"但是": {}, "然而": {}, "不过": {}, "却": {}, "可是": {},
}
)
// SentimentResult 情感分析结果类型
type SentimentResult struct {
Score float64 // 情感得分
Category SentimentType // 情感类别
PositiveCount int // 正面词数量
NegativeCount int // 负面词数量
Description string // 情感描述
}
// SentimentType 情感类型枚举
type SentimentType int
const (
Positive SentimentType = iota
Negative
Neutral
)
// AnalyzeSentiment 判断文本的情感
func AnalyzeSentiment(text string) SentimentResult {
// 初始化得分
score := 0.0
positiveCount := 0
negativeCount := 0
// 分词(简单按单个字符分割)
words := splitWords(text)
// 检查文本是否包含转折词,并分割成两部分
var transitionIndex int
var hasTransition bool
for i, word := range words {
if _, ok := transitionWords[word]; ok {
transitionIndex = i
hasTransition = true
break
}
}
// 处理有转折的文本
if hasTransition {
// 转折前的部分
preTransitionWords := words[:transitionIndex]
preScore, prePos, preNeg := calculateScore(preTransitionWords)
// 转折后的部分,权重加倍
postTransitionWords := words[transitionIndex+1:]
postScore, postPos, postNeg := calculateScore(postTransitionWords)
postScore *= 1.5 // 转折后的情感更重要
score = preScore + postScore
positiveCount = prePos + postPos
negativeCount = preNeg + postNeg
} else {
// 没有转折的文本
score, positiveCount, negativeCount = calculateScore(words)
}
// 确定情感类别
var category SentimentType
switch {
case score > 1.0:
category = Positive
case score < -1.0:
category = Negative
default:
category = Neutral
}
return SentimentResult{
Score: score,
Category: category,
PositiveCount: positiveCount,
NegativeCount: negativeCount,
Description: GetSentimentDescription(category),
}
}
// 计算情感得分
func calculateScore(words []string) (float64, int, int) {
score := 0.0
positiveCount := 0
negativeCount := 0
// 遍历每个词,计算情感得分
for i, word := range words {
// 首先检查是否为程度副词
degree, isDegree := degreeWords[word]
// 检查是否为否定词
_, isNegation := negationWords[word]
// 检查是否为金融正面词
if posScore, isPositive := positiveFinanceWords[word]; isPositive {
// 检查前一个词是否为否定词或程度副词
if i > 0 {
prevWord := words[i-1]
if _, isNeg := negationWords[prevWord]; isNeg {
score -= posScore
negativeCount++
continue
}
if deg, isDeg := degreeWords[prevWord]; isDeg {
score += posScore * deg
positiveCount++
continue
}
}
score += posScore
positiveCount++
continue
}
// 检查是否为金融负面词
if negScore, isNegative := negativeFinanceWords[word]; isNegative {
// 检查前一个词是否为否定词或程度副词
if i > 0 {
prevWord := words[i-1]
if _, isNeg := negationWords[prevWord]; isNeg {
score += negScore
positiveCount++
continue
}
if deg, isDeg := degreeWords[prevWord]; isDeg {
score -= negScore * deg
negativeCount++
continue
}
}
score -= negScore
negativeCount++
continue
}
// 处理程度副词(如果后面跟着情感词)
if isDegree && i+1 < len(words) {
nextWord := words[i+1]
if posScore, isPositive := positiveFinanceWords[nextWord]; isPositive {
score += posScore * degree
positiveCount++
continue
}
if negScore, isNegative := negativeFinanceWords[nextWord]; isNegative {
score -= negScore * degree
negativeCount++
continue
}
}
// 处理否定词(如果后面跟着情感词)
if isNegation && i+1 < len(words) {
nextWord := words[i+1]
if posScore, isPositive := positiveFinanceWords[nextWord]; isPositive {
score -= posScore
negativeCount++
continue
}
if negScore, isNegative := negativeFinanceWords[nextWord]; isNegative {
score += negScore
positiveCount++
continue
}
}
}
return score, positiveCount, negativeCount
}
// 简单的分词函数,考虑了中文和英文
func splitWords(text string) []string {
x := gojieba.NewJieba()
defer x.Free()
return x.Cut(text, true)
}
// GetSentimentDescription 获取情感类别的文本描述
func GetSentimentDescription(category SentimentType) string {
switch category {
case Positive:
return "看涨"
case Negative:
return "看跌"
case Neutral:
return "中性"
default:
return "未知"
}
}
func main() {
// 从命令行读取输入
reader := bufio.NewReader(os.Stdin)
fmt.Println("请输入要分析的股市相关文本输入exit退出")
for {
fmt.Print("> ")
text, err := reader.ReadString('\n')
if err != nil {
fmt.Println("读取输入时出错:", err)
continue
}
// 去除换行符
text = strings.TrimSpace(text)
// 检查是否退出
if text == "exit" {
break
}
// 分析情感
result := AnalyzeSentiment(text)
// 输出结果
fmt.Printf("情感分析结果: %s (得分: %.2f, 正面词:%d, 负面词:%d)\n",
GetSentimentDescription(result.Category),
result.Score,
result.PositiveCount,
result.NegativeCount)
}
}