wraps most globals in classes

API changes:
* class jieba.Tokenizer, jieba.posseg.POSTokenizer
* class jieba.analyse.TFIDF, jieba.analyse.TextRank
* global functions are mapped to jieba.(posseg.)dt, the default (POS)Tokenizer
* multiprocessing only works with jieba.(posseg.)dt
* new lcut, lcut_for_search functions that returns a list
* jieba.analyse.textrank now returns 20 items by default

Tests:
* added test_lock.py to test multithread locking
* demo.py now contains most of the examples in README
This commit is contained in:
Dingyuan Wang 2015-05-09 21:29:05 +08:00
parent e359d08964
commit 94840a734c
9 changed files with 1079 additions and 815 deletions

145
README.md
View File

@ -45,17 +45,19 @@ http://jiebademo.ap01.aws.af.cm/
主要功能 主要功能
======= =======
1) 分词 1. 分词
-------- --------
* `jieba.cut` 方法接受三个输入参数: 需要分词的字符串cut_all 参数用来控制是否采用全模式HMM 参数用来控制是否使用 HMM 模型 * `jieba.cut` 方法接受三个输入参数: 需要分词的字符串cut_all 参数用来控制是否采用全模式HMM 参数用来控制是否使用 HMM 模型
* `jieba.cut_for_search` 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细 * `jieba.cut_for_search` 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
* 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8 * 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
* `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator可以使用 for 循环来获得分词后得到的每一个词语(unicode),也可以用 list(jieba.cut(...)) 转化为 list * `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
* `jieba.lcut` 以及 `jieba.lcut_for_search` 直接返回 list
* `jieba.Tokenizer(dictionary=DEFAULT_DICT)` 新建自定义分词器,可用于同时使用不同词典。`jieba.dt` 为默认分词器,所有全局分词相关函数都是该分词器的映射。
代码示例( 分词 ) 代码示例
```python ```python
#encoding=utf-8 # encoding=utf-8
import jieba import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True) seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
@ -81,7 +83,7 @@ print(", ".join(seg_list))
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
2) 添加自定义词典 2. 添加自定义词典
---------------- ----------------
### 载入词典 ### 载入词典
@ -91,6 +93,8 @@ print(", ".join(seg_list))
* 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频(可省略),最后为词性(可省略),用空格隔开 * 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频(可省略),最后为词性(可省略),用空格隔开
* 词频可省略,使用计算出的能保证分出该词的词频 * 词频可省略,使用计算出的能保证分出该词的词频
* 更改分词器的 tmp_dir 和 cache_file 属性,可指定缓存文件位置,用于受限的文件系统。
* 范例: * 范例:
* 自定义词典https://github.com/fxsjy/jieba/blob/master/test/userdict.txt * 自定义词典https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
@ -128,12 +132,18 @@ print(", ".join(seg_list))
* "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14 * "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
3) 关键词提取 3. 关键词提取
------------- -------------
* jieba.analyse.extract_tags(sentence,topK,withWeight) #需要先 `import jieba.analyse` ### 基于 TF-IDF 算法的关键词抽取
* sentence 为待提取的文本
* topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20 `import jieba.analyse`
* withWeight 为是否一并返回关键词权重值,默认值为 False
* jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
* sentence 为待提取的文本
* topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
* withWeight 为是否一并返回关键词权重值,默认值为 False
* allowPOS 仅包括指定词性的词,默认值为空,即不筛选
* jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例idf_path 为 IDF 频率文件
代码示例 (关键词提取) 代码示例 (关键词提取)
@ -155,37 +165,27 @@ https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
* 用法示例https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py * 用法示例https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py
#### 基于TextRank算法的关键词抽取实现 ### 基于 TextRank 算法的关键词抽取
* jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) 直接使用,接口相同,注意默认过滤词性。
* jieba.analyse.TextRank() 新建自定义 TextRank 实例
算法论文: [TextRank: Bringing Order into Texts](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf) 算法论文: [TextRank: Bringing Order into Texts](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf)
##### 基本思想: #### 基本思想:
1. 将待抽取关键词的文本进行分词 1. 将待抽取关键词的文本进行分词
2. 以固定窗口大小(我选的5可适当调整),词之间的共现关系,构建图 2. 以固定窗口大小(默认为5通过span属性调整),词之间的共现关系,构建图
3. 计算图中节点的PageRank注意是无向带权图 3. 计算图中节点的PageRank注意是无向带权图
##### 基本使用: #### 使用示例:
jieba.analyse.textrank(raw_text)
##### 示例结果: 见 [test/demo.py](https://github.com/fxsjy/jieba/blob/master/test/demo.py)
来自`__main__`的示例结果:
``` 4. 词性标注
吉林 1.0
欧亚 0.864834432786
置业 0.553465925497
实现 0.520660869531
收入 0.379699688954
增资 0.355086023683
子公司 0.349758490263
全资 0.308537396283
城市 0.306103738053
商业 0.304837414946
```
4) : 词性标注
----------- -----------
* 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法 * `jieba.posseg.POSTokenizer(tokenizer=None)` 新建自定义分词器,`tokenizer` 参数可指定内部使用的 `jieba.Tokenizer` 分词器。`jieba.posseg.dt` 为默认词性标注分词器。
* 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。
* 用法示例 * 用法示例
```pycon ```pycon
@ -200,10 +200,10 @@ jieba.analyse.textrank(raw_text)
天安门 ns 天安门 ns
``` ```
5) : 并行分词 5. 并行分词
----------- -----------
* 原理:将目标文本按行分隔后,把各行文本分配到多个 python 进程并行分词,然后归并结果,从而获得分词速度的可观提升 * 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
* 基于 python 自带的 multiprocessing 模块,目前暂不支持 windows * 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows
* 用法: * 用法:
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数 * `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
* `jieba.disable_parallel()` # 关闭并行分词模式 * `jieba.disable_parallel()` # 关闭并行分词模式
@ -212,8 +212,9 @@ jieba.analyse.textrank(raw_text)
* 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。 * 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。
* **注意**:并行分词仅支持默认分词器 `jieba.dt``jieba.posseg.dt`
6) : Tokenize返回词语在原文的起始位置 6. Tokenize返回词语在原文的起止位置
---------------------------------- ----------------------------------
* 注意,输入参数只接受 unicode * 注意,输入参数只接受 unicode
* 默认模式 * 默认模式
@ -235,7 +236,7 @@ word 有限公司 start: 6 end:10
* 搜索模式 * 搜索模式
```python ```python
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search') result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')
for tk in result: for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
``` ```
@ -250,15 +251,15 @@ word 有限公司 start: 6 end:10
``` ```
7) : ChineseAnalyzer for Whoosh 搜索引擎 7. ChineseAnalyzer for Whoosh 搜索引擎
-------------------------------------------- --------------------------------------------
* 引用: `from jieba.analyse import ChineseAnalyzer` * 引用: `from jieba.analyse import ChineseAnalyzer`
* 用法示例https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py * 用法示例https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
8) : 命令行分词 8. 命令行分词
------------------- -------------------
使用示例:`cat news.txt | python -m jieba > cut_result.txt` 使用示例:`python -m jieba news.txt > cut_result.txt`
命令行选项(翻译): 命令行选项(翻译):
@ -310,10 +311,10 @@ word 有限公司 start: 6 end:10
If no filename specified, use STDIN instead. If no filename specified, use STDIN instead.
模块初始化机制的改变:lazy load 从0.28版本开始) 延迟加载机制
------------------------------------------- ------------
jieba 采用延迟加载,"import jieba" 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba也可以手动初始化。 jieba 采用延迟加载,`import jieba``jieba.Tokenizer()` 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba也可以手动初始化。
import jieba import jieba
jieba.initialize() # 手动初始化(可选) jieba.initialize() # 手动初始化(可选)
@ -460,12 +461,15 @@ Algorithm
Main Functions Main Functions
============== ==============
1) : Cut 1. Cut
-------- --------
* The `jieba.cut` function accepts three input parameters: the first parameter is the string to be cut; the second parameter is `cut_all`, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model. * The `jieba.cut` function accepts three input parameters: the first parameter is the string to be cut; the second parameter is `cut_all`, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model.
* `jieba.cut_for_search` accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines. * `jieba.cut_for_search` accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines.
* The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8. * The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8.
* `jieba.cut` and `jieba.cut_for_search` returns an generator, from which you can use a `for` loop to get the segmentation result (in unicode), or `list(jieba.cut( ... ))` to create a list. * `jieba.cut` and `jieba.cut_for_search` returns an generator, from which you can use a `for` loop to get the segmentation result (in unicode).
* `jieba.lcut` and `jieba.lcut_for_search` returns a list.
* `jieba.Tokenizer(dictionary=DEFAULT_DICT)` creates a new customized Tokenizer, which enables you to use different dictionaries at the same time. `jieba.dt` is the default Tokenizer, to which almost all global functions are mapped.
**Code example: segmentation** **Code example: segmentation**
@ -497,7 +501,7 @@ Output:
[Search Engine Mode] 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 [Search Engine Mode] 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
2) : Add a custom dictionary 2. Add a custom dictionary
---------------------------- ----------------------------
### Load dictionary ### Load dictionary
@ -505,6 +509,9 @@ Output:
* Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but adding your own new words can ensure a higher accuracy. * Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but adding your own new words can ensure a higher accuracy.
* Usage `jieba.load_userdict(file_name) # file_name is the path of the custom dictionary` * Usage `jieba.load_userdict(file_name) # file_name is the path of the custom dictionary`
* The dictionary format is the same as that of `analyse/idf.txt`: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space * The dictionary format is the same as that of `analyse/idf.txt`: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space
* The word frequency can be omitted, then a calculated value will be used.
* Change a Tokenizer's `tmp_dir` and `cache_file` to specify the path of the cache file, for using on a restricted file system.
* Example * Example
云计算 5 云计算 5
@ -540,12 +547,16 @@ Example:
「/台中/」/正确/应该/不会/被/切开 「/台中/」/正确/应该/不会/被/切开
``` ```
3) : Keyword Extraction 3. Keyword Extraction
----------------------- -----------------------
* `jieba.analyse.extract_tags(sentence,topK,withWeight) # needs to first import jieba.analyse` `import jieba.analyse`
* `sentence`: the text to be extracted
* `topK`: return how many keywords with the highest TF/IDF weights. The default value is 20 * `jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())`
* `withWeight`: whether return TF/IDF weights with the keywords. The default value is False * `sentence`: the text to be extracted
* `topK`: return how many keywords with the highest TF/IDF weights. The default value is 20
* `withWeight`: whether return TF/IDF weights with the keywords. The default value is False
* `allowPOS`: filter words with which POSs are included. Empty for no filtering.
* `jieba.analyse.TFIDF(idf_path=None)` creates a new TFIDF instance, `idf_path` specifies IDF file path.
Example (keyword extraction) Example (keyword extraction)
@ -565,10 +576,15 @@ Developers can specify their own custom stop words corpus in jieba keyword extra
There's also a [TextRank](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf) implementation available. There's also a [TextRank](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf) implementation available.
Use: `jieba.analyse.textrank(raw_text)`. Use: `jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v'))`
4) : Part of Speech Tagging Note that it filters POS by default.
-----------
`jieba.analyse.TextRank()` creates a new TextRank instance.
4. Part of Speech Tagging
-------------------------
* `jieba.posseg.POSTokenizer(tokenizer=None)` creates a new customized Tokenizer. `tokenizer` specifies the jieba.Tokenizer to internally use. `jieba.posseg.dt` is the default POSTokenizer.
* Tags the POS of each word after segmentation, using labels compatible with ictclas. * Tags the POS of each word after segmentation, using labels compatible with ictclas.
* Example: * Example:
@ -584,8 +600,8 @@ Use: `jieba.analyse.textrank(raw_text)`.
天安门 ns 天安门 ns
``` ```
5) : Parallel Processing 5. Parallel Processing
----------- ----------------------
* Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster. * Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster.
* Based on the multiprocessing module of Python. * Based on the multiprocessing module of Python.
* Usage: * Usage:
@ -597,8 +613,10 @@ Use: `jieba.analyse.textrank(raw_text)`.
* Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version. * Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version.
6) : Tokenize: return words with position * **Note** that parallel processing supports only default tokenizers, `jieba.dt` and `jieba.posseg.dt`.
----------------------------------
6. Tokenize: return words with position
----------------------------------------
* The input must be unicode * The input must be unicode
* Default mode * Default mode
@ -634,13 +652,13 @@ word 有限公司 start: 6 end:10
``` ```
7) : ChineseAnalyzer for Whoosh 7. ChineseAnalyzer for Whoosh
-------------------------------------------- -------------------------------
* `from jieba.analyse import ChineseAnalyzer` * `from jieba.analyse import ChineseAnalyzer`
* Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py * Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
8) : Command Line Interface 8. Command Line Interface
------------------- --------------------------------
$> python -m jieba --help $> python -m jieba --help
usage: python -m jieba [options] filename usage: python -m jieba [options] filename
@ -679,7 +697,8 @@ You can also specify the dictionary (not supported before version 0.28) :
Using Other Dictionaries Using Other Dictionaries
======== ===========================
It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download: It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download:
1. A smaller dictionary for a smaller memory footprint: 1. A smaller dictionary for a smaller memory footprint:

File diff suppressed because it is too large Load Diff

View File

@ -1,103 +1,18 @@
#encoding=utf-8
from __future__ import absolute_import from __future__ import absolute_import
import jieba from .tfidf import TFIDF
import jieba.posseg from .textrank import TextRank
import os
from operator import itemgetter
from .textrank import textrank
try: try:
from .analyzer import ChineseAnalyzer from .analyzer import ChineseAnalyzer
except ImportError: except ImportError:
pass pass
_curpath = os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) default_tfidf = TFIDF()
abs_path = os.path.join(_curpath, "idf.txt") default_textrank = TextRank()
STOP_WORDS = set(( extract_tags = tfidf = default_tfidf.extract_tags
"the","of","is","and","to","in","that","we","for","an","are", set_idf_path = default_tfidf.set_idf_path
"by","be","as","on","with","can","if","from","which","you","it", textrank = default_textrank.extract_tags
"this","then","at","have","all","not","one","has","or","that"
))
class IDFLoader:
def __init__(self):
self.path = ""
self.idf_freq = {}
self.median_idf = 0.0
def set_new_path(self, new_idf_path):
if self.path != new_idf_path:
content = open(new_idf_path, 'rb').read().decode('utf-8')
idf_freq = {}
lines = content.rstrip('\n').split('\n')
for line in lines:
word, freq = line.split(' ')
idf_freq[word] = float(freq)
median_idf = sorted(idf_freq.values())[len(idf_freq)//2]
self.idf_freq = idf_freq
self.median_idf = median_idf
self.path = new_idf_path
def get_idf(self):
return self.idf_freq, self.median_idf
idf_loader = IDFLoader()
idf_loader.set_new_path(abs_path)
def set_idf_path(idf_path):
new_abs_path = os.path.normpath(os.path.join(os.getcwd(), idf_path))
if not os.path.exists(new_abs_path):
raise Exception("jieba: path does not exist: " + new_abs_path)
idf_loader.set_new_path(new_abs_path)
def set_stop_words(stop_words_path): def set_stop_words(stop_words_path):
global STOP_WORDS default_tfidf.set_stop_words(stop_words_path)
abs_path = os.path.normpath(os.path.join(os.getcwd(), stop_words_path)) default_textrank.set_stop_words(stop_words_path)
if not os.path.exists(abs_path):
raise Exception("jieba: path does not exist: " + abs_path)
content = open(abs_path,'rb').read().decode('utf-8')
lines = content.replace("\r", "").split('\n')
for line in lines:
STOP_WORDS.add(line)
def extract_tags(sentence, topK=20, withWeight=False, allowPOS=[]):
"""
Extract keywords from sentence using TF-IDF algorithm.
Parameter:
- topK: return how many top keywords. `None` for all possible words.
- withWeight: if True, return a list of (word, weight);
if False, return a list of words.
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v','nr'].
if the POS of w is not in this list,it will be filtered.
"""
global STOP_WORDS, idf_loader
idf_freq, median_idf = idf_loader.get_idf()
if allowPOS:
allowPOS = frozenset(allowPOS)
words = jieba.posseg.cut(sentence)
else:
words = jieba.cut(sentence)
freq = {}
for w in words:
if allowPOS:
if w.flag not in allowPOS:
continue
else:
w = w.word
if len(w.strip()) < 2 or w.lower() in STOP_WORDS:
continue
freq[w] = freq.get(w, 0.0) + 1.0
total = sum(freq.values())
for k in freq:
freq[k] *= idf_freq.get(k, median_idf) / total
if withWeight:
tags = sorted(freq.items(), key=itemgetter(1), reverse=True)
else:
tags = sorted(freq, key=freq.__getitem__, reverse=True)
if topK:
return tags[:topK]
else:
return tags

View File

@ -1,7 +1,7 @@
#encoding=utf-8 # encoding=utf-8
from __future__ import unicode_literals from __future__ import unicode_literals
from whoosh.analysis import RegexAnalyzer,LowercaseFilter,StopFilter,StemFilter from whoosh.analysis import RegexAnalyzer, LowercaseFilter, StopFilter, StemFilter
from whoosh.analysis import Tokenizer,Token from whoosh.analysis import Tokenizer, Token
from whoosh.lang.porter import stem from whoosh.lang.porter import stem
import jieba import jieba
@ -15,12 +15,14 @@ STOP_WORDS = frozenset(('a', 'an', 'and', 'are', 'as', 'at', 'be', 'by', 'can',
accepted_chars = re.compile(r"[\u4E00-\u9FA5]+") accepted_chars = re.compile(r"[\u4E00-\u9FA5]+")
class ChineseTokenizer(Tokenizer): class ChineseTokenizer(Tokenizer):
def __call__(self, text, **kargs): def __call__(self, text, **kargs):
words = jieba.tokenize(text, mode="search") words = jieba.tokenize(text, mode="search")
token = Token() token = Token()
for (w,start_pos,stop_pos) in words: for (w, start_pos, stop_pos) in words:
if not accepted_chars.match(w) and len(w)<=1: if not accepted_chars.match(w) and len(w) <= 1:
continue continue
token.original = token.text = w token.original = token.text = w
token.pos = start_pos token.pos = start_pos
@ -28,7 +30,8 @@ class ChineseTokenizer(Tokenizer):
token.endchar = stop_pos token.endchar = stop_pos
yield token yield token
def ChineseAnalyzer(stoplist=STOP_WORDS, minsize=1, stemfn=stem, cachesize=50000): def ChineseAnalyzer(stoplist=STOP_WORDS, minsize=1, stemfn=stem, cachesize=50000):
return (ChineseTokenizer() | LowercaseFilter() | return (ChineseTokenizer() | LowercaseFilter() |
StopFilter(stoplist=stoplist,minsize=minsize) | StopFilter(stoplist=stoplist, minsize=minsize) |
StemFilter(stemfn=stemfn, ignore=None,cachesize=cachesize)) StemFilter(stemfn=stemfn, ignore=None, cachesize=cachesize))

View File

@ -3,9 +3,10 @@
from __future__ import absolute_import, unicode_literals from __future__ import absolute_import, unicode_literals
import sys import sys
import collections
from operator import itemgetter from operator import itemgetter
import jieba.posseg as pseg from collections import defaultdict
import jieba.posseg
from .tfidf import KeywordExtractor
from .._compat import * from .._compat import *
@ -13,7 +14,7 @@ class UndirectWeightedGraph:
d = 0.85 d = 0.85
def __init__(self): def __init__(self):
self.graph = collections.defaultdict(list) self.graph = defaultdict(list)
def addEdge(self, start, end, weight): def addEdge(self, start, end, weight):
# use a tuple (start, end, weight) instead of a Edge object # use a tuple (start, end, weight) instead of a Edge object
@ -21,8 +22,8 @@ class UndirectWeightedGraph:
self.graph[end].append((end, start, weight)) self.graph[end].append((end, start, weight))
def rank(self): def rank(self):
ws = collections.defaultdict(float) ws = defaultdict(float)
outSum = collections.defaultdict(float) outSum = defaultdict(float)
wsdef = 1.0 / (len(self.graph) or 1.0) wsdef = 1.0 / (len(self.graph) or 1.0)
for n, out in self.graph.items(): for n, out in self.graph.items():
@ -53,43 +54,51 @@ class UndirectWeightedGraph:
return ws return ws
def textrank(sentence, topK=10, withWeight=False, allowPOS=['ns', 'n', 'vn', 'v']): class TextRank(KeywordExtractor):
"""
Extract keywords from sentence using TextRank algorithm.
Parameter:
- topK: return how many top keywords. `None` for all possible words.
- withWeight: if True, return a list of (word, weight);
if False, return a list of words.
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v'].
if the POS of w is not in this list,it will be filtered.
"""
pos_filt = frozenset(allowPOS)
g = UndirectWeightedGraph()
cm = collections.defaultdict(int)
span = 5
words = list(pseg.cut(sentence))
for i in xrange(len(words)):
if words[i].flag in pos_filt:
for j in xrange(i + 1, i + span):
if j >= len(words):
break
if words[j].flag not in pos_filt:
continue
cm[(words[i].word, words[j].word)] += 1
for terms, w in cm.items(): def __init__(self):
g.addEdge(terms[0], terms[1], w) self.tokenizer = self.postokenizer = jieba.posseg.dt
nodes_rank = g.rank() self.stop_words = self.STOP_WORDS.copy()
if withWeight: self.pos_filt = frozenset(('ns', 'n', 'vn', 'v'))
tags = sorted(nodes_rank.items(), key=itemgetter(1), reverse=True) self.span = 5
else:
tags = sorted(nodes_rank, key=nodes_rank.__getitem__, reverse=True)
if topK:
return tags[:topK]
else:
return tags
if __name__ == '__main__': def pairfilter(self, wp):
s = "此外公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元增资后吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年实现营业收入0万元实现净利润-139.13万元。" return (wp.flag in self.pos_filt and len(wp.word.strip()) >= 2
for x, w in textrank(s, withWeight=True): and wp.word.lower() not in self.stop_words)
print('%s %s' % (x, w))
def textrank(self, sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')):
"""
Extract keywords from sentence using TextRank algorithm.
Parameter:
- topK: return how many top keywords. `None` for all possible words.
- withWeight: if True, return a list of (word, weight);
if False, return a list of words.
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v'].
if the POS of w is not in this list, it will be filtered.
"""
self.pos_filt = frozenset(allowPOS)
g = UndirectWeightedGraph()
cm = defaultdict(int)
words = tuple(self.tokenizer.cut(sentence))
for i, wp in enumerate(words):
if self.pairfilter(wp):
for j in xrange(i + 1, i + self.span):
if j >= len(words):
break
if not self.pairfilter(words[j]):
continue
cm[(wp.word, words[j].word)] += 1
for terms, w in cm.items():
g.addEdge(terms[0], terms[1], w)
nodes_rank = g.rank()
if withWeight:
tags = sorted(nodes_rank.items(), key=itemgetter(1), reverse=True)
else:
tags = sorted(nodes_rank, key=nodes_rank.__getitem__, reverse=True)
if topK:
return tags[:topK]
else:
return tags
extract_tags = textrank

111
jieba/analyse/tfidf.py Executable file
View File

@ -0,0 +1,111 @@
# encoding=utf-8
from __future__ import absolute_import
import os
import jieba
import jieba.posseg
from operator import itemgetter
_get_module_path = lambda path: os.path.normpath(os.path.join(os.getcwd(),
os.path.dirname(__file__), path))
_get_abs_path = jieba._get_abs_path
DEFAULT_IDF = _get_module_path("idf.txt")
class KeywordExtractor(object):
STOP_WORDS = set((
"the", "of", "is", "and", "to", "in", "that", "we", "for", "an", "are",
"by", "be", "as", "on", "with", "can", "if", "from", "which", "you", "it",
"this", "then", "at", "have", "all", "not", "one", "has", "or", "that"
))
def set_stop_words(self, stop_words_path):
abs_path = _get_abs_path(stop_words_path)
if not os.path.isfile(abs_path):
raise Exception("jieba: file does not exist: " + abs_path)
content = open(abs_path, 'rb').read().decode('utf-8')
for line in content.splitlines():
self.stop_words.add(line)
def extract_tags(self, *args, **kwargs):
raise NotImplementedError
class IDFLoader(object):
def __init__(self, idf_path=None):
self.path = ""
self.idf_freq = {}
self.median_idf = 0.0
if idf_path:
self.set_new_path(idf_path)
def set_new_path(self, new_idf_path):
if self.path != new_idf_path:
self.path = new_idf_path
content = open(new_idf_path, 'rb').read().decode('utf-8')
self.idf_freq = {}
for line in content.splitlines():
word, freq = line.strip().split(' ')
self.idf_freq[word] = float(freq)
self.median_idf = sorted(
self.idf_freq.values())[len(self.idf_freq) // 2]
def get_idf(self):
return self.idf_freq, self.median_idf
class TFIDF(KeywordExtractor):
def __init__(self, idf_path=None):
self.tokenizer = jieba.dt
self.postokenizer = jieba.posseg.dt
self.stop_words = self.STOP_WORDS.copy()
self.idf_loader = IDFLoader(idf_path or DEFAULT_IDF)
self.idf_freq, self.median_idf = self.idf_loader.get_idf()
def set_idf_path(self, idf_path):
new_abs_path = _get_abs_path(idf_path)
if not os.path.isfile(new_abs_path):
raise Exception("jieba: file does not exist: " + new_abs_path)
self.idf_loader.set_new_path(new_abs_path)
self.idf_freq, self.median_idf = self.idf_loader.get_idf()
def extract_tags(self, sentence, topK=20, withWeight=False, allowPOS=()):
"""
Extract keywords from sentence using TF-IDF algorithm.
Parameter:
- topK: return how many top keywords. `None` for all possible words.
- withWeight: if True, return a list of (word, weight);
if False, return a list of words.
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v','nr'].
if the POS of w is not in this list,it will be filtered.
"""
if allowPOS:
allowPOS = frozenset(allowPOS)
words = self.postokenizer.cut(sentence)
else:
words = self.tokenizer.cut(sentence)
freq = {}
for w in words:
if allowPOS:
if w.flag not in allowPOS:
continue
else:
w = w.word
if len(w.strip()) < 2 or w.lower() in self.stop_words:
continue
freq[w] = freq.get(w, 0.0) + 1.0
total = sum(freq.values())
for k in freq:
freq[k] *= self.idf_freq.get(k, self.median_idf) / total
if withWeight:
tags = sorted(freq.items(), key=itemgetter(1), reverse=True)
else:
tags = sorted(freq, key=freq.__getitem__, reverse=True)
if topK:
return tags[:topK]
else:
return tags

View File

@ -1,10 +1,9 @@
from __future__ import absolute_import, unicode_literals from __future__ import absolute_import, unicode_literals
import re
import os import os
import jieba import re
import sys import sys
import jieba
import marshal import marshal
from functools import wraps
from .._compat import * from .._compat import *
from .viterbi import viterbi from .viterbi import viterbi
@ -24,23 +23,10 @@ re_num = re.compile("[\.0-9]+")
re_eng1 = re.compile('^[a-zA-Z0-9]$', re.U) re_eng1 = re.compile('^[a-zA-Z0-9]$', re.U)
def load_model(f_name, isJython=True): def load_model(f_name):
_curpath = os.path.normpath( _curpath = os.path.normpath(
os.path.join(os.getcwd(), os.path.dirname(__file__))) os.path.join(os.getcwd(), os.path.dirname(__file__)))
# For Jython
result = {}
with open(f_name, "rb") as f:
for line in f:
line = line.strip()
if not line:
continue
line = line.decode("utf-8")
word, _, tag = line.split(" ")
result[word] = tag
if not isJython:
return result
start_p = {} start_p = {}
abs_path = os.path.join(_curpath, PROB_START_P) abs_path = os.path.join(_curpath, PROB_START_P)
with open(abs_path, 'rb') as f: with open(abs_path, 'rb') as f:
@ -64,29 +50,15 @@ def load_model(f_name, isJython=True):
return state, start_p, trans_p, emit_p, result return state, start_p, trans_p, emit_p, result
if sys.platform.startswith("java"): if sys.platform.startswith("java"):
char_state_tab_P, start_P, trans_P, emit_P, word_tag_tab = load_model( char_state_tab_P, start_P, trans_P, emit_P, word_tag_tab = load_model()
jieba.get_abs_path_dict())
else: else:
from .char_state_tab import P as char_state_tab_P from .char_state_tab import P as char_state_tab_P
from .prob_start import P as start_P from .prob_start import P as start_P
from .prob_trans import P as trans_P from .prob_trans import P as trans_P
from .prob_emit import P as emit_P from .prob_emit import P as emit_P
word_tag_tab = load_model(jieba.get_abs_path_dict(), isJython=False)
def makesure_userdict_loaded(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
if jieba.user_word_tag_tab:
word_tag_tab.update(jieba.user_word_tag_tab)
jieba.user_word_tag_tab = {}
return fn(*args, **kwargs)
return wrapped
class pair(object): class pair(object):
@ -110,154 +82,220 @@ class pair(object):
return self.__unicode__().encode(arg) return self.__unicode__().encode(arg)
def __cut(sentence): class POSTokenizer(object):
prob, pos_list = viterbi(
sentence, char_state_tab_P, start_P, trans_P, emit_P)
begin, nexti = 0, 0
for i, char in enumerate(sentence): def __init__(self, tokenizer=None):
pos = pos_list[i][0] self.tokenizer = tokenizer or jieba.Tokenizer()
if pos == 'B': self.load_word_tag(self.tokenizer.get_abs_path_dict())
begin = i
elif pos == 'E':
yield pair(sentence[begin:i + 1], pos_list[i][1])
nexti = i + 1
elif pos == 'S':
yield pair(char, pos_list[i][1])
nexti = i + 1
if nexti < len(sentence):
yield pair(sentence[nexti:], pos_list[nexti][1])
def __repr__(self):
return '<POSTokenizer tokenizer=%r>' % self.tokenizer
def __cut_detail(sentence): def __getattr__(self, name):
blocks = re_han_detail.split(sentence) if name in ('cut_for_search', 'lcut_for_search', 'tokenize'):
for blk in blocks: # may be possible?
if re_han_detail.match(blk): raise NotImplementedError
for word in __cut(blk): return getattr(self.tokenizer, name)
yield word
else:
tmp = re_skip_detail.split(blk)
for x in tmp:
if x:
if re_num.match(x):
yield pair(x, 'm')
elif re_eng.match(x):
yield pair(x, 'eng')
else:
yield pair(x, 'x')
def initialize(self, dictionary=None):
self.tokenizer.initialize(dictionary)
self.load_word_tag(self.tokenizer.get_abs_path_dict())
def __cut_DAG_NO_HMM(sentence): def load_word_tag(self, f_name):
DAG = jieba.get_DAG(sentence) self.word_tag_tab = {}
route = {} with open(f_name, "rb") as f:
jieba.calc(sentence, DAG, route) for lineno, line in enumerate(f, 1):
x = 0 try:
N = len(sentence) line = line.strip().decode("utf-8")
buf = '' if not line:
while x < N: continue
y = route[x][1] + 1 word, _, tag = line.split(" ")
l_word = sentence[x:y] self.word_tag_tab[word] = tag
if re_eng1.match(l_word): except Exception:
buf += l_word raise ValueError(
x = y 'invalid POS dictionary entry in %s at Line %s: %s' % (f_name, lineno, line))
else:
if buf:
yield pair(buf, 'eng')
buf = ''
yield pair(l_word, word_tag_tab.get(l_word, 'x'))
x = y
if buf:
yield pair(buf, 'eng')
buf = ''
def makesure_userdict_loaded(self):
if self.tokenizer.user_word_tag_tab:
self.word_tag_tab.update(self.tokenizer.user_word_tag_tab)
self.tokenizer.user_word_tag_tab = {}
def __cut_DAG(sentence): def __cut(self, sentence):
DAG = jieba.get_DAG(sentence) prob, pos_list = viterbi(
route = {} sentence, char_state_tab_P, start_P, trans_P, emit_P)
begin, nexti = 0, 0
jieba.calc(sentence, DAG, route) for i, char in enumerate(sentence):
pos = pos_list[i][0]
if pos == 'B':
begin = i
elif pos == 'E':
yield pair(sentence[begin:i + 1], pos_list[i][1])
nexti = i + 1
elif pos == 'S':
yield pair(char, pos_list[i][1])
nexti = i + 1
if nexti < len(sentence):
yield pair(sentence[nexti:], pos_list[nexti][1])
x = 0 def __cut_detail(self, sentence):
buf = '' blocks = re_han_detail.split(sentence)
N = len(sentence) for blk in blocks:
while x < N: if re_han_detail.match(blk):
y = route[x][1] + 1 for word in self.__cut(blk):
l_word = sentence[x:y] yield word
if y - x == 1: else:
buf += l_word tmp = re_skip_detail.split(blk)
else: for x in tmp:
if buf: if x:
if len(buf) == 1: if re_num.match(x):
yield pair(buf, word_tag_tab.get(buf, 'x')) yield pair(x, 'm')
elif not jieba.FREQ.get(buf):
recognized = __cut_detail(buf)
for t in recognized:
yield t
else:
for elem in buf:
yield pair(elem, word_tag_tab.get(elem, 'x'))
buf = ''
yield pair(l_word, word_tag_tab.get(l_word, 'x'))
x = y
if buf:
if len(buf) == 1:
yield pair(buf, word_tag_tab.get(buf, 'x'))
elif not jieba.FREQ.get(buf):
recognized = __cut_detail(buf)
for t in recognized:
yield t
else:
for elem in buf:
yield pair(elem, word_tag_tab.get(elem, 'x'))
def __cut_internal(sentence, HMM=True):
sentence = strdecode(sentence)
blocks = re_han_internal.split(sentence)
if HMM:
__cut_blk = __cut_DAG
else:
__cut_blk = __cut_DAG_NO_HMM
for blk in blocks:
if re_han_internal.match(blk):
for word in __cut_blk(blk):
yield word
else:
tmp = re_skip_internal.split(blk)
for x in tmp:
if re_skip_internal.match(x):
yield pair(x, 'x')
else:
for xx in x:
if re_num.match(xx):
yield pair(xx, 'm')
elif re_eng.match(x): elif re_eng.match(x):
yield pair(xx, 'eng') yield pair(x, 'eng')
else: else:
yield pair(xx, 'x') yield pair(x, 'x')
def __cut_DAG_NO_HMM(self, sentence):
DAG = self.tokenizer.get_DAG(sentence)
route = {}
self.tokenizer.calc(sentence, DAG, route)
x = 0
N = len(sentence)
buf = ''
while x < N:
y = route[x][1] + 1
l_word = sentence[x:y]
if re_eng1.match(l_word):
buf += l_word
x = y
else:
if buf:
yield pair(buf, 'eng')
buf = ''
yield pair(l_word, self.word_tag_tab.get(l_word, 'x'))
x = y
if buf:
yield pair(buf, 'eng')
buf = ''
def __cut_DAG(self, sentence):
DAG = self.tokenizer.get_DAG(sentence)
route = {}
self.tokenizer.calc(sentence, DAG, route)
x = 0
buf = ''
N = len(sentence)
while x < N:
y = route[x][1] + 1
l_word = sentence[x:y]
if y - x == 1:
buf += l_word
else:
if buf:
if len(buf) == 1:
yield pair(buf, self.word_tag_tab.get(buf, 'x'))
elif not self.tokenizer.FREQ.get(buf):
recognized = self.__cut_detail(buf)
for t in recognized:
yield t
else:
for elem in buf:
yield pair(elem, self.word_tag_tab.get(elem, 'x'))
buf = ''
yield pair(l_word, self.word_tag_tab.get(l_word, 'x'))
x = y
if buf:
if len(buf) == 1:
yield pair(buf, self.word_tag_tab.get(buf, 'x'))
elif not self.tokenizer.FREQ.get(buf):
recognized = self.__cut_detail(buf)
for t in recognized:
yield t
else:
for elem in buf:
yield pair(elem, self.word_tag_tab.get(elem, 'x'))
def __cut_internal(self, sentence, HMM=True):
self.makesure_userdict_loaded()
sentence = strdecode(sentence)
blocks = re_han_internal.split(sentence)
if HMM:
cut_blk = self.__cut_DAG
else:
cut_blk = self.__cut_DAG_NO_HMM
for blk in blocks:
if re_han_internal.match(blk):
for word in cut_blk(blk):
yield word
else:
tmp = re_skip_internal.split(blk)
for x in tmp:
if re_skip_internal.match(x):
yield pair(x, 'x')
else:
for xx in x:
if re_num.match(xx):
yield pair(xx, 'm')
elif re_eng.match(x):
yield pair(xx, 'eng')
else:
yield pair(xx, 'x')
def _lcut_internal(self, sentence):
return list(self.__cut_internal(sentence))
def _lcut_internal_no_hmm(self, sentence):
return list(self.__cut_internal(sentence, False))
def cut(self, sentence, HMM=True):
for w in self.__cut_internal(sentence, HMM=HMM):
yield w
def lcut(self, *args, **kwargs):
return list(self.cut(*args, **kwargs))
# default Tokenizer instance
dt = POSTokenizer(jieba.dt)
# global functions
initialize = dt.initialize
def __lcut_internal(sentence): def _lcut_internal(s):
return list(__cut_internal(sentence)) return dt._lcut_internal(s)
def __lcut_internal_no_hmm(sentence): def _lcut_internal_no_hmm(s):
return list(__cut_internal(sentence, False)) return dt._lcut_internal_no_hmm(s)
@makesure_userdict_loaded
def cut(sentence, HMM=True): def cut(sentence, HMM=True):
"""
Global `cut` function that supports parallel processing.
Note that this only works using dt, custom POSTokenizer
instances are not supported.
"""
global dt
if jieba.pool is None: if jieba.pool is None:
for w in __cut_internal(sentence, HMM=HMM): for w in dt.cut(sentence, HMM=HMM):
yield w yield w
else: else:
parts = strdecode(sentence).splitlines(True) parts = strdecode(sentence).splitlines(True)
if HMM: if HMM:
result = jieba.pool.map(__lcut_internal, parts) result = jieba.pool.map(_lcut_internal, parts)
else: else:
result = jieba.pool.map(__lcut_internal_no_hmm, parts) result = jieba.pool.map(_lcut_internal_no_hmm, parts)
for r in result: for r in result:
for w in r: for w in r:
yield w yield w
def lcut(sentence, HMM=True):
return list(cut(sentence, HMM))

View File

@ -4,6 +4,12 @@ import sys
sys.path.append("../") sys.path.append("../")
import jieba import jieba
import jieba.posseg
import jieba.analyse
print('='*40)
print('1. 分词')
print('-'*40)
seg_list = jieba.cut("我来到北京清华大学", cut_all=True) seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list)) # 全模式 print("Full Mode: " + "/ ".join(seg_list)) # 全模式
@ -16,3 +22,63 @@ print(", ".join(seg_list))
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式 seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print(", ".join(seg_list)) print(", ".join(seg_list))
print('='*40)
print('2. 添加自定义词典/调整词典')
print('-'*40)
print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
#如果/放到/post/中将/出错/。
print(jieba.suggest_freq(('', ''), True))
#494
print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
#如果/放到/post/中/将/出错/。
print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
#「/台/中/」/正确/应该/不会/被/切开
print(jieba.suggest_freq('台中', True))
#69
print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
#「/台中/」/正确/应该/不会/被/切开
print('='*40)
print('3. 关键词提取')
print('-'*40)
print(' TF-IDF')
print('-'*40)
s = "此外公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元增资后吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年实现营业收入0万元实现净利润-139.13万元。"
for x, w in jieba.analyse.extract_tags(s, withWeight=True):
print('%s %s' % (x, w))
print('-'*40)
print(' TextRank')
print('-'*40)
for x, w in jieba.analyse.textrank(s, withWeight=True):
print('%s %s' % (x, w))
print('='*40)
print('4. 词性标注')
print('-'*40)
words = jieba.posseg.cut("我爱北京天安门")
for w in words:
print('%s %s' % (w.word, w.flag))
print('='*40)
print('6. Tokenize: 返回词语在原文的起止位置')
print('-'*40)
print(' 默认模式')
print('-'*40)
result = jieba.tokenize('永和服装饰品有限公司')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
print('-'*40)
print(' 搜索模式')
print('-'*40)
result = jieba.tokenize('永和服装饰品有限公司', mode='search')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))

42
test/test_lock.py Normal file
View File

@ -0,0 +1,42 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import jieba
import threading
def inittokenizer(tokenizer, group):
print('===> Thread %s:%s started' % (group, threading.current_thread().ident))
tokenizer.initialize()
print('<=== Thread %s:%s finished' % (group, threading.current_thread().ident))
tokrs1 = [jieba.Tokenizer() for n in range(5)]
tokrs2 = [jieba.Tokenizer('../extra_dict/dict.txt.small') for n in range(5)]
thr1 = [threading.Thread(target=inittokenizer, args=(tokr, 1)) for tokr in tokrs1]
thr2 = [threading.Thread(target=inittokenizer, args=(tokr, 2)) for tokr in tokrs2]
for thr in thr1:
thr.start()
for thr in thr2:
thr.start()
for thr in thr1:
thr.join()
for thr in thr2:
thr.join()
del tokrs1, tokrs2
print('='*40)
tokr1 = jieba.Tokenizer()
tokr2 = jieba.Tokenizer('../extra_dict/dict.txt.small')
thr1 = [threading.Thread(target=inittokenizer, args=(tokr1, 1)) for n in range(5)]
thr2 = [threading.Thread(target=inittokenizer, args=(tokr2, 2)) for n in range(5)]
for thr in thr1:
thr.start()
for thr in thr2:
thr.start()
for thr in thr1:
thr.join()
for thr in thr2:
thr.join()