mirror of
https://github.com/fxsjy/jieba.git
synced 2025-07-10 00:01:33 +08:00
wraps most globals in classes
API changes: * class jieba.Tokenizer, jieba.posseg.POSTokenizer * class jieba.analyse.TFIDF, jieba.analyse.TextRank * global functions are mapped to jieba.(posseg.)dt, the default (POS)Tokenizer * multiprocessing only works with jieba.(posseg.)dt * new lcut, lcut_for_search functions that returns a list * jieba.analyse.textrank now returns 20 items by default Tests: * added test_lock.py to test multithread locking * demo.py now contains most of the examples in README
This commit is contained in:
parent
e359d08964
commit
94840a734c
145
README.md
145
README.md
@ -45,17 +45,19 @@ http://jiebademo.ap01.aws.af.cm/
|
||||
|
||||
主要功能
|
||||
=======
|
||||
1) :分词
|
||||
1. 分词
|
||||
--------
|
||||
* `jieba.cut` 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
|
||||
* `jieba.cut_for_search` 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
|
||||
* 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
|
||||
* `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),也可以用 list(jieba.cut(...)) 转化为 list
|
||||
* `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
|
||||
* `jieba.lcut` 以及 `jieba.lcut_for_search` 直接返回 list
|
||||
* `jieba.Tokenizer(dictionary=DEFAULT_DICT)` 新建自定义分词器,可用于同时使用不同词典。`jieba.dt` 为默认分词器,所有全局分词相关函数都是该分词器的映射。
|
||||
|
||||
代码示例( 分词 )
|
||||
代码示例
|
||||
|
||||
```python
|
||||
#encoding=utf-8
|
||||
# encoding=utf-8
|
||||
import jieba
|
||||
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||||
@ -81,7 +83,7 @@ print(", ".join(seg_list))
|
||||
|
||||
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
|
||||
|
||||
2) :添加自定义词典
|
||||
2. 添加自定义词典
|
||||
----------------
|
||||
|
||||
### 载入词典
|
||||
@ -91,6 +93,8 @@ print(", ".join(seg_list))
|
||||
* 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频(可省略),最后为词性(可省略),用空格隔开
|
||||
* 词频可省略,使用计算出的能保证分出该词的词频
|
||||
|
||||
* 更改分词器的 tmp_dir 和 cache_file 属性,可指定缓存文件位置,用于受限的文件系统。
|
||||
|
||||
* 范例:
|
||||
|
||||
* 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
|
||||
@ -128,12 +132,18 @@ print(", ".join(seg_list))
|
||||
|
||||
* "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
|
||||
|
||||
3) :关键词提取
|
||||
3. 关键词提取
|
||||
-------------
|
||||
* jieba.analyse.extract_tags(sentence,topK,withWeight) #需要先 `import jieba.analyse`
|
||||
* sentence 为待提取的文本
|
||||
* topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
|
||||
* withWeight 为是否一并返回关键词权重值,默认值为 False
|
||||
### 基于 TF-IDF 算法的关键词抽取
|
||||
|
||||
`import jieba.analyse`
|
||||
|
||||
* jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
|
||||
* sentence 为待提取的文本
|
||||
* topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
|
||||
* withWeight 为是否一并返回关键词权重值,默认值为 False
|
||||
* allowPOS 仅包括指定词性的词,默认值为空,即不筛选
|
||||
* jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件
|
||||
|
||||
代码示例 (关键词提取)
|
||||
|
||||
@ -155,37 +165,27 @@ https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
|
||||
|
||||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py
|
||||
|
||||
#### 基于TextRank算法的关键词抽取实现
|
||||
### 基于 TextRank 算法的关键词抽取
|
||||
|
||||
* jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) 直接使用,接口相同,注意默认过滤词性。
|
||||
* jieba.analyse.TextRank() 新建自定义 TextRank 实例
|
||||
|
||||
算法论文: [TextRank: Bringing Order into Texts](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf)
|
||||
|
||||
##### 基本思想:
|
||||
#### 基本思想:
|
||||
|
||||
1. 将待抽取关键词的文本进行分词
|
||||
2. 以固定窗口大小(我选的5,可适当调整),词之间的共现关系,构建图
|
||||
2. 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图
|
||||
3. 计算图中节点的PageRank,注意是无向带权图
|
||||
|
||||
##### 基本使用:
|
||||
jieba.analyse.textrank(raw_text)
|
||||
#### 使用示例:
|
||||
|
||||
##### 示例结果:
|
||||
来自`__main__`的示例结果:
|
||||
见 [test/demo.py](https://github.com/fxsjy/jieba/blob/master/test/demo.py)
|
||||
|
||||
```
|
||||
吉林 1.0
|
||||
欧亚 0.864834432786
|
||||
置业 0.553465925497
|
||||
实现 0.520660869531
|
||||
收入 0.379699688954
|
||||
增资 0.355086023683
|
||||
子公司 0.349758490263
|
||||
全资 0.308537396283
|
||||
城市 0.306103738053
|
||||
商业 0.304837414946
|
||||
```
|
||||
|
||||
4) : 词性标注
|
||||
4. 词性标注
|
||||
-----------
|
||||
* 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法
|
||||
* `jieba.posseg.POSTokenizer(tokenizer=None)` 新建自定义分词器,`tokenizer` 参数可指定内部使用的 `jieba.Tokenizer` 分词器。`jieba.posseg.dt` 为默认词性标注分词器。
|
||||
* 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。
|
||||
* 用法示例
|
||||
|
||||
```pycon
|
||||
@ -200,10 +200,10 @@ jieba.analyse.textrank(raw_text)
|
||||
天安门 ns
|
||||
```
|
||||
|
||||
5) : 并行分词
|
||||
5. 并行分词
|
||||
-----------
|
||||
* 原理:将目标文本按行分隔后,把各行文本分配到多个 python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
|
||||
* 基于 python 自带的 multiprocessing 模块,目前暂不支持 windows
|
||||
* 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
|
||||
* 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows
|
||||
* 用法:
|
||||
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
|
||||
* `jieba.disable_parallel()` # 关闭并行分词模式
|
||||
@ -212,8 +212,9 @@ jieba.analyse.textrank(raw_text)
|
||||
|
||||
* 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。
|
||||
|
||||
* **注意**:并行分词仅支持默认分词器 `jieba.dt` 和 `jieba.posseg.dt`。
|
||||
|
||||
6) : Tokenize:返回词语在原文的起始位置
|
||||
6. Tokenize:返回词语在原文的起止位置
|
||||
----------------------------------
|
||||
* 注意,输入参数只接受 unicode
|
||||
* 默认模式
|
||||
@ -235,7 +236,7 @@ word 有限公司 start: 6 end:10
|
||||
* 搜索模式
|
||||
|
||||
```python
|
||||
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
|
||||
result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')
|
||||
for tk in result:
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||||
```
|
||||
@ -250,15 +251,15 @@ word 有限公司 start: 6 end:10
|
||||
```
|
||||
|
||||
|
||||
7) : ChineseAnalyzer for Whoosh 搜索引擎
|
||||
7. ChineseAnalyzer for Whoosh 搜索引擎
|
||||
--------------------------------------------
|
||||
* 引用: `from jieba.analyse import ChineseAnalyzer`
|
||||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
|
||||
|
||||
8) : 命令行分词
|
||||
8. 命令行分词
|
||||
-------------------
|
||||
|
||||
使用示例:`cat news.txt | python -m jieba > cut_result.txt`
|
||||
使用示例:`python -m jieba news.txt > cut_result.txt`
|
||||
|
||||
命令行选项(翻译):
|
||||
|
||||
@ -310,10 +311,10 @@ word 有限公司 start: 6 end:10
|
||||
|
||||
If no filename specified, use STDIN instead.
|
||||
|
||||
模块初始化机制的改变:lazy load (从0.28版本开始)
|
||||
-------------------------------------------
|
||||
延迟加载机制
|
||||
------------
|
||||
|
||||
jieba 采用延迟加载,"import jieba" 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。
|
||||
jieba 采用延迟加载,`import jieba` 和 `jieba.Tokenizer()` 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。
|
||||
|
||||
import jieba
|
||||
jieba.initialize() # 手动初始化(可选)
|
||||
@ -460,12 +461,15 @@ Algorithm
|
||||
Main Functions
|
||||
==============
|
||||
|
||||
1) : Cut
|
||||
1. Cut
|
||||
--------
|
||||
* The `jieba.cut` function accepts three input parameters: the first parameter is the string to be cut; the second parameter is `cut_all`, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model.
|
||||
* `jieba.cut_for_search` accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines.
|
||||
* The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8.
|
||||
* `jieba.cut` and `jieba.cut_for_search` returns an generator, from which you can use a `for` loop to get the segmentation result (in unicode), or `list(jieba.cut( ... ))` to create a list.
|
||||
* `jieba.cut` and `jieba.cut_for_search` returns an generator, from which you can use a `for` loop to get the segmentation result (in unicode).
|
||||
* `jieba.lcut` and `jieba.lcut_for_search` returns a list.
|
||||
* `jieba.Tokenizer(dictionary=DEFAULT_DICT)` creates a new customized Tokenizer, which enables you to use different dictionaries at the same time. `jieba.dt` is the default Tokenizer, to which almost all global functions are mapped.
|
||||
|
||||
|
||||
**Code example: segmentation**
|
||||
|
||||
@ -497,7 +501,7 @@ Output:
|
||||
[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
|
||||
|
||||
|
||||
2) : Add a custom dictionary
|
||||
2. Add a custom dictionary
|
||||
----------------------------
|
||||
|
||||
### Load dictionary
|
||||
@ -505,6 +509,9 @@ Output:
|
||||
* Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but adding your own new words can ensure a higher accuracy.
|
||||
* Usage: `jieba.load_userdict(file_name) # file_name is the path of the custom dictionary`
|
||||
* The dictionary format is the same as that of `analyse/idf.txt`: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space
|
||||
* The word frequency can be omitted, then a calculated value will be used.
|
||||
* Change a Tokenizer's `tmp_dir` and `cache_file` to specify the path of the cache file, for using on a restricted file system.
|
||||
|
||||
* Example:
|
||||
|
||||
云计算 5
|
||||
@ -540,12 +547,16 @@ Example:
|
||||
「/台中/」/正确/应该/不会/被/切开
|
||||
```
|
||||
|
||||
3) : Keyword Extraction
|
||||
3. Keyword Extraction
|
||||
-----------------------
|
||||
* `jieba.analyse.extract_tags(sentence,topK,withWeight) # needs to first import jieba.analyse`
|
||||
* `sentence`: the text to be extracted
|
||||
* `topK`: return how many keywords with the highest TF/IDF weights. The default value is 20
|
||||
* `withWeight`: whether return TF/IDF weights with the keywords. The default value is False
|
||||
`import jieba.analyse`
|
||||
|
||||
* `jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())`
|
||||
* `sentence`: the text to be extracted
|
||||
* `topK`: return how many keywords with the highest TF/IDF weights. The default value is 20
|
||||
* `withWeight`: whether return TF/IDF weights with the keywords. The default value is False
|
||||
* `allowPOS`: filter words with which POSs are included. Empty for no filtering.
|
||||
* `jieba.analyse.TFIDF(idf_path=None)` creates a new TFIDF instance, `idf_path` specifies IDF file path.
|
||||
|
||||
Example (keyword extraction)
|
||||
|
||||
@ -565,10 +576,15 @@ Developers can specify their own custom stop words corpus in jieba keyword extra
|
||||
|
||||
There's also a [TextRank](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf) implementation available.
|
||||
|
||||
Use: `jieba.analyse.textrank(raw_text)`.
|
||||
Use: `jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v'))`
|
||||
|
||||
4) : Part of Speech Tagging
|
||||
-----------
|
||||
Note that it filters POS by default.
|
||||
|
||||
`jieba.analyse.TextRank()` creates a new TextRank instance.
|
||||
|
||||
4. Part of Speech Tagging
|
||||
-------------------------
|
||||
* `jieba.posseg.POSTokenizer(tokenizer=None)` creates a new customized Tokenizer. `tokenizer` specifies the jieba.Tokenizer to internally use. `jieba.posseg.dt` is the default POSTokenizer.
|
||||
* Tags the POS of each word after segmentation, using labels compatible with ictclas.
|
||||
* Example:
|
||||
|
||||
@ -584,8 +600,8 @@ Use: `jieba.analyse.textrank(raw_text)`.
|
||||
天安门 ns
|
||||
```
|
||||
|
||||
5) : Parallel Processing
|
||||
-----------
|
||||
5. Parallel Processing
|
||||
----------------------
|
||||
* Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster.
|
||||
* Based on the multiprocessing module of Python.
|
||||
* Usage:
|
||||
@ -597,8 +613,10 @@ Use: `jieba.analyse.textrank(raw_text)`.
|
||||
|
||||
* Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version.
|
||||
|
||||
6) : Tokenize: return words with position
|
||||
----------------------------------
|
||||
* **Note** that parallel processing supports only default tokenizers, `jieba.dt` and `jieba.posseg.dt`.
|
||||
|
||||
6. Tokenize: return words with position
|
||||
----------------------------------------
|
||||
* The input must be unicode
|
||||
* Default mode
|
||||
|
||||
@ -634,13 +652,13 @@ word 有限公司 start: 6 end:10
|
||||
```
|
||||
|
||||
|
||||
7) : ChineseAnalyzer for Whoosh
|
||||
--------------------------------------------
|
||||
7. ChineseAnalyzer for Whoosh
|
||||
-------------------------------
|
||||
* `from jieba.analyse import ChineseAnalyzer`
|
||||
* Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
|
||||
|
||||
8) : Command Line Interface
|
||||
-------------------
|
||||
8. Command Line Interface
|
||||
--------------------------------
|
||||
|
||||
$> python -m jieba --help
|
||||
usage: python -m jieba [options] filename
|
||||
@ -679,7 +697,8 @@ You can also specify the dictionary (not supported before version 0.28) :
|
||||
|
||||
|
||||
Using Other Dictionaries
|
||||
========
|
||||
===========================
|
||||
|
||||
It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download:
|
||||
|
||||
1. A smaller dictionary for a smaller memory footprint:
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,103 +1,18 @@
|
||||
#encoding=utf-8
|
||||
from __future__ import absolute_import
|
||||
import jieba
|
||||
import jieba.posseg
|
||||
import os
|
||||
from operator import itemgetter
|
||||
from .textrank import textrank
|
||||
from .tfidf import TFIDF
|
||||
from .textrank import TextRank
|
||||
try:
|
||||
from .analyzer import ChineseAnalyzer
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
_curpath = os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
|
||||
abs_path = os.path.join(_curpath, "idf.txt")
|
||||
default_tfidf = TFIDF()
|
||||
default_textrank = TextRank()
|
||||
|
||||
STOP_WORDS = set((
|
||||
"the","of","is","and","to","in","that","we","for","an","are",
|
||||
"by","be","as","on","with","can","if","from","which","you","it",
|
||||
"this","then","at","have","all","not","one","has","or","that"
|
||||
))
|
||||
|
||||
class IDFLoader:
|
||||
def __init__(self):
|
||||
self.path = ""
|
||||
self.idf_freq = {}
|
||||
self.median_idf = 0.0
|
||||
|
||||
def set_new_path(self, new_idf_path):
|
||||
if self.path != new_idf_path:
|
||||
content = open(new_idf_path, 'rb').read().decode('utf-8')
|
||||
idf_freq = {}
|
||||
lines = content.rstrip('\n').split('\n')
|
||||
for line in lines:
|
||||
word, freq = line.split(' ')
|
||||
idf_freq[word] = float(freq)
|
||||
median_idf = sorted(idf_freq.values())[len(idf_freq)//2]
|
||||
self.idf_freq = idf_freq
|
||||
self.median_idf = median_idf
|
||||
self.path = new_idf_path
|
||||
|
||||
def get_idf(self):
|
||||
return self.idf_freq, self.median_idf
|
||||
|
||||
idf_loader = IDFLoader()
|
||||
idf_loader.set_new_path(abs_path)
|
||||
|
||||
def set_idf_path(idf_path):
|
||||
new_abs_path = os.path.normpath(os.path.join(os.getcwd(), idf_path))
|
||||
if not os.path.exists(new_abs_path):
|
||||
raise Exception("jieba: path does not exist: " + new_abs_path)
|
||||
idf_loader.set_new_path(new_abs_path)
|
||||
extract_tags = tfidf = default_tfidf.extract_tags
|
||||
set_idf_path = default_tfidf.set_idf_path
|
||||
textrank = default_textrank.extract_tags
|
||||
|
||||
def set_stop_words(stop_words_path):
|
||||
global STOP_WORDS
|
||||
abs_path = os.path.normpath(os.path.join(os.getcwd(), stop_words_path))
|
||||
if not os.path.exists(abs_path):
|
||||
raise Exception("jieba: path does not exist: " + abs_path)
|
||||
content = open(abs_path,'rb').read().decode('utf-8')
|
||||
lines = content.replace("\r", "").split('\n')
|
||||
for line in lines:
|
||||
STOP_WORDS.add(line)
|
||||
|
||||
def extract_tags(sentence, topK=20, withWeight=False, allowPOS=[]):
|
||||
"""
|
||||
Extract keywords from sentence using TF-IDF algorithm.
|
||||
Parameter:
|
||||
- topK: return how many top keywords. `None` for all possible words.
|
||||
- withWeight: if True, return a list of (word, weight);
|
||||
if False, return a list of words.
|
||||
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v','nr'].
|
||||
if the POS of w is not in this list,it will be filtered.
|
||||
"""
|
||||
global STOP_WORDS, idf_loader
|
||||
|
||||
idf_freq, median_idf = idf_loader.get_idf()
|
||||
|
||||
if allowPOS:
|
||||
allowPOS = frozenset(allowPOS)
|
||||
words = jieba.posseg.cut(sentence)
|
||||
else:
|
||||
words = jieba.cut(sentence)
|
||||
freq = {}
|
||||
for w in words:
|
||||
if allowPOS:
|
||||
if w.flag not in allowPOS:
|
||||
continue
|
||||
else:
|
||||
w = w.word
|
||||
if len(w.strip()) < 2 or w.lower() in STOP_WORDS:
|
||||
continue
|
||||
freq[w] = freq.get(w, 0.0) + 1.0
|
||||
total = sum(freq.values())
|
||||
for k in freq:
|
||||
freq[k] *= idf_freq.get(k, median_idf) / total
|
||||
|
||||
if withWeight:
|
||||
tags = sorted(freq.items(), key=itemgetter(1), reverse=True)
|
||||
else:
|
||||
tags = sorted(freq, key=freq.__getitem__, reverse=True)
|
||||
if topK:
|
||||
return tags[:topK]
|
||||
else:
|
||||
return tags
|
||||
default_tfidf.set_stop_words(stop_words_path)
|
||||
default_textrank.set_stop_words(stop_words_path)
|
||||
|
@ -1,7 +1,7 @@
|
||||
#encoding=utf-8
|
||||
# encoding=utf-8
|
||||
from __future__ import unicode_literals
|
||||
from whoosh.analysis import RegexAnalyzer,LowercaseFilter,StopFilter,StemFilter
|
||||
from whoosh.analysis import Tokenizer,Token
|
||||
from whoosh.analysis import RegexAnalyzer, LowercaseFilter, StopFilter, StemFilter
|
||||
from whoosh.analysis import Tokenizer, Token
|
||||
from whoosh.lang.porter import stem
|
||||
|
||||
import jieba
|
||||
@ -15,12 +15,14 @@ STOP_WORDS = frozenset(('a', 'an', 'and', 'are', 'as', 'at', 'be', 'by', 'can',
|
||||
|
||||
accepted_chars = re.compile(r"[\u4E00-\u9FA5]+")
|
||||
|
||||
|
||||
class ChineseTokenizer(Tokenizer):
|
||||
|
||||
def __call__(self, text, **kargs):
|
||||
words = jieba.tokenize(text, mode="search")
|
||||
token = Token()
|
||||
for (w,start_pos,stop_pos) in words:
|
||||
if not accepted_chars.match(w) and len(w)<=1:
|
||||
for (w, start_pos, stop_pos) in words:
|
||||
if not accepted_chars.match(w) and len(w) <= 1:
|
||||
continue
|
||||
token.original = token.text = w
|
||||
token.pos = start_pos
|
||||
@ -28,7 +30,8 @@ class ChineseTokenizer(Tokenizer):
|
||||
token.endchar = stop_pos
|
||||
yield token
|
||||
|
||||
|
||||
def ChineseAnalyzer(stoplist=STOP_WORDS, minsize=1, stemfn=stem, cachesize=50000):
|
||||
return (ChineseTokenizer() | LowercaseFilter() |
|
||||
StopFilter(stoplist=stoplist,minsize=minsize) |
|
||||
StemFilter(stemfn=stemfn, ignore=None,cachesize=cachesize))
|
||||
StopFilter(stoplist=stoplist, minsize=minsize) |
|
||||
StemFilter(stemfn=stemfn, ignore=None, cachesize=cachesize))
|
||||
|
@ -3,9 +3,10 @@
|
||||
|
||||
from __future__ import absolute_import, unicode_literals
|
||||
import sys
|
||||
import collections
|
||||
from operator import itemgetter
|
||||
import jieba.posseg as pseg
|
||||
from collections import defaultdict
|
||||
import jieba.posseg
|
||||
from .tfidf import KeywordExtractor
|
||||
from .._compat import *
|
||||
|
||||
|
||||
@ -13,7 +14,7 @@ class UndirectWeightedGraph:
|
||||
d = 0.85
|
||||
|
||||
def __init__(self):
|
||||
self.graph = collections.defaultdict(list)
|
||||
self.graph = defaultdict(list)
|
||||
|
||||
def addEdge(self, start, end, weight):
|
||||
# use a tuple (start, end, weight) instead of a Edge object
|
||||
@ -21,8 +22,8 @@ class UndirectWeightedGraph:
|
||||
self.graph[end].append((end, start, weight))
|
||||
|
||||
def rank(self):
|
||||
ws = collections.defaultdict(float)
|
||||
outSum = collections.defaultdict(float)
|
||||
ws = defaultdict(float)
|
||||
outSum = defaultdict(float)
|
||||
|
||||
wsdef = 1.0 / (len(self.graph) or 1.0)
|
||||
for n, out in self.graph.items():
|
||||
@ -53,43 +54,51 @@ class UndirectWeightedGraph:
|
||||
return ws
|
||||
|
||||
|
||||
def textrank(sentence, topK=10, withWeight=False, allowPOS=['ns', 'n', 'vn', 'v']):
|
||||
"""
|
||||
Extract keywords from sentence using TextRank algorithm.
|
||||
Parameter:
|
||||
- topK: return how many top keywords. `None` for all possible words.
|
||||
- withWeight: if True, return a list of (word, weight);
|
||||
if False, return a list of words.
|
||||
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v'].
|
||||
if the POS of w is not in this list,it will be filtered.
|
||||
"""
|
||||
pos_filt = frozenset(allowPOS)
|
||||
g = UndirectWeightedGraph()
|
||||
cm = collections.defaultdict(int)
|
||||
span = 5
|
||||
words = list(pseg.cut(sentence))
|
||||
for i in xrange(len(words)):
|
||||
if words[i].flag in pos_filt:
|
||||
for j in xrange(i + 1, i + span):
|
||||
if j >= len(words):
|
||||
break
|
||||
if words[j].flag not in pos_filt:
|
||||
continue
|
||||
cm[(words[i].word, words[j].word)] += 1
|
||||
class TextRank(KeywordExtractor):
|
||||
|
||||
for terms, w in cm.items():
|
||||
g.addEdge(terms[0], terms[1], w)
|
||||
nodes_rank = g.rank()
|
||||
if withWeight:
|
||||
tags = sorted(nodes_rank.items(), key=itemgetter(1), reverse=True)
|
||||
else:
|
||||
tags = sorted(nodes_rank, key=nodes_rank.__getitem__, reverse=True)
|
||||
if topK:
|
||||
return tags[:topK]
|
||||
else:
|
||||
return tags
|
||||
def __init__(self):
|
||||
self.tokenizer = self.postokenizer = jieba.posseg.dt
|
||||
self.stop_words = self.STOP_WORDS.copy()
|
||||
self.pos_filt = frozenset(('ns', 'n', 'vn', 'v'))
|
||||
self.span = 5
|
||||
|
||||
if __name__ == '__main__':
|
||||
s = "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。"
|
||||
for x, w in textrank(s, withWeight=True):
|
||||
print('%s %s' % (x, w))
|
||||
def pairfilter(self, wp):
|
||||
return (wp.flag in self.pos_filt and len(wp.word.strip()) >= 2
|
||||
and wp.word.lower() not in self.stop_words)
|
||||
|
||||
def textrank(self, sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')):
|
||||
"""
|
||||
Extract keywords from sentence using TextRank algorithm.
|
||||
Parameter:
|
||||
- topK: return how many top keywords. `None` for all possible words.
|
||||
- withWeight: if True, return a list of (word, weight);
|
||||
if False, return a list of words.
|
||||
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v'].
|
||||
if the POS of w is not in this list, it will be filtered.
|
||||
"""
|
||||
self.pos_filt = frozenset(allowPOS)
|
||||
g = UndirectWeightedGraph()
|
||||
cm = defaultdict(int)
|
||||
words = tuple(self.tokenizer.cut(sentence))
|
||||
for i, wp in enumerate(words):
|
||||
if self.pairfilter(wp):
|
||||
for j in xrange(i + 1, i + self.span):
|
||||
if j >= len(words):
|
||||
break
|
||||
if not self.pairfilter(words[j]):
|
||||
continue
|
||||
cm[(wp.word, words[j].word)] += 1
|
||||
|
||||
for terms, w in cm.items():
|
||||
g.addEdge(terms[0], terms[1], w)
|
||||
nodes_rank = g.rank()
|
||||
if withWeight:
|
||||
tags = sorted(nodes_rank.items(), key=itemgetter(1), reverse=True)
|
||||
else:
|
||||
tags = sorted(nodes_rank, key=nodes_rank.__getitem__, reverse=True)
|
||||
if topK:
|
||||
return tags[:topK]
|
||||
else:
|
||||
return tags
|
||||
|
||||
extract_tags = textrank
|
||||
|
111
jieba/analyse/tfidf.py
Executable file
111
jieba/analyse/tfidf.py
Executable file
@ -0,0 +1,111 @@
|
||||
# encoding=utf-8
|
||||
from __future__ import absolute_import
|
||||
import os
|
||||
import jieba
|
||||
import jieba.posseg
|
||||
from operator import itemgetter
|
||||
|
||||
_get_module_path = lambda path: os.path.normpath(os.path.join(os.getcwd(),
|
||||
os.path.dirname(__file__), path))
|
||||
_get_abs_path = jieba._get_abs_path
|
||||
|
||||
DEFAULT_IDF = _get_module_path("idf.txt")
|
||||
|
||||
|
||||
class KeywordExtractor(object):
|
||||
|
||||
STOP_WORDS = set((
|
||||
"the", "of", "is", "and", "to", "in", "that", "we", "for", "an", "are",
|
||||
"by", "be", "as", "on", "with", "can", "if", "from", "which", "you", "it",
|
||||
"this", "then", "at", "have", "all", "not", "one", "has", "or", "that"
|
||||
))
|
||||
|
||||
def set_stop_words(self, stop_words_path):
|
||||
abs_path = _get_abs_path(stop_words_path)
|
||||
if not os.path.isfile(abs_path):
|
||||
raise Exception("jieba: file does not exist: " + abs_path)
|
||||
content = open(abs_path, 'rb').read().decode('utf-8')
|
||||
for line in content.splitlines():
|
||||
self.stop_words.add(line)
|
||||
|
||||
def extract_tags(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class IDFLoader(object):
|
||||
|
||||
def __init__(self, idf_path=None):
|
||||
self.path = ""
|
||||
self.idf_freq = {}
|
||||
self.median_idf = 0.0
|
||||
if idf_path:
|
||||
self.set_new_path(idf_path)
|
||||
|
||||
def set_new_path(self, new_idf_path):
|
||||
if self.path != new_idf_path:
|
||||
self.path = new_idf_path
|
||||
content = open(new_idf_path, 'rb').read().decode('utf-8')
|
||||
self.idf_freq = {}
|
||||
for line in content.splitlines():
|
||||
word, freq = line.strip().split(' ')
|
||||
self.idf_freq[word] = float(freq)
|
||||
self.median_idf = sorted(
|
||||
self.idf_freq.values())[len(self.idf_freq) // 2]
|
||||
|
||||
def get_idf(self):
|
||||
return self.idf_freq, self.median_idf
|
||||
|
||||
|
||||
class TFIDF(KeywordExtractor):
|
||||
|
||||
def __init__(self, idf_path=None):
|
||||
self.tokenizer = jieba.dt
|
||||
self.postokenizer = jieba.posseg.dt
|
||||
self.stop_words = self.STOP_WORDS.copy()
|
||||
self.idf_loader = IDFLoader(idf_path or DEFAULT_IDF)
|
||||
self.idf_freq, self.median_idf = self.idf_loader.get_idf()
|
||||
|
||||
def set_idf_path(self, idf_path):
|
||||
new_abs_path = _get_abs_path(idf_path)
|
||||
if not os.path.isfile(new_abs_path):
|
||||
raise Exception("jieba: file does not exist: " + new_abs_path)
|
||||
self.idf_loader.set_new_path(new_abs_path)
|
||||
self.idf_freq, self.median_idf = self.idf_loader.get_idf()
|
||||
|
||||
def extract_tags(self, sentence, topK=20, withWeight=False, allowPOS=()):
|
||||
"""
|
||||
Extract keywords from sentence using TF-IDF algorithm.
|
||||
Parameter:
|
||||
- topK: return how many top keywords. `None` for all possible words.
|
||||
- withWeight: if True, return a list of (word, weight);
|
||||
if False, return a list of words.
|
||||
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v','nr'].
|
||||
if the POS of w is not in this list,it will be filtered.
|
||||
"""
|
||||
if allowPOS:
|
||||
allowPOS = frozenset(allowPOS)
|
||||
words = self.postokenizer.cut(sentence)
|
||||
else:
|
||||
words = self.tokenizer.cut(sentence)
|
||||
freq = {}
|
||||
for w in words:
|
||||
if allowPOS:
|
||||
if w.flag not in allowPOS:
|
||||
continue
|
||||
else:
|
||||
w = w.word
|
||||
if len(w.strip()) < 2 or w.lower() in self.stop_words:
|
||||
continue
|
||||
freq[w] = freq.get(w, 0.0) + 1.0
|
||||
total = sum(freq.values())
|
||||
for k in freq:
|
||||
freq[k] *= self.idf_freq.get(k, self.median_idf) / total
|
||||
|
||||
if withWeight:
|
||||
tags = sorted(freq.items(), key=itemgetter(1), reverse=True)
|
||||
else:
|
||||
tags = sorted(freq, key=freq.__getitem__, reverse=True)
|
||||
if topK:
|
||||
return tags[:topK]
|
||||
else:
|
||||
return tags
|
@ -1,10 +1,9 @@
|
||||
from __future__ import absolute_import, unicode_literals
|
||||
import re
|
||||
import os
|
||||
import jieba
|
||||
import re
|
||||
import sys
|
||||
import jieba
|
||||
import marshal
|
||||
from functools import wraps
|
||||
from .._compat import *
|
||||
from .viterbi import viterbi
|
||||
|
||||
@ -24,23 +23,10 @@ re_num = re.compile("[\.0-9]+")
|
||||
re_eng1 = re.compile('^[a-zA-Z0-9]$', re.U)
|
||||
|
||||
|
||||
def load_model(f_name, isJython=True):
|
||||
def load_model(f_name):
|
||||
_curpath = os.path.normpath(
|
||||
os.path.join(os.getcwd(), os.path.dirname(__file__)))
|
||||
|
||||
result = {}
|
||||
with open(f_name, "rb") as f:
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
line = line.decode("utf-8")
|
||||
word, _, tag = line.split(" ")
|
||||
result[word] = tag
|
||||
|
||||
if not isJython:
|
||||
return result
|
||||
|
||||
# For Jython
|
||||
start_p = {}
|
||||
abs_path = os.path.join(_curpath, PROB_START_P)
|
||||
with open(abs_path, 'rb') as f:
|
||||
@ -64,29 +50,15 @@ def load_model(f_name, isJython=True):
|
||||
|
||||
return state, start_p, trans_p, emit_p, result
|
||||
|
||||
|
||||
if sys.platform.startswith("java"):
|
||||
char_state_tab_P, start_P, trans_P, emit_P, word_tag_tab = load_model(
|
||||
jieba.get_abs_path_dict())
|
||||
char_state_tab_P, start_P, trans_P, emit_P, word_tag_tab = load_model()
|
||||
else:
|
||||
from .char_state_tab import P as char_state_tab_P
|
||||
from .prob_start import P as start_P
|
||||
from .prob_trans import P as trans_P
|
||||
from .prob_emit import P as emit_P
|
||||
|
||||
word_tag_tab = load_model(jieba.get_abs_path_dict(), isJython=False)
|
||||
|
||||
|
||||
def makesure_userdict_loaded(fn):
|
||||
|
||||
@wraps(fn)
|
||||
def wrapped(*args, **kwargs):
|
||||
if jieba.user_word_tag_tab:
|
||||
word_tag_tab.update(jieba.user_word_tag_tab)
|
||||
jieba.user_word_tag_tab = {}
|
||||
return fn(*args, **kwargs)
|
||||
|
||||
return wrapped
|
||||
|
||||
|
||||
class pair(object):
|
||||
|
||||
@ -110,154 +82,220 @@ class pair(object):
|
||||
return self.__unicode__().encode(arg)
|
||||
|
||||
|
||||
def __cut(sentence):
|
||||
prob, pos_list = viterbi(
|
||||
sentence, char_state_tab_P, start_P, trans_P, emit_P)
|
||||
begin, nexti = 0, 0
|
||||
class POSTokenizer(object):
|
||||
|
||||
for i, char in enumerate(sentence):
|
||||
pos = pos_list[i][0]
|
||||
if pos == 'B':
|
||||
begin = i
|
||||
elif pos == 'E':
|
||||
yield pair(sentence[begin:i + 1], pos_list[i][1])
|
||||
nexti = i + 1
|
||||
elif pos == 'S':
|
||||
yield pair(char, pos_list[i][1])
|
||||
nexti = i + 1
|
||||
if nexti < len(sentence):
|
||||
yield pair(sentence[nexti:], pos_list[nexti][1])
|
||||
def __init__(self, tokenizer=None):
|
||||
self.tokenizer = tokenizer or jieba.Tokenizer()
|
||||
self.load_word_tag(self.tokenizer.get_abs_path_dict())
|
||||
|
||||
def __repr__(self):
|
||||
return '<POSTokenizer tokenizer=%r>' % self.tokenizer
|
||||
|
||||
def __cut_detail(sentence):
|
||||
blocks = re_han_detail.split(sentence)
|
||||
for blk in blocks:
|
||||
if re_han_detail.match(blk):
|
||||
for word in __cut(blk):
|
||||
yield word
|
||||
else:
|
||||
tmp = re_skip_detail.split(blk)
|
||||
for x in tmp:
|
||||
if x:
|
||||
if re_num.match(x):
|
||||
yield pair(x, 'm')
|
||||
elif re_eng.match(x):
|
||||
yield pair(x, 'eng')
|
||||
else:
|
||||
yield pair(x, 'x')
|
||||
def __getattr__(self, name):
|
||||
if name in ('cut_for_search', 'lcut_for_search', 'tokenize'):
|
||||
# may be possible?
|
||||
raise NotImplementedError
|
||||
return getattr(self.tokenizer, name)
|
||||
|
||||
def initialize(self, dictionary=None):
|
||||
self.tokenizer.initialize(dictionary)
|
||||
self.load_word_tag(self.tokenizer.get_abs_path_dict())
|
||||
|
||||
def __cut_DAG_NO_HMM(sentence):
|
||||
DAG = jieba.get_DAG(sentence)
|
||||
route = {}
|
||||
jieba.calc(sentence, DAG, route)
|
||||
x = 0
|
||||
N = len(sentence)
|
||||
buf = ''
|
||||
while x < N:
|
||||
y = route[x][1] + 1
|
||||
l_word = sentence[x:y]
|
||||
if re_eng1.match(l_word):
|
||||
buf += l_word
|
||||
x = y
|
||||
else:
|
||||
if buf:
|
||||
yield pair(buf, 'eng')
|
||||
buf = ''
|
||||
yield pair(l_word, word_tag_tab.get(l_word, 'x'))
|
||||
x = y
|
||||
if buf:
|
||||
yield pair(buf, 'eng')
|
||||
buf = ''
|
||||
def load_word_tag(self, f_name):
|
||||
self.word_tag_tab = {}
|
||||
with open(f_name, "rb") as f:
|
||||
for lineno, line in enumerate(f, 1):
|
||||
try:
|
||||
line = line.strip().decode("utf-8")
|
||||
if not line:
|
||||
continue
|
||||
word, _, tag = line.split(" ")
|
||||
self.word_tag_tab[word] = tag
|
||||
except Exception:
|
||||
raise ValueError(
|
||||
'invalid POS dictionary entry in %s at Line %s: %s' % (f_name, lineno, line))
|
||||
|
||||
def makesure_userdict_loaded(self):
|
||||
if self.tokenizer.user_word_tag_tab:
|
||||
self.word_tag_tab.update(self.tokenizer.user_word_tag_tab)
|
||||
self.tokenizer.user_word_tag_tab = {}
|
||||
|
||||
def __cut_DAG(sentence):
|
||||
DAG = jieba.get_DAG(sentence)
|
||||
route = {}
|
||||
def __cut(self, sentence):
|
||||
prob, pos_list = viterbi(
|
||||
sentence, char_state_tab_P, start_P, trans_P, emit_P)
|
||||
begin, nexti = 0, 0
|
||||
|
||||
jieba.calc(sentence, DAG, route)
|
||||
for i, char in enumerate(sentence):
|
||||
pos = pos_list[i][0]
|
||||
if pos == 'B':
|
||||
begin = i
|
||||
elif pos == 'E':
|
||||
yield pair(sentence[begin:i + 1], pos_list[i][1])
|
||||
nexti = i + 1
|
||||
elif pos == 'S':
|
||||
yield pair(char, pos_list[i][1])
|
||||
nexti = i + 1
|
||||
if nexti < len(sentence):
|
||||
yield pair(sentence[nexti:], pos_list[nexti][1])
|
||||
|
||||
x = 0
|
||||
buf = ''
|
||||
N = len(sentence)
|
||||
while x < N:
|
||||
y = route[x][1] + 1
|
||||
l_word = sentence[x:y]
|
||||
if y - x == 1:
|
||||
buf += l_word
|
||||
else:
|
||||
if buf:
|
||||
if len(buf) == 1:
|
||||
yield pair(buf, word_tag_tab.get(buf, 'x'))
|
||||
elif not jieba.FREQ.get(buf):
|
||||
recognized = __cut_detail(buf)
|
||||
for t in recognized:
|
||||
yield t
|
||||
else:
|
||||
for elem in buf:
|
||||
yield pair(elem, word_tag_tab.get(elem, 'x'))
|
||||
buf = ''
|
||||
yield pair(l_word, word_tag_tab.get(l_word, 'x'))
|
||||
x = y
|
||||
|
||||
if buf:
|
||||
if len(buf) == 1:
|
||||
yield pair(buf, word_tag_tab.get(buf, 'x'))
|
||||
elif not jieba.FREQ.get(buf):
|
||||
recognized = __cut_detail(buf)
|
||||
for t in recognized:
|
||||
yield t
|
||||
else:
|
||||
for elem in buf:
|
||||
yield pair(elem, word_tag_tab.get(elem, 'x'))
|
||||
|
||||
|
||||
def __cut_internal(sentence, HMM=True):
|
||||
sentence = strdecode(sentence)
|
||||
blocks = re_han_internal.split(sentence)
|
||||
if HMM:
|
||||
__cut_blk = __cut_DAG
|
||||
else:
|
||||
__cut_blk = __cut_DAG_NO_HMM
|
||||
|
||||
for blk in blocks:
|
||||
if re_han_internal.match(blk):
|
||||
for word in __cut_blk(blk):
|
||||
yield word
|
||||
else:
|
||||
tmp = re_skip_internal.split(blk)
|
||||
for x in tmp:
|
||||
if re_skip_internal.match(x):
|
||||
yield pair(x, 'x')
|
||||
else:
|
||||
for xx in x:
|
||||
if re_num.match(xx):
|
||||
yield pair(xx, 'm')
|
||||
def __cut_detail(self, sentence):
|
||||
blocks = re_han_detail.split(sentence)
|
||||
for blk in blocks:
|
||||
if re_han_detail.match(blk):
|
||||
for word in self.__cut(blk):
|
||||
yield word
|
||||
else:
|
||||
tmp = re_skip_detail.split(blk)
|
||||
for x in tmp:
|
||||
if x:
|
||||
if re_num.match(x):
|
||||
yield pair(x, 'm')
|
||||
elif re_eng.match(x):
|
||||
yield pair(xx, 'eng')
|
||||
yield pair(x, 'eng')
|
||||
else:
|
||||
yield pair(xx, 'x')
|
||||
yield pair(x, 'x')
|
||||
|
||||
def __cut_DAG_NO_HMM(self, sentence):
|
||||
DAG = self.tokenizer.get_DAG(sentence)
|
||||
route = {}
|
||||
self.tokenizer.calc(sentence, DAG, route)
|
||||
x = 0
|
||||
N = len(sentence)
|
||||
buf = ''
|
||||
while x < N:
|
||||
y = route[x][1] + 1
|
||||
l_word = sentence[x:y]
|
||||
if re_eng1.match(l_word):
|
||||
buf += l_word
|
||||
x = y
|
||||
else:
|
||||
if buf:
|
||||
yield pair(buf, 'eng')
|
||||
buf = ''
|
||||
yield pair(l_word, self.word_tag_tab.get(l_word, 'x'))
|
||||
x = y
|
||||
if buf:
|
||||
yield pair(buf, 'eng')
|
||||
buf = ''
|
||||
|
||||
def __cut_DAG(self, sentence):
|
||||
DAG = self.tokenizer.get_DAG(sentence)
|
||||
route = {}
|
||||
|
||||
self.tokenizer.calc(sentence, DAG, route)
|
||||
|
||||
x = 0
|
||||
buf = ''
|
||||
N = len(sentence)
|
||||
while x < N:
|
||||
y = route[x][1] + 1
|
||||
l_word = sentence[x:y]
|
||||
if y - x == 1:
|
||||
buf += l_word
|
||||
else:
|
||||
if buf:
|
||||
if len(buf) == 1:
|
||||
yield pair(buf, self.word_tag_tab.get(buf, 'x'))
|
||||
elif not self.tokenizer.FREQ.get(buf):
|
||||
recognized = self.__cut_detail(buf)
|
||||
for t in recognized:
|
||||
yield t
|
||||
else:
|
||||
for elem in buf:
|
||||
yield pair(elem, self.word_tag_tab.get(elem, 'x'))
|
||||
buf = ''
|
||||
yield pair(l_word, self.word_tag_tab.get(l_word, 'x'))
|
||||
x = y
|
||||
|
||||
if buf:
|
||||
if len(buf) == 1:
|
||||
yield pair(buf, self.word_tag_tab.get(buf, 'x'))
|
||||
elif not self.tokenizer.FREQ.get(buf):
|
||||
recognized = self.__cut_detail(buf)
|
||||
for t in recognized:
|
||||
yield t
|
||||
else:
|
||||
for elem in buf:
|
||||
yield pair(elem, self.word_tag_tab.get(elem, 'x'))
|
||||
|
||||
def __cut_internal(self, sentence, HMM=True):
|
||||
self.makesure_userdict_loaded()
|
||||
sentence = strdecode(sentence)
|
||||
blocks = re_han_internal.split(sentence)
|
||||
if HMM:
|
||||
cut_blk = self.__cut_DAG
|
||||
else:
|
||||
cut_blk = self.__cut_DAG_NO_HMM
|
||||
|
||||
for blk in blocks:
|
||||
if re_han_internal.match(blk):
|
||||
for word in cut_blk(blk):
|
||||
yield word
|
||||
else:
|
||||
tmp = re_skip_internal.split(blk)
|
||||
for x in tmp:
|
||||
if re_skip_internal.match(x):
|
||||
yield pair(x, 'x')
|
||||
else:
|
||||
for xx in x:
|
||||
if re_num.match(xx):
|
||||
yield pair(xx, 'm')
|
||||
elif re_eng.match(x):
|
||||
yield pair(xx, 'eng')
|
||||
else:
|
||||
yield pair(xx, 'x')
|
||||
|
||||
def _lcut_internal(self, sentence):
|
||||
return list(self.__cut_internal(sentence))
|
||||
|
||||
def _lcut_internal_no_hmm(self, sentence):
|
||||
return list(self.__cut_internal(sentence, False))
|
||||
|
||||
def cut(self, sentence, HMM=True):
|
||||
for w in self.__cut_internal(sentence, HMM=HMM):
|
||||
yield w
|
||||
|
||||
def lcut(self, *args, **kwargs):
|
||||
return list(self.cut(*args, **kwargs))
|
||||
|
||||
# default Tokenizer instance
|
||||
|
||||
dt = POSTokenizer(jieba.dt)
|
||||
|
||||
# global functions
|
||||
|
||||
initialize = dt.initialize
|
||||
|
||||
|
||||
def __lcut_internal(sentence):
|
||||
return list(__cut_internal(sentence))
|
||||
def _lcut_internal(s):
|
||||
return dt._lcut_internal(s)
|
||||
|
||||
|
||||
def __lcut_internal_no_hmm(sentence):
|
||||
return list(__cut_internal(sentence, False))
|
||||
def _lcut_internal_no_hmm(s):
|
||||
return dt._lcut_internal_no_hmm(s)
|
||||
|
||||
|
||||
@makesure_userdict_loaded
|
||||
def cut(sentence, HMM=True):
|
||||
"""
|
||||
Global `cut` function that supports parallel processing.
|
||||
|
||||
Note that this only works using dt, custom POSTokenizer
|
||||
instances are not supported.
|
||||
"""
|
||||
global dt
|
||||
if jieba.pool is None:
|
||||
for w in __cut_internal(sentence, HMM=HMM):
|
||||
for w in dt.cut(sentence, HMM=HMM):
|
||||
yield w
|
||||
else:
|
||||
parts = strdecode(sentence).splitlines(True)
|
||||
if HMM:
|
||||
result = jieba.pool.map(__lcut_internal, parts)
|
||||
result = jieba.pool.map(_lcut_internal, parts)
|
||||
else:
|
||||
result = jieba.pool.map(__lcut_internal_no_hmm, parts)
|
||||
result = jieba.pool.map(_lcut_internal_no_hmm, parts)
|
||||
for r in result:
|
||||
for w in r:
|
||||
yield w
|
||||
|
||||
|
||||
def lcut(sentence, HMM=True):
|
||||
return list(cut(sentence, HMM))
|
||||
|
66
test/demo.py
66
test/demo.py
@ -4,6 +4,12 @@ import sys
|
||||
sys.path.append("../")
|
||||
|
||||
import jieba
|
||||
import jieba.posseg
|
||||
import jieba.analyse
|
||||
|
||||
print('='*40)
|
||||
print('1. 分词')
|
||||
print('-'*40)
|
||||
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||||
print("Full Mode: " + "/ ".join(seg_list)) # 全模式
|
||||
@ -16,3 +22,63 @@ print(", ".join(seg_list))
|
||||
|
||||
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||||
print(", ".join(seg_list))
|
||||
|
||||
print('='*40)
|
||||
print('2. 添加自定义词典/调整词典')
|
||||
print('-'*40)
|
||||
|
||||
print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
|
||||
#如果/放到/post/中将/出错/。
|
||||
print(jieba.suggest_freq(('中', '将'), True))
|
||||
#494
|
||||
print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
|
||||
#如果/放到/post/中/将/出错/。
|
||||
print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
|
||||
#「/台/中/」/正确/应该/不会/被/切开
|
||||
print(jieba.suggest_freq('台中', True))
|
||||
#69
|
||||
print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
|
||||
#「/台中/」/正确/应该/不会/被/切开
|
||||
|
||||
print('='*40)
|
||||
print('3. 关键词提取')
|
||||
print('-'*40)
|
||||
print(' TF-IDF')
|
||||
print('-'*40)
|
||||
|
||||
s = "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。"
|
||||
for x, w in jieba.analyse.extract_tags(s, withWeight=True):
|
||||
print('%s %s' % (x, w))
|
||||
|
||||
print('-'*40)
|
||||
print(' TextRank')
|
||||
print('-'*40)
|
||||
|
||||
for x, w in jieba.analyse.textrank(s, withWeight=True):
|
||||
print('%s %s' % (x, w))
|
||||
|
||||
print('='*40)
|
||||
print('4. 词性标注')
|
||||
print('-'*40)
|
||||
|
||||
words = jieba.posseg.cut("我爱北京天安门")
|
||||
for w in words:
|
||||
print('%s %s' % (w.word, w.flag))
|
||||
|
||||
print('='*40)
|
||||
print('6. Tokenize: 返回词语在原文的起止位置')
|
||||
print('-'*40)
|
||||
print(' 默认模式')
|
||||
print('-'*40)
|
||||
|
||||
result = jieba.tokenize('永和服装饰品有限公司')
|
||||
for tk in result:
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||||
|
||||
print('-'*40)
|
||||
print(' 搜索模式')
|
||||
print('-'*40)
|
||||
|
||||
result = jieba.tokenize('永和服装饰品有限公司', mode='search')
|
||||
for tk in result:
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||||
|
42
test/test_lock.py
Normal file
42
test/test_lock.py
Normal file
@ -0,0 +1,42 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import jieba
|
||||
import threading
|
||||
|
||||
def inittokenizer(tokenizer, group):
|
||||
print('===> Thread %s:%s started' % (group, threading.current_thread().ident))
|
||||
tokenizer.initialize()
|
||||
print('<=== Thread %s:%s finished' % (group, threading.current_thread().ident))
|
||||
|
||||
tokrs1 = [jieba.Tokenizer() for n in range(5)]
|
||||
tokrs2 = [jieba.Tokenizer('../extra_dict/dict.txt.small') for n in range(5)]
|
||||
|
||||
thr1 = [threading.Thread(target=inittokenizer, args=(tokr, 1)) for tokr in tokrs1]
|
||||
thr2 = [threading.Thread(target=inittokenizer, args=(tokr, 2)) for tokr in tokrs2]
|
||||
for thr in thr1:
|
||||
thr.start()
|
||||
for thr in thr2:
|
||||
thr.start()
|
||||
for thr in thr1:
|
||||
thr.join()
|
||||
for thr in thr2:
|
||||
thr.join()
|
||||
|
||||
del tokrs1, tokrs2
|
||||
|
||||
print('='*40)
|
||||
|
||||
tokr1 = jieba.Tokenizer()
|
||||
tokr2 = jieba.Tokenizer('../extra_dict/dict.txt.small')
|
||||
|
||||
thr1 = [threading.Thread(target=inittokenizer, args=(tokr1, 1)) for n in range(5)]
|
||||
thr2 = [threading.Thread(target=inittokenizer, args=(tokr2, 2)) for n in range(5)]
|
||||
for thr in thr1:
|
||||
thr.start()
|
||||
for thr in thr2:
|
||||
thr.start()
|
||||
for thr in thr1:
|
||||
thr.join()
|
||||
for thr in thr2:
|
||||
thr.join()
|
Loading…
x
Reference in New Issue
Block a user