mirror of
https://github.com/fxsjy/jieba.git
synced 2025-07-10 00:01:33 +08:00
commit
4cb1924d09
@ -2,7 +2,6 @@
|
||||
1. 提升性能,词典结构由Trie改为Prefix Set,内存占用减少2/3, 详见:https://github.com/fxsjy/jieba/pull/187;by @gumblex
|
||||
2. 修复关键词提取功能的性能问题
|
||||
|
||||
|
||||
2014-08-31: version 0.33
|
||||
1. 支持自定义stop words; by @fukuball
|
||||
2. 支持自定义idf词典; by @fukuball
|
||||
|
578
README.md
578
README.md
@ -4,24 +4,20 @@ jieba
|
||||
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
|
||||
- _Scroll down for English documentation._
|
||||
|
||||
|
||||
注意!
|
||||
========
|
||||
这个branch `jieba3k`是专门用于Python3.x的版本
|
||||
这个branch `jieba3k` 是专门用于Python3.x的版本
|
||||
|
||||
|
||||
Feature
|
||||
特点
|
||||
========
|
||||
* 支持三种分词模式:
|
||||
* 精确模式,试图将句子最精确地切开,适合文本分析;
|
||||
* 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
|
||||
* 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
|
||||
* 精确模式,试图将句子最精确地切开,适合文本分析;
|
||||
* 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
|
||||
* 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
|
||||
|
||||
* 支持繁体分词
|
||||
* 支持自定义词典
|
||||
|
||||
|
||||
|
||||
在线演示
|
||||
=========
|
||||
http://jiebademo.ap01.aws.af.cm/
|
||||
@ -31,115 +27,102 @@ http://jiebademo.ap01.aws.af.cm/
|
||||
网站代码:https://github.com/fxsjy/jiebademo
|
||||
|
||||
|
||||
|
||||
Python 2.x 下的安装
|
||||
===================
|
||||
安装说明
|
||||
=======
|
||||
Python 2.x
|
||||
-----------
|
||||
* 全自动安装:`easy_install jieba` 或者 `pip install jieba`
|
||||
* 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install
|
||||
* 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录
|
||||
* 通过 import jieba 来引用
|
||||
* 通过 `import jieba` 来引用
|
||||
|
||||
|
||||
Python 3.x 下的安装
|
||||
====================
|
||||
Python 3.x
|
||||
-----------
|
||||
* 目前 master 分支是只支持 Python2.x 的
|
||||
* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
|
||||
* Python 3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
|
||||
|
||||
```shell
|
||||
git clone https://github.com/fxsjy/jieba.git
|
||||
git checkout jieba3k
|
||||
python setup.py install
|
||||
```
|
||||
|
||||
git clone https://github.com/fxsjy/jieba.git
|
||||
git checkout jieba3k
|
||||
python setup.py install
|
||||
* 或使用pip3安装: pip3 install jieba3k
|
||||
|
||||
|
||||
结巴分词 Java 版本
|
||||
================
|
||||
作者:piaolingxue
|
||||
地址:https://github.com/huaban/jieba-analysis
|
||||
|
||||
结巴分词 C++ 版本
|
||||
================
|
||||
作者:Aszxqw
|
||||
地址:https://github.com/aszxqw/cppjieba
|
||||
|
||||
结巴分词 Node.js 版本
|
||||
================
|
||||
作者:Aszxqw
|
||||
地址:https://github.com/aszxqw/nodejieba
|
||||
|
||||
结巴分词 Erlang 版本
|
||||
================
|
||||
作者:falood
|
||||
https://github.com/falood/exjieba
|
||||
|
||||
Algorithm
|
||||
算法
|
||||
========
|
||||
* 基于 Trie 树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)
|
||||
* 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
|
||||
* 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
|
||||
* 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法
|
||||
|
||||
功能 1):分词
|
||||
==========
|
||||
* `jieba.cut` 方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all 参数用来控制是否采用全模式
|
||||
* `jieba.cut_for_search` 方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
|
||||
* 注意:待分词的字符串可以是gbk字符串、utf-8 字符串或者 unicode
|
||||
* `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),也可以用 list(jieba.cut(...))转化为 list
|
||||
主要功能
|
||||
=======
|
||||
1) :分词
|
||||
--------
|
||||
* `jieba.cut` 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
|
||||
* `jieba.cut_for_search` 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
|
||||
* 注意:待分词的字符串可以是 GBK 字符串、UTF-8 字符串或者 unicode
|
||||
* `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),也可以用 list(jieba.cut(...)) 转化为 list
|
||||
|
||||
代码示例( 分词 )
|
||||
|
||||
#encoding=utf-8
|
||||
import jieba
|
||||
```python
|
||||
#encoding=utf-8
|
||||
import jieba
|
||||
|
||||
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
|
||||
print("Full Mode:", "/ ".join(seg_list)) # 全模式
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||||
print("Full Mode:", "/ ".join(seg_list)) # 全模式
|
||||
|
||||
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
|
||||
print("Default Mode:", "/ ".join(seg_list)) # 精确模式
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
|
||||
print("Default Mode:", "/ ".join(seg_list)) # 精确模式
|
||||
|
||||
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
|
||||
print(", ".join(seg_list))
|
||||
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
|
||||
print(", ".join(seg_list))
|
||||
|
||||
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||||
print(", ".join(seg_list))
|
||||
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||||
print(", ".join(seg_list))
|
||||
```
|
||||
|
||||
Output:
|
||||
输出:
|
||||
|
||||
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
|
||||
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
|
||||
|
||||
【精确模式】: 我/ 来到/ 北京/ 清华大学
|
||||
【精确模式】: 我/ 来到/ 北京/ 清华大学
|
||||
|
||||
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
|
||||
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
|
||||
|
||||
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
|
||||
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
|
||||
|
||||
功能 2) :添加自定义词典
|
||||
================
|
||||
2) :添加自定义词典
|
||||
----------------
|
||||
|
||||
* 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
|
||||
* 用法: jieba.load_userdict(file_name) # file_name 为自定义词典的路径
|
||||
* 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开
|
||||
* 范例:
|
||||
|
||||
* 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
|
||||
* 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
|
||||
|
||||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
|
||||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
|
||||
|
||||
|
||||
* 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
|
||||
* 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
|
||||
|
||||
* 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
|
||||
* 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
|
||||
|
||||
|
||||
* "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
|
||||
|
||||
功能 3) :关键词提取
|
||||
================
|
||||
* jieba.analyse.extract_tags(sentence,topK) #需要先 import jieba.analyse
|
||||
* setence 为待提取的文本
|
||||
3) :关键词提取
|
||||
-------------
|
||||
* jieba.analyse.extract_tags(sentence,topK,withWeight) #需要先 `import jieba.analyse`
|
||||
* sentence 为待提取的文本
|
||||
* topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
|
||||
* withWeight 为是否一并返回关键词权重值,默认值为 False
|
||||
|
||||
代码示例 (关键词提取)
|
||||
|
||||
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
|
||||
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
|
||||
|
||||
关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径
|
||||
|
||||
@ -153,44 +136,78 @@ Output:
|
||||
* 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt
|
||||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py
|
||||
|
||||
功能 4) : 词性标注
|
||||
================
|
||||
关键词一并返回关键词权重值示例
|
||||
|
||||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py
|
||||
|
||||
#### 基于TextRank算法的关键词抽取实现
|
||||
算法论文: [TextRank: Bringing Order into Texts](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf)
|
||||
|
||||
##### 基本思想:
|
||||
|
||||
1. 将待抽取关键词的文本进行分词
|
||||
2. 以固定窗口大小(我选的5,可适当调整),词之间的共现关系,构建图
|
||||
3. 计算图中节点的PageRank,注意是无向带权图
|
||||
|
||||
##### 基本使用:
|
||||
jieba.analyse.textrank(raw_text)
|
||||
|
||||
##### 示例结果:
|
||||
来自`__main__`的示例结果:
|
||||
|
||||
```
|
||||
吉林 100.0
|
||||
欧亚 86.4592606421
|
||||
置业 55.3262889963
|
||||
实现 52.0353476663
|
||||
收入 37.9475518129
|
||||
增资 35.5042189944
|
||||
子公司 34.9286032861
|
||||
全资 30.8154823412
|
||||
城市 30.6031961172
|
||||
商业 30.4779050167
|
||||
|
||||
```
|
||||
|
||||
4) : 词性标注
|
||||
-----------
|
||||
* 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法
|
||||
* 用法示例
|
||||
|
||||
>>> import jieba.posseg as pseg
|
||||
>>> words = pseg.cut("我爱北京天安门")
|
||||
>>> for w in words:
|
||||
... print w.word, w.flag
|
||||
...
|
||||
我 r
|
||||
爱 v
|
||||
北京 ns
|
||||
天安门 ns
|
||||
```pycon
|
||||
>>> import jieba.posseg as pseg
|
||||
>>> words = pseg.cut("我爱北京天安门")
|
||||
>>> for w in words:
|
||||
... print(w.word, w.flag)
|
||||
...
|
||||
我 r
|
||||
爱 v
|
||||
北京 ns
|
||||
天安门 ns
|
||||
```
|
||||
|
||||
功能 5) : 并行分词
|
||||
==================
|
||||
5) : 并行分词
|
||||
-----------
|
||||
* 原理:将目标文本按行分隔后,把各行文本分配到多个 python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
|
||||
* 基于 python 自带的 multiprocessing 模块,目前暂不支持 windows
|
||||
* 用法:
|
||||
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
|
||||
* `jieba.disable_parallel()` # 关闭并行分词模式
|
||||
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
|
||||
* `jieba.disable_parallel()` # 关闭并行分词模式
|
||||
|
||||
* 例子:
|
||||
https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
|
||||
* 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
|
||||
|
||||
* 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。
|
||||
|
||||
|
||||
功能 6) : Tokenize:返回词语在原文的起始位置
|
||||
============================================
|
||||
* 注意,输入参数只接受 str
|
||||
6) : Tokenize:返回词语在原文的起始位置
|
||||
----------------------------------
|
||||
* 注意,输入参数只接受 unicode
|
||||
* 默认模式
|
||||
|
||||
```python
|
||||
result = jieba.tokenize('永和服装饰品有限公司')
|
||||
result = jieba.tokenize(u'永和服装饰品有限公司')
|
||||
for tk in result:
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||||
```
|
||||
|
||||
```
|
||||
@ -204,9 +221,9 @@ word 有限公司 start: 6 end:10
|
||||
* 搜索模式
|
||||
|
||||
```python
|
||||
result = jieba.tokenize('永和服装饰品有限公司', mode='search')
|
||||
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
|
||||
for tk in result:
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||||
```
|
||||
|
||||
```
|
||||
@ -219,11 +236,80 @@ word 有限公司 start: 6 end:10
|
||||
```
|
||||
|
||||
|
||||
功能 7) : ChineseAnalyzer for Whoosh 搜索引擎
|
||||
============================================
|
||||
* 引用: `from jieba.analyse import ChineseAnalyzer `
|
||||
7) : ChineseAnalyzer for Whoosh 搜索引擎
|
||||
--------------------------------------------
|
||||
* 引用: `from jieba.analyse import ChineseAnalyzer`
|
||||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
|
||||
|
||||
8) : 命令行分词
|
||||
-------------------
|
||||
|
||||
使用示例:`cat news.txt | python -m jieba > cut_result.txt`
|
||||
|
||||
命令行选项(翻译):
|
||||
|
||||
使用: python -m jieba [options] filename
|
||||
|
||||
结巴命令行界面。
|
||||
|
||||
固定参数:
|
||||
filename 输入文件
|
||||
|
||||
可选参数:
|
||||
-h, --help 显示此帮助信息并退出
|
||||
-d [DELIM], --delimiter [DELIM]
|
||||
使用 DELIM 分隔词语,而不是用默认的' / '。
|
||||
若不指定 DELIM,则使用一个空格分隔。
|
||||
-D DICT, --dict DICT 使用 DICT 代替默认词典
|
||||
-u USER_DICT, --user-dict USER_DICT
|
||||
使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用
|
||||
-a, --cut-all 全模式分词
|
||||
-n, --no-hmm 不使用隐含马尔可夫模型
|
||||
-q, --quiet 不输出载入信息到 STDERR
|
||||
-V, --version 显示版本信息并退出
|
||||
|
||||
如果没有指定文件名,则使用标准输入。
|
||||
|
||||
`--help` 选项输出:
|
||||
|
||||
$> python -m jieba --help
|
||||
usage: python -m jieba [options] filename
|
||||
|
||||
Jieba command line interface.
|
||||
|
||||
positional arguments:
|
||||
filename input file
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-d [DELIM], --delimiter [DELIM]
|
||||
use DELIM instead of ' / ' for word delimiter; or a
|
||||
space if it is used without DELIM
|
||||
-D DICT, --dict DICT use DICT as dictionary
|
||||
-u USER_DICT, --user-dict USER_DICT
|
||||
use USER_DICT together with the default dictionary or
|
||||
DICT (if specified)
|
||||
-a, --cut-all full pattern cutting
|
||||
-n, --no-hmm don't use the Hidden Markov Model
|
||||
-q, --quiet don't print loading messages to stderr
|
||||
-V, --version show program's version number and exit
|
||||
|
||||
If no filename specified, use STDIN instead.
|
||||
|
||||
模块初始化机制的改变:lazy load (从0.28版本开始)
|
||||
-------------------------------------------
|
||||
|
||||
jieba 采用延迟加载,"import jieba" 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。
|
||||
|
||||
import jieba
|
||||
jieba.initialize() # 手动初始化(可选)
|
||||
|
||||
|
||||
在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:
|
||||
|
||||
jieba.set_dictionary('data/dict.txt.big')
|
||||
|
||||
例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py
|
||||
|
||||
其他词典
|
||||
========
|
||||
@ -233,47 +319,55 @@ https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
|
||||
2. 支持繁体分词更好的词典文件
|
||||
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
|
||||
|
||||
下载你所需要的词典,然后覆盖jieba/dict.txt 即可或者用 `jieba.set_dictionary('data/dict.txt.big')`
|
||||
|
||||
|
||||
模块初始化机制的改变:lazy load (从0.28版本开始)
|
||||
================================================
|
||||
|
||||
jieba 采用延迟加载,"import jieba" 不会立即触发词典的加载,一旦有必要才开始加载词典构建trie。如果你想手工初始 jieba,也可以手动初始化。
|
||||
|
||||
import jieba
|
||||
jieba.initialize() # 手动初始化(可选)
|
||||
|
||||
|
||||
在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:
|
||||
|
||||
|
||||
jieba.set_dictionary('data/dict.txt.big')
|
||||
|
||||
|
||||
例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py
|
||||
下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 `jieba.set_dictionary('data/dict.txt.big')`
|
||||
|
||||
其他语言实现
|
||||
==========
|
||||
|
||||
结巴分词 Java 版本
|
||||
----------------
|
||||
作者:piaolingxue
|
||||
地址:https://github.com/huaban/jieba-analysis
|
||||
|
||||
结巴分词 C++ 版本
|
||||
----------------
|
||||
作者:Aszxqw
|
||||
地址:https://github.com/aszxqw/cppjieba
|
||||
|
||||
结巴分词 Node.js 版本
|
||||
----------------
|
||||
作者:Aszxqw
|
||||
地址:https://github.com/aszxqw/nodejieba
|
||||
|
||||
结巴分词 Erlang 版本
|
||||
----------------
|
||||
作者:falood
|
||||
地址:https://github.com/falood/exjieba
|
||||
|
||||
|
||||
系统集成
|
||||
========
|
||||
1. Solr: https://github.com/sing1ee/jieba-solr
|
||||
|
||||
分词速度
|
||||
=========
|
||||
* 1.5 MB / Second in Full Mode
|
||||
* 400 KB / Second in Default Mode
|
||||
* Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
|
||||
|
||||
* 测试环境: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
|
||||
|
||||
常见问题
|
||||
=========
|
||||
1)模型的数据是如何生成的?https://github.com/fxsjy/jieba/issues/7
|
||||
1. 模型的数据是如何生成的?https://github.com/fxsjy/jieba/issues/7
|
||||
2. 这个库的授权是? https://github.com/fxsjy/jieba/issues/2
|
||||
|
||||
2)这个库的授权是? https://github.com/fxsjy/jieba/issues/2
|
||||
* 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed
|
||||
|
||||
更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed
|
||||
|
||||
Change Log
|
||||
修订历史
|
||||
==========
|
||||
https://github.com/fxsjy/jieba/blob/master/Changelog
|
||||
|
||||
--------------------
|
||||
|
||||
jieba
|
||||
========
|
||||
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
|
||||
@ -281,114 +375,207 @@ jieba
|
||||
Features
|
||||
========
|
||||
* Support three types of segmentation mode:
|
||||
* 1) Accurate Mode, attempt to cut the sentence into the most accurate segmentation, which is suitable for text analysis;
|
||||
* 2) Full Mode, break the words of the sentence into words scanned
|
||||
* 3) Search Engine Mode, based on the Accurate Mode, with an attempt to cut the long words into several short words, which can enhance the recall rate
|
||||
* 1) Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis.
|
||||
* 2) Full Mode gets all the possible words from the sentence. Fast but not accurate.
|
||||
* 3) Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines.
|
||||
|
||||
Usage
|
||||
========
|
||||
* Fully automatic installation: `easy_install jieba` or `pip install jieba`
|
||||
* Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , after extracting run `python setup.py install`
|
||||
* Manutal installation: place the `jieba` directory in the current directory or python site-packages directory.
|
||||
* Use `import jieba` to import, which will first build the Trie tree only on first import (takes a few seconds).
|
||||
* Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run `python setup.py install` after extracting.
|
||||
* Manual installation: place the `jieba` directory in the current directory or python `site-packages` directory.
|
||||
* `import jieba`.
|
||||
|
||||
Algorithm
|
||||
========
|
||||
* Based on the Trie tree structure to achieve efficient word graph scanning; sentences using Chinese characters constitute a directed acyclic graph (DAG)
|
||||
* Employs memory search to calculate the maximum probability path, in order to identify the maximum tangential points based on word frequency combination
|
||||
* For unknown words, the character position HMM-based model is used, using the Viterbi algorithm
|
||||
* Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations.
|
||||
* Use dynamic programming to find the most probable combination based on the word frequency.
|
||||
* For unknown words, a HMM-based model is used with the Viterbi algorithm.
|
||||
|
||||
Function 1): cut
|
||||
==========
|
||||
* The `jieba.cut` method accepts to input parameters: 1) the first parameter is the string that requires segmentation, and the 2) second parameter is `cut_all`, a parameter used to control the segmentation pattern.
|
||||
* `jieba.cut` returned structure is an iterative generator, where you can use a `for` loop to get the word segmentation (in unicode), or `list(jieba.cut( ... ))` to create a list.
|
||||
* `jieba.cut_for_search` accpets only on parameter: the string that requires segmentation, and it will cut the sentence into short words
|
||||
Main Functions
|
||||
==============
|
||||
|
||||
Code example: segmentation
|
||||
==========
|
||||
1) : Cut
|
||||
--------
|
||||
* The `jieba.cut` function accepts three input parameters: the first parameter is the string to be cut; the second parameter is `cut_all`, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model.
|
||||
* `jieba.cut` returns an generator, from which you can use a `for` loop to get the segmentation result (in unicode), or `list(jieba.cut( ... ))` to create a list.
|
||||
* `jieba.cut_for_search` accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines.
|
||||
|
||||
#encoding=utf-8
|
||||
import jieba
|
||||
**Code example: segmentation**
|
||||
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||||
print("Full Mode:", "/ ".join(seg_list)) # 全模式
|
||||
```python
|
||||
#encoding=utf-8
|
||||
import jieba
|
||||
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
|
||||
print("Default Mode:", "/ ".join(seg_list)) # 默认模式
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||||
print("Full Mode:", "/ ".join(seg_list)) # 全模式
|
||||
|
||||
seg_list = jieba.cut("他来到了网易杭研大厦")
|
||||
print(", ".join(seg_list))
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
|
||||
print("Default Mode:", "/ ".join(seg_list)) # 精确模式
|
||||
|
||||
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||||
print(", ".join(seg_list))
|
||||
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
|
||||
print(", ".join(seg_list))
|
||||
|
||||
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||||
print(", ".join(seg_list))
|
||||
```
|
||||
|
||||
Output:
|
||||
|
||||
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
|
||||
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
|
||||
|
||||
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
|
||||
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
|
||||
|
||||
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
|
||||
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
|
||||
|
||||
[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在
|
||||
, 日本, 京都, 大学, 日本京都大学, 深造
|
||||
[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
|
||||
|
||||
|
||||
Function 2): Add a custom dictionary
|
||||
==========
|
||||
2) : Add a custom dictionary
|
||||
----------------------------
|
||||
|
||||
* Developers can specify their own custom dictionary to include in the jieba thesaurus. jieba has the ability to identify new words, but adding your own new words can ensure a higher rate of correct segmentation.
|
||||
* Usage: `jieba.load_userdict(file_name) # file_name is a custom dictionary path`
|
||||
* Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but adding your own new words can ensure a higher accuracy.
|
||||
* Usage: `jieba.load_userdict(file_name) # file_name is the path of the custom dictionary`
|
||||
* The dictionary format is the same as that of `analyse/idf.txt`: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space
|
||||
* Example:
|
||||
|
||||
云计算 5
|
||||
李小福 2
|
||||
创新办 3
|
||||
云计算 5
|
||||
李小福 2
|
||||
创新办 3
|
||||
|
||||
[Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
|
||||
[Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
|
||||
|
||||
[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
|
||||
[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
|
||||
|
||||
Function 3): Keyword Extraction
|
||||
================
|
||||
* `jieba.analyse.extract_tags(sentence,topK) # needs to first import jieba.analyse`
|
||||
* `setence`: the text to be extracted
|
||||
* `topK`: To return several TF / IDF weights for the biggest keywords, the default value is 20
|
||||
3) : Keyword Extraction
|
||||
-----------------------
|
||||
* `jieba.analyse.extract_tags(sentence,topK,withWeight) # needs to first import jieba.analyse`
|
||||
* `sentence`: the text to be extracted
|
||||
* `topK`: return how many keywords with the highest TF/IDF weights. The default value is 20
|
||||
* `withWeight`: whether return TF/IDF weights with the keywords. The default value is False
|
||||
|
||||
Code sample (keyword extraction)
|
||||
Example (keyword extraction)
|
||||
|
||||
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
|
||||
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
|
||||
|
||||
Developers can specify their own custom IDF corpus in jieba keyword extraction
|
||||
|
||||
* Usage: `jieba.analyse.set_idf_path(file_name) # file_name is a custom corpus path`
|
||||
* Usage: `jieba.analyse.set_idf_path(file_name) # file_name is the path for the custom corpus`
|
||||
* Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big
|
||||
* Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py
|
||||
|
||||
Developers can specify their own custom stop words corpus in jieba keyword extraction
|
||||
|
||||
* Usage: `jieba.analyse.set_stop_words(file_name) # file_name is a custom corpus path`
|
||||
* Usage: `jieba.analyse.set_stop_words(file_name) # file_name is the path for the custom corpus`
|
||||
* Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt
|
||||
* Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py
|
||||
|
||||
Using Other Dictionaries
|
||||
========
|
||||
It is possible to supply Jieba with your own custom dictionary, and there are also two dictionaries readily available for download:
|
||||
There's also a [TextRank](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf) implementation available.
|
||||
|
||||
1. You can employ a smaller dictionary for a smaller memory footprint:
|
||||
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
|
||||
Use: `jieba.analyse.textrank(raw_text)`.
|
||||
|
||||
2. There is also a bigger file that has better support for traditional characters (繁體):
|
||||
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
|
||||
4) : Part of Speech Tagging
|
||||
-----------
|
||||
* Tags the POS of each word after segmentation, using labels compatible with ictclas.
|
||||
* Example:
|
||||
|
||||
By default, an in-between dictionary is used, called `dict.txt` and included in the distribution.
|
||||
```pycon
|
||||
>>> import jieba.posseg as pseg
|
||||
>>> words = pseg.cut("我爱北京天安门")
|
||||
>>> for w in words:
|
||||
... print(w.word, w.flag)
|
||||
...
|
||||
我 r
|
||||
爱 v
|
||||
北京 ns
|
||||
天安门 ns
|
||||
```
|
||||
|
||||
In either case, download the file you want first, and then call `jieba.set_dictionary('data/dict.txt.big')` or just replace the existing `dict.txt`.
|
||||
5) : Parallel Processing
|
||||
-----------
|
||||
* Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster.
|
||||
* Based on the multiprocessing module of Python.
|
||||
* Usage:
|
||||
* `jieba.enable_parallel(4)` # Enable parallel processing. The parameter is the number of processes.
|
||||
* `jieba.disable_parallel()` # Disable parallel processing.
|
||||
|
||||
* Example:
|
||||
https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
|
||||
|
||||
* Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version.
|
||||
|
||||
6) : Tokenize: return words with position
|
||||
----------------------------------
|
||||
* The input must be unicode
|
||||
* Default mode
|
||||
|
||||
```python
|
||||
result = jieba.tokenize(u'永和服装饰品有限公司')
|
||||
for tk in result:
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||||
```
|
||||
|
||||
```
|
||||
word 永和 start: 0 end:2
|
||||
word 服装 start: 2 end:4
|
||||
word 饰品 start: 4 end:6
|
||||
word 有限公司 start: 6 end:10
|
||||
|
||||
```
|
||||
|
||||
* Search mode
|
||||
|
||||
```python
|
||||
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
|
||||
for tk in result:
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||||
```
|
||||
|
||||
```
|
||||
word 永和 start: 0 end:2
|
||||
word 服装 start: 2 end:4
|
||||
word 饰品 start: 4 end:6
|
||||
word 有限 start: 6 end:8
|
||||
word 公司 start: 8 end:10
|
||||
word 有限公司 start: 6 end:10
|
||||
```
|
||||
|
||||
|
||||
7) : ChineseAnalyzer for Whoosh
|
||||
--------------------------------------------
|
||||
* `from jieba.analyse import ChineseAnalyzer`
|
||||
* Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
|
||||
|
||||
8) : Command Line Interface
|
||||
-------------------
|
||||
|
||||
$> python -m jieba --help
|
||||
usage: python -m jieba [options] filename
|
||||
|
||||
Jieba command line interface.
|
||||
|
||||
positional arguments:
|
||||
filename input file
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-d [DELIM], --delimiter [DELIM]
|
||||
use DELIM instead of ' / ' for word delimiter; or a
|
||||
space if it is used without DELIM
|
||||
-D DICT, --dict DICT use DICT as dictionary
|
||||
-u USER_DICT, --user-dict USER_DICT
|
||||
use USER_DICT together with the default dictionary or
|
||||
DICT (if specified)
|
||||
-a, --cut-all full pattern cutting
|
||||
-n, --no-hmm don't use the Hidden Markov Model
|
||||
-q, --quiet don't print loading messages to stderr
|
||||
-V, --version show program's version number and exit
|
||||
|
||||
If no filename specified, use STDIN instead.
|
||||
|
||||
Initialization
|
||||
========
|
||||
By default, Jieba employs lazy loading to only build the trie once it is necessary. This takes 1-3 seconds once, after which it is not initialized again. If you want to initialize Jieba manually, you can call:
|
||||
---------------
|
||||
By default, Jieba don't build the prefix dictionary unless it's necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call:
|
||||
|
||||
import jieba
|
||||
jieba.initialize() # (optional)
|
||||
@ -397,6 +584,21 @@ You can also specify the dictionary (not supported before version 0.28) :
|
||||
|
||||
jieba.set_dictionary('data/dict.txt.big')
|
||||
|
||||
|
||||
Using Other Dictionaries
|
||||
========
|
||||
It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download:
|
||||
|
||||
1. A smaller dictionary for a smaller memory footprint:
|
||||
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
|
||||
|
||||
2. There is also a bigger dictionary that has better support for traditional Chinese (繁體):
|
||||
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
|
||||
|
||||
By default, an in-between dictionary is used, called `dict.txt` and included in the distribution.
|
||||
|
||||
In either case, download the file you want, and then call `jieba.set_dictionary('data/dict.txt.big')` or just replace the existing `dict.txt`.
|
||||
|
||||
Segmentation speed
|
||||
=========
|
||||
* 1.5 MB / Second in Full Mode
|
||||
|
@ -6,7 +6,10 @@ from argparse import ArgumentParser
|
||||
parser = ArgumentParser(usage="%s -m jieba [options] filename" % sys.executable, description="Jieba command line interface.", epilog="If no filename specified, use STDIN instead.")
|
||||
parser.add_argument("-d", "--delimiter", metavar="DELIM", default=' / ',
|
||||
nargs='?', const=' ',
|
||||
help="use DELIM instead of ' / ' for word delimiter; use a space if it is without DELIM")
|
||||
help="use DELIM instead of ' / ' for word delimiter; or a space if it is used without DELIM")
|
||||
parser.add_argument("-D", "--dict", help="use DICT as dictionary")
|
||||
parser.add_argument("-u", "--user-dict",
|
||||
help="use USER_DICT together with the default dictionary or DICT (if specified)")
|
||||
parser.add_argument("-a", "--cut-all",
|
||||
action="store_true", dest="cutall", default=False,
|
||||
help="full pattern cutting")
|
||||
@ -14,23 +17,30 @@ parser.add_argument("-n", "--no-hmm", dest="hmm", action="store_false",
|
||||
default=True, help="don't use the Hidden Markov Model")
|
||||
parser.add_argument("-q", "--quiet", action="store_true", default=False,
|
||||
help="don't print loading messages to stderr")
|
||||
parser.add_argument("-V", '--version', action='version', version="Jieba " + jieba.__version__)
|
||||
parser.add_argument("-V", '--version', action='version',
|
||||
version="Jieba " + jieba.__version__)
|
||||
parser.add_argument("filename", nargs='?', help="input file")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.quiet:
|
||||
jieba.setLogLevel(60)
|
||||
jieba.setLogLevel(60)
|
||||
delim = str(args.delimiter)
|
||||
cutall = args.cutall
|
||||
hmm = args.hmm
|
||||
fp = open(args.filename, 'r') if args.filename else sys.stdin
|
||||
|
||||
jieba.initialize()
|
||||
if args.dict:
|
||||
jieba.initialize(args.dict)
|
||||
else:
|
||||
jieba.initialize()
|
||||
if args.user_dict:
|
||||
jieba.load_userdict(args.user_dict)
|
||||
|
||||
ln = fp.readline()
|
||||
while ln:
|
||||
l = ln.rstrip('\r\n')
|
||||
print(delim.join(jieba.cut(ln.rstrip('\r\n'), cutall, hmm)))
|
||||
ln = fp.readline()
|
||||
l = ln.rstrip('\r\n')
|
||||
print(delim.join(jieba.cut(ln.rstrip('\r\n'), cutall, hmm)))
|
||||
ln = fp.readline()
|
||||
|
||||
fp.close()
|
||||
|
@ -5,6 +5,7 @@ try:
|
||||
from .analyzer import ChineseAnalyzer
|
||||
except ImportError:
|
||||
pass
|
||||
from .textrank import textrank
|
||||
|
||||
_curpath = os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
|
||||
abs_path = os.path.join(_curpath, "idf.txt")
|
||||
@ -58,7 +59,7 @@ def set_stop_words(stop_words_path):
|
||||
for line in lines:
|
||||
STOP_WORDS.add(line)
|
||||
|
||||
def extract_tags(sentence, topK=20):
|
||||
def extract_tags(sentence, topK=20, withWeight=False):
|
||||
global STOP_WORDS
|
||||
|
||||
idf_freq, median_idf = idf_loader.get_idf()
|
||||
@ -77,6 +78,9 @@ def extract_tags(sentence, topK=20):
|
||||
tf_idf_list = [(v*idf_freq.get(k,median_idf), k) for k,v in freq]
|
||||
st_list = sorted(tf_idf_list, reverse=True)
|
||||
|
||||
top_tuples = st_list[:topK]
|
||||
tags = [a[1] for a in top_tuples]
|
||||
if withWeight:
|
||||
tags = st_list[:topK]
|
||||
else:
|
||||
top_tuples = st_list[:topK]
|
||||
tags = [a[1] for a in top_tuples]
|
||||
return tags
|
||||
|
@ -1,6 +1,6 @@
|
||||
#encoding=utf-8
|
||||
from whoosh.analysis import RegexAnalyzer,LowercaseFilter,StopFilter,StemFilter
|
||||
from whoosh.analysis import Tokenizer,Token
|
||||
from whoosh.analysis import Tokenizer,Token
|
||||
from whoosh.lang.porter import stem
|
||||
|
||||
import jieba
|
||||
|
74
jieba/analyse/textrank.py
Normal file
74
jieba/analyse/textrank.py
Normal file
@ -0,0 +1,74 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import jieba.posseg as pseg
|
||||
import collections
|
||||
import sys
|
||||
|
||||
class UndirectWeightedGraph:
|
||||
d = 0.85
|
||||
|
||||
def __init__(self):
|
||||
self.graph = collections.defaultdict(list)
|
||||
|
||||
def addEdge(self, start, end, weight):
|
||||
# use a tuple (start, end, weight) instead of a Edge object
|
||||
self.graph[start].append((start, end, weight))
|
||||
self.graph[end].append((end, start, weight))
|
||||
|
||||
def rank(self):
|
||||
ws = collections.defaultdict(float)
|
||||
outSum = collections.defaultdict(float)
|
||||
|
||||
wsdef = 1.0 / len(self.graph)
|
||||
for n, out in self.graph.items():
|
||||
ws[n] = wsdef
|
||||
outSum[n] = sum((e[2] for e in out), 0.0)
|
||||
|
||||
for x in range(10): # 10 iters
|
||||
for n, inedges in self.graph.items():
|
||||
s = 0
|
||||
for e in inedges:
|
||||
s += e[2] / outSum[e[1]] * ws[e[1]]
|
||||
ws[n] = (1 - self.d) + self.d * s
|
||||
|
||||
(min_rank, max_rank) = (sys.float_info[0], sys.float_info[3])
|
||||
|
||||
for w in ws.values():
|
||||
if w < min_rank:
|
||||
min_rank = w
|
||||
elif w > max_rank:
|
||||
max_rank = w
|
||||
|
||||
for n, w in ws.items():
|
||||
ws[n] = (w - min_rank / 10.0) / (max_rank - min_rank / 10.0) * 100
|
||||
|
||||
return ws
|
||||
|
||||
|
||||
def textrank(raw, topk=10):
|
||||
pos_filt = frozenset(('ns', 'n', 'vn', 'v'))
|
||||
g = UndirectWeightedGraph()
|
||||
cm = collections.defaultdict(int)
|
||||
span = 5
|
||||
words = [x for x in pseg.cut(raw)]
|
||||
for i in range(len(words)):
|
||||
if words[i].flag in pos_filt:
|
||||
for j in range(i + 1, i + span):
|
||||
if j >= len(words):
|
||||
break
|
||||
if words[j].flag not in pos_filt:
|
||||
continue
|
||||
cm[(words[i].word, words[j].word)] += 1
|
||||
|
||||
for terms, w in cm.items():
|
||||
g.addEdge(terms[0], terms[1], w)
|
||||
|
||||
nodes_rank = g.rank()
|
||||
nrs = sorted(nodes_rank.items(), key=lambda x: x[1], reverse=True)
|
||||
return nrs[:topk]
|
||||
|
||||
if __name__ == '__main__':
|
||||
s = "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。"
|
||||
for x, w in textrank(s):
|
||||
print(x, w)
|
@ -14,32 +14,33 @@ PROB_EMIT_P = "prob_emit.p"
|
||||
CHAR_STATE_TAB_P = "char_state_tab.p"
|
||||
|
||||
def load_model(f_name, isJython=True):
|
||||
_curpath=os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
|
||||
_curpath = os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
|
||||
|
||||
result = {}
|
||||
with open(f_name, "rb") as f:
|
||||
for line in open(f_name,"rb"):
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if not line: continue
|
||||
if not line:
|
||||
continue
|
||||
line = line.decode("utf-8")
|
||||
word, _, tag = line.split(" ")
|
||||
result[word] = tag
|
||||
f.closed
|
||||
if not isJython:
|
||||
return result
|
||||
|
||||
|
||||
start_p = {}
|
||||
abs_path = os.path.join(_curpath, PROB_START_P)
|
||||
with open(abs_path, mode='rb') as f:
|
||||
start_p = marshal.load(f)
|
||||
f.closed
|
||||
|
||||
|
||||
trans_p = {}
|
||||
abs_path = os.path.join(_curpath, PROB_TRANS_P)
|
||||
with open(abs_path, 'rb') as f:
|
||||
trans_p = marshal.load(f)
|
||||
f.closed
|
||||
|
||||
|
||||
emit_p = {}
|
||||
abs_path = os.path.join(_curpath, PROB_EMIT_P)
|
||||
with open(abs_path, 'rb') as f:
|
||||
@ -62,14 +63,14 @@ else:
|
||||
word_tag_tab = load_model(jieba.get_abs_path_dict(), isJython=False)
|
||||
|
||||
def makesure_userdict_loaded(fn):
|
||||
|
||||
|
||||
@wraps(fn)
|
||||
def wrapped(*args,**kwargs):
|
||||
if len(jieba.user_word_tag_tab)>0:
|
||||
if jieba.user_word_tag_tab:
|
||||
word_tag_tab.update(jieba.user_word_tag_tab)
|
||||
jieba.user_word_tag_tab = {}
|
||||
return fn(*args,**kwargs)
|
||||
|
||||
|
||||
return wrapped
|
||||
|
||||
class pair(object):
|
||||
@ -152,7 +153,7 @@ def __cut_DAG_NO_HMM(sentence):
|
||||
def __cut_DAG(sentence):
|
||||
DAG = jieba.get_DAG(sentence)
|
||||
route = {}
|
||||
|
||||
|
||||
jieba.calc(sentence,DAG,0,route=route)
|
||||
|
||||
x = 0
|
||||
|
@ -3,8 +3,7 @@ MIN_FLOAT = -3.14e100
|
||||
MIN_INF = float("-inf")
|
||||
|
||||
def get_top_states(t_state_v, K=4):
|
||||
items = t_state_v.items()
|
||||
topK = sorted(items, key=operator.itemgetter(1), reverse=True)[:K]
|
||||
topK = sorted(t_state_v.items(), key=operator.itemgetter(1), reverse=True)[:K]
|
||||
return [x[0] for x in topK]
|
||||
|
||||
def viterbi(obs, states, start_p, trans_p, emit_p):
|
||||
|
18
setup.py
18
setup.py
@ -1,11 +1,11 @@
|
||||
from distutils.core import setup
|
||||
setup(name='jieba3k',
|
||||
version='0.34',
|
||||
description='Chinese Words Segementation Utilities',
|
||||
author='Sun, Junyi',
|
||||
author_email='ccnusjy@gmail.com',
|
||||
url='http://github.com/fxsjy',
|
||||
packages=['jieba'],
|
||||
from distutils.core import setup
|
||||
setup(name='jieba3k',
|
||||
version='0.34',
|
||||
description='Chinese Words Segementation Utilities',
|
||||
author='Sun, Junyi',
|
||||
author_email='ccnusjy@gmail.com',
|
||||
url='http://github.com/fxsjy',
|
||||
packages=['jieba'],
|
||||
package_dir={'jieba':'jieba'},
|
||||
package_data={'jieba':['*.*','finalseg/*','analyse/*','posseg/*']}
|
||||
)
|
||||
)
|
||||
|
43
test/extract_tags_with_weight.py
Normal file
43
test/extract_tags_with_weight.py
Normal file
@ -0,0 +1,43 @@
|
||||
import sys
|
||||
sys.path.append('../')
|
||||
|
||||
import jieba
|
||||
import jieba.analyse
|
||||
from optparse import OptionParser
|
||||
|
||||
USAGE = "usage: python extract_tags_with_weight.py [file name] -k [top k] -w [with weight=1 or 0]"
|
||||
|
||||
parser = OptionParser(USAGE)
|
||||
parser.add_option("-k", dest="topK")
|
||||
parser.add_option("-w", dest="withWeight")
|
||||
opt, args = parser.parse_args()
|
||||
|
||||
|
||||
if len(args) < 1:
|
||||
print(USAGE)
|
||||
sys.exit(1)
|
||||
|
||||
file_name = args[0]
|
||||
|
||||
if opt.topK is None:
|
||||
topK = 10
|
||||
else:
|
||||
topK = int(opt.topK)
|
||||
|
||||
if opt.withWeight is None:
|
||||
withWeight = False
|
||||
else:
|
||||
if int(opt.withWeight) is 1:
|
||||
withWeight = True
|
||||
else:
|
||||
withWeight = False
|
||||
|
||||
content = open(file_name, 'rb').read()
|
||||
|
||||
tags = jieba.analyse.extract_tags(content, topK=topK, withWeight=withWeight)
|
||||
|
||||
if withWeight is True:
|
||||
for tag in tags:
|
||||
print("tag: %s\t\t weight: %f" % (tag[1],tag[0]))
|
||||
else:
|
||||
print(",".join(tags))
|
44
test/lyric.txt
Normal file
44
test/lyric.txt
Normal file
@ -0,0 +1,44 @@
|
||||
我沒有心
|
||||
我沒有真實的自我
|
||||
我只有消瘦的臉孔
|
||||
所謂軟弱
|
||||
所謂的順從一向是我
|
||||
的座右銘
|
||||
|
||||
而我
|
||||
沒有那海洋的寬闊
|
||||
我只要熱情的撫摸
|
||||
所謂空洞
|
||||
所謂不安全感是我
|
||||
的墓誌銘
|
||||
|
||||
而你
|
||||
是否和我一般怯懦
|
||||
是否和我一般矯作
|
||||
和我一般囉唆
|
||||
|
||||
而你
|
||||
是否和我一般退縮
|
||||
是否和我一般肌迫
|
||||
一般地困惑
|
||||
|
||||
我沒有力
|
||||
我沒有滿腔的熱火
|
||||
我只有滿肚的如果
|
||||
所謂勇氣
|
||||
所謂的認同感是我
|
||||
隨便說說
|
||||
|
||||
而你
|
||||
是否和我一般怯懦
|
||||
是否和我一般矯作
|
||||
是否對你來說
|
||||
只是一場遊戲
|
||||
雖然沒有把握
|
||||
|
||||
而你
|
||||
是否和我一般退縮
|
||||
是否和我一般肌迫
|
||||
是否對你來說
|
||||
只是逼不得已
|
||||
雖然沒有藉口
|
@ -6,7 +6,7 @@ import jieba.posseg as pseg
|
||||
def cuttest(test_sent):
|
||||
result = pseg.cut(test_sent)
|
||||
for w in result:
|
||||
print(w.word, "/", w.flag, ", ", end=' ')
|
||||
print(w.word, "/", w.flag, ", ", end=' ')
|
||||
print("")
|
||||
|
||||
|
||||
|
@ -6,7 +6,7 @@ from whoosh.index import create_in
|
||||
from whoosh.fields import *
|
||||
from whoosh.qparser import QueryParser
|
||||
|
||||
from jieba.analyse import ChineseAnalyzer
|
||||
from jieba.analyse import ChineseAnalyzer
|
||||
|
||||
analyzer = ChineseAnalyzer()
|
||||
|
||||
@ -23,7 +23,7 @@ with open(file_name,"rb") as inf:
|
||||
for line in inf:
|
||||
i+=1
|
||||
writer.add_document(
|
||||
title="line"+str(i),
|
||||
title="line"+str(i),
|
||||
path="/a",
|
||||
content=line.decode('gbk','ignore')
|
||||
)
|
||||
@ -36,6 +36,6 @@ for keyword in ("水果小姐","你","first","中文","交换机","交换"):
|
||||
print("result of ",keyword)
|
||||
q = parser.parse(keyword)
|
||||
results = searcher.search(q)
|
||||
for hit in results:
|
||||
for hit in results:
|
||||
print(hit.highlights("content"))
|
||||
print("="*10)
|
||||
|
Loading…
x
Reference in New Issue
Block a user