wraps most globals in classes

API changes:
* class jieba.Tokenizer, jieba.posseg.POSTokenizer
* class jieba.analyse.TFIDF, jieba.analyse.TextRank
* global functions are mapped to jieba.(posseg.)dt, the default (POS)Tokenizer
* multiprocessing only works with jieba.(posseg.)dt
* new lcut, lcut_for_search functions that returns a list
* jieba.analyse.textrank now returns 20 items by default

Tests:
* added test_lock.py to test multithread locking
* demo.py now contains most of the examples in README
This commit is contained in:
Dingyuan Wang 2015-05-09 21:29:05 +08:00
parent e359d08964
commit 94840a734c
9 changed files with 1079 additions and 815 deletions

129
README.md
View File

@ -45,14 +45,16 @@ http://jiebademo.ap01.aws.af.cm/
主要功能
=======
1) 分词
1. 分词
--------
* `jieba.cut` 方法接受三个输入参数: 需要分词的字符串cut_all 参数用来控制是否采用全模式HMM 参数用来控制是否使用 HMM 模型
* `jieba.cut_for_search` 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
* 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
* `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator可以使用 for 循环来获得分词后得到的每一个词语(unicode),也可以用 list(jieba.cut(...)) 转化为 list
* `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
* `jieba.lcut` 以及 `jieba.lcut_for_search` 直接返回 list
* `jieba.Tokenizer(dictionary=DEFAULT_DICT)` 新建自定义分词器,可用于同时使用不同词典。`jieba.dt` 为默认分词器,所有全局分词相关函数都是该分词器的映射。
代码示例( 分词 )
代码示例
```python
# encoding=utf-8
@ -81,7 +83,7 @@ print(", ".join(seg_list))
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
2) 添加自定义词典
2. 添加自定义词典
----------------
### 载入词典
@ -91,6 +93,8 @@ print(", ".join(seg_list))
* 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频(可省略),最后为词性(可省略),用空格隔开
* 词频可省略,使用计算出的能保证分出该词的词频
* 更改分词器的 tmp_dir 和 cache_file 属性,可指定缓存文件位置,用于受限的文件系统。
* 范例:
* 自定义词典https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
@ -128,12 +132,18 @@ print(", ".join(seg_list))
* "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
3) 关键词提取
3. 关键词提取
-------------
* jieba.analyse.extract_tags(sentence,topK,withWeight) #需要先 `import jieba.analyse`
### 基于 TF-IDF 算法的关键词抽取
`import jieba.analyse`
* jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
* sentence 为待提取的文本
* topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
* withWeight 为是否一并返回关键词权重值,默认值为 False
* allowPOS 仅包括指定词性的词,默认值为空,即不筛选
* jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例idf_path 为 IDF 频率文件
代码示例 (关键词提取)
@ -155,37 +165,27 @@ https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
* 用法示例https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py
#### 基于TextRank算法的关键词抽取实现
### 基于 TextRank 算法的关键词抽取
* jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) 直接使用,接口相同,注意默认过滤词性。
* jieba.analyse.TextRank() 新建自定义 TextRank 实例
算法论文: [TextRank: Bringing Order into Texts](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf)
##### 基本思想:
#### 基本思想:
1. 将待抽取关键词的文本进行分词
2. 以固定窗口大小(我选的5可适当调整),词之间的共现关系,构建图
2. 以固定窗口大小(默认为5通过span属性调整),词之间的共现关系,构建图
3. 计算图中节点的PageRank注意是无向带权图
##### 基本使用:
jieba.analyse.textrank(raw_text)
#### 使用示例:
##### 示例结果:
来自`__main__`的示例结果:
见 [test/demo.py](https://github.com/fxsjy/jieba/blob/master/test/demo.py)
```
吉林 1.0
欧亚 0.864834432786
置业 0.553465925497
实现 0.520660869531
收入 0.379699688954
增资 0.355086023683
子公司 0.349758490263
全资 0.308537396283
城市 0.306103738053
商业 0.304837414946
```
4) : 词性标注
4. 词性标注
-----------
* 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法
* `jieba.posseg.POSTokenizer(tokenizer=None)` 新建自定义分词器,`tokenizer` 参数可指定内部使用的 `jieba.Tokenizer` 分词器。`jieba.posseg.dt` 为默认词性标注分词器。
* 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。
* 用法示例
```pycon
@ -200,10 +200,10 @@ jieba.analyse.textrank(raw_text)
天安门 ns
```
5) : 并行分词
5. 并行分词
-----------
* 原理:将目标文本按行分隔后,把各行文本分配到多个 python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
* 基于 python 自带的 multiprocessing 模块,目前暂不支持 windows
* 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
* 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows
* 用法:
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
* `jieba.disable_parallel()` # 关闭并行分词模式
@ -212,8 +212,9 @@ jieba.analyse.textrank(raw_text)
* 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。
* **注意**:并行分词仅支持默认分词器 `jieba.dt``jieba.posseg.dt`
6) : Tokenize返回词语在原文的起始位置
6. Tokenize返回词语在原文的起止位置
----------------------------------
* 注意,输入参数只接受 unicode
* 默认模式
@ -250,15 +251,15 @@ word 有限公司 start: 6 end:10
```
7) : ChineseAnalyzer for Whoosh 搜索引擎
7. ChineseAnalyzer for Whoosh 搜索引擎
--------------------------------------------
* 引用: `from jieba.analyse import ChineseAnalyzer`
* 用法示例https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
8) : 命令行分词
8. 命令行分词
-------------------
使用示例:`cat news.txt | python -m jieba > cut_result.txt`
使用示例:`python -m jieba news.txt > cut_result.txt`
命令行选项(翻译):
@ -310,10 +311,10 @@ word 有限公司 start: 6 end:10
If no filename specified, use STDIN instead.
模块初始化机制的改变:lazy load 从0.28版本开始)
-------------------------------------------
延迟加载机制
------------
jieba 采用延迟加载,"import jieba" 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba也可以手动初始化。
jieba 采用延迟加载,`import jieba``jieba.Tokenizer()` 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba也可以手动初始化。
import jieba
jieba.initialize() # 手动初始化(可选)
@ -460,12 +461,15 @@ Algorithm
Main Functions
==============
1) : Cut
1. Cut
--------
* The `jieba.cut` function accepts three input parameters: the first parameter is the string to be cut; the second parameter is `cut_all`, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model.
* `jieba.cut_for_search` accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines.
* The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8.
* `jieba.cut` and `jieba.cut_for_search` returns an generator, from which you can use a `for` loop to get the segmentation result (in unicode), or `list(jieba.cut( ... ))` to create a list.
* `jieba.cut` and `jieba.cut_for_search` returns an generator, from which you can use a `for` loop to get the segmentation result (in unicode).
* `jieba.lcut` and `jieba.lcut_for_search` returns a list.
* `jieba.Tokenizer(dictionary=DEFAULT_DICT)` creates a new customized Tokenizer, which enables you to use different dictionaries at the same time. `jieba.dt` is the default Tokenizer, to which almost all global functions are mapped.
**Code example: segmentation**
@ -497,7 +501,7 @@ Output:
[Search Engine Mode] 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
2) : Add a custom dictionary
2. Add a custom dictionary
----------------------------
### Load dictionary
@ -505,6 +509,9 @@ Output:
* Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but adding your own new words can ensure a higher accuracy.
* Usage `jieba.load_userdict(file_name) # file_name is the path of the custom dictionary`
* The dictionary format is the same as that of `analyse/idf.txt`: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space
* The word frequency can be omitted, then a calculated value will be used.
* Change a Tokenizer's `tmp_dir` and `cache_file` to specify the path of the cache file, for using on a restricted file system.
* Example
云计算 5
@ -540,12 +547,16 @@ Example:
「/台中/」/正确/应该/不会/被/切开
```
3) : Keyword Extraction
3. Keyword Extraction
-----------------------
* `jieba.analyse.extract_tags(sentence,topK,withWeight) # needs to first import jieba.analyse`
`import jieba.analyse`
* `jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())`
* `sentence`: the text to be extracted
* `topK`: return how many keywords with the highest TF/IDF weights. The default value is 20
* `withWeight`: whether return TF/IDF weights with the keywords. The default value is False
* `allowPOS`: filter words with which POSs are included. Empty for no filtering.
* `jieba.analyse.TFIDF(idf_path=None)` creates a new TFIDF instance, `idf_path` specifies IDF file path.
Example (keyword extraction)
@ -565,10 +576,15 @@ Developers can specify their own custom stop words corpus in jieba keyword extra
There's also a [TextRank](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf) implementation available.
Use: `jieba.analyse.textrank(raw_text)`.
Use: `jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v'))`
4) : Part of Speech Tagging
-----------
Note that it filters POS by default.
`jieba.analyse.TextRank()` creates a new TextRank instance.
4. Part of Speech Tagging
-------------------------
* `jieba.posseg.POSTokenizer(tokenizer=None)` creates a new customized Tokenizer. `tokenizer` specifies the jieba.Tokenizer to internally use. `jieba.posseg.dt` is the default POSTokenizer.
* Tags the POS of each word after segmentation, using labels compatible with ictclas.
* Example:
@ -584,8 +600,8 @@ Use: `jieba.analyse.textrank(raw_text)`.
天安门 ns
```
5) : Parallel Processing
-----------
5. Parallel Processing
----------------------
* Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster.
* Based on the multiprocessing module of Python.
* Usage:
@ -597,8 +613,10 @@ Use: `jieba.analyse.textrank(raw_text)`.
* Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version.
6) : Tokenize: return words with position
----------------------------------
* **Note** that parallel processing supports only default tokenizers, `jieba.dt` and `jieba.posseg.dt`.
6. Tokenize: return words with position
----------------------------------------
* The input must be unicode
* Default mode
@ -634,13 +652,13 @@ word 有限公司 start: 6 end:10
```
7) : ChineseAnalyzer for Whoosh
--------------------------------------------
7. ChineseAnalyzer for Whoosh
-------------------------------
* `from jieba.analyse import ChineseAnalyzer`
* Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
8) : Command Line Interface
-------------------
8. Command Line Interface
--------------------------------
$> python -m jieba --help
usage: python -m jieba [options] filename
@ -679,7 +697,8 @@ You can also specify the dictionary (not supported before version 0.28) :
Using Other Dictionaries
========
===========================
It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download:
1. A smaller dictionary for a smaller memory footprint:

View File

@ -6,47 +6,70 @@ import re
import os
import sys
import time
import tempfile
import marshal
from math import log
import threading
from functools import wraps
import logging
import marshal
import tempfile
import threading
from math import log
from hashlib import md5
from ._compat import *
from . import finalseg
DICTIONARY = "dict.txt"
DICT_LOCK = threading.RLock()
FREQ = {} # to be initialized
total = 0
user_word_tag_tab = {}
initialized = False
pool = None
tmp_dir = None
if os.name == 'nt':
from shutil import move as _replace_file
else:
_replace_file = os.rename
_curpath = os.path.normpath(
os.path.join(os.getcwd(), os.path.dirname(__file__)))
_get_module_path = lambda path: os.path.normpath(os.path.join(os.getcwd(),
os.path.dirname(__file__), path))
_get_abs_path = lambda path: os.path.normpath(os.path.join(os.getcwd(), path))
DEFAULT_DICT = _get_module_path("dict.txt")
log_console = logging.StreamHandler(sys.stderr)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.addHandler(log_console)
default_logger = logging.getLogger(__name__)
default_logger.setLevel(logging.DEBUG)
default_logger.addHandler(log_console)
DICT_WRITING = {}
pool = None
re_eng = re.compile('[a-zA-Z0-9]', re.U)
# \u4E00-\u9FA5a-zA-Z0-9+#&\._ : All non-space characters. Will be handled with re_han
# \r\n|\s : whitespace characters. Will not be handled.
re_han_default = re.compile("([\u4E00-\u9FA5a-zA-Z0-9+#&\._]+)", re.U)
re_skip_default = re.compile("(\r\n|\s)", re.U)
re_han_cut_all = re.compile("([\u4E00-\u9FA5]+)", re.U)
re_skip_cut_all = re.compile("[^a-zA-Z0-9+#\n]", re.U)
def setLogLevel(log_level):
global logger
logger.setLevel(log_level)
default_logger.setLevel(log_level)
class Tokenizer(object):
def gen_pfdict(f_name):
def __init__(self, dictionary=DEFAULT_DICT):
self.lock = threading.RLock()
self.dictionary = _get_abs_path(dictionary)
self.FREQ = {}
self.total = 0
self.user_word_tag_tab = {}
self.initialized = False
self.tmp_dir = None
self.cache_file = None
def __repr__(self):
return '<Tokenizer dictionary=%r>' % self.dictionary
def gen_pfdict(self, f_name):
lfreq = {}
ltotal = 0
with open(f_name, 'rb') as f:
lineno = 0
for line in f.read().rstrip().decode('utf-8').splitlines():
lineno += 1
for lineno, line in enumerate(f, 1):
try:
line = line.strip().decode('utf-8')
word, freq = line.split(' ')[:2]
freq = int(freq)
lfreq[word] = freq
@ -55,77 +78,113 @@ def gen_pfdict(f_name):
wfrag = word[:ch + 1]
if wfrag not in lfreq:
lfreq[wfrag] = 0
except ValueError as e:
logger.debug('%s at line %s %s' % (f_name, lineno, line))
raise e
except ValueError:
raise ValueError(
'invalid dictionary entry in %s at Line %s: %s' % (f_name, lineno, line))
return lfreq, ltotal
def initialize(self, dictionary=None):
if dictionary:
abs_path = _get_abs_path(dictionary)
if self.dictionary == abs_path and self.initialized:
return
else:
self.dictionary = abs_path
self.initialized = False
else:
abs_path = self.dictionary
def initialize(dictionary=None):
global FREQ, total, initialized, DICTIONARY, DICT_LOCK, tmp_dir
if not dictionary:
dictionary = DICTIONARY
with DICT_LOCK:
if initialized:
with self.lock:
try:
with DICT_WRITING[abs_path]:
pass
except KeyError:
pass
if self.initialized:
return
abs_path = os.path.join(_curpath, dictionary)
logger.debug("Building prefix dict from %s ..." % abs_path)
default_logger.debug("Building prefix dict from %s ..." % abs_path)
t1 = time.time()
if self.cache_file:
cache_file = self.cache_file
# default dictionary
if abs_path == os.path.join(_curpath, "dict.txt"):
cache_file = os.path.join(tmp_dir if tmp_dir else tempfile.gettempdir(),"jieba.cache")
elif abs_path == DEFAULT_DICT:
cache_file = "jieba.cache"
else: # custom dictionary
cache_file = os.path.join(tmp_dir if tmp_dir else tempfile.gettempdir(),"jieba.u%s.cache" % md5(
abs_path.encode('utf-8', 'replace')).hexdigest())
cache_file = "jieba.u%s.cache" % md5(
abs_path.encode('utf-8', 'replace')).hexdigest()
cache_file = os.path.join(
self.tmp_dir or tempfile.gettempdir(), cache_file)
load_from_cache_fail = True
if os.path.isfile(cache_file) and os.path.getmtime(cache_file) > os.path.getmtime(abs_path):
logger.debug("Loading model from cache %s" % cache_file)
default_logger.debug(
"Loading model from cache %s" % cache_file)
try:
with open(cache_file, 'rb') as cf:
FREQ, total = marshal.load(cf)
self.FREQ, self.total = marshal.load(cf)
load_from_cache_fail = False
except Exception:
load_from_cache_fail = True
if load_from_cache_fail:
FREQ, total = gen_pfdict(abs_path)
logger.debug("Dumping model to file cache %s" % cache_file)
wlock = DICT_WRITING.get(abs_path, threading.RLock())
DICT_WRITING[abs_path] = wlock
with wlock:
self.FREQ, self.total = self.gen_pfdict(abs_path)
default_logger.debug(
"Dumping model to file cache %s" % cache_file)
try:
fd, fpath = tempfile.mkstemp()
with os.fdopen(fd, 'wb') as temp_cache_file:
marshal.dump((FREQ, total), temp_cache_file)
if os.name == 'nt':
from shutil import move as replace_file
else:
replace_file = os.rename
replace_file(fpath, cache_file)
marshal.dump(
(self.FREQ, self.total), temp_cache_file)
_replace_file(fpath, cache_file)
except Exception:
logger.exception("Dump cache file failed.")
default_logger.exception("Dump cache file failed.")
initialized = True
try:
del DICT_WRITING[abs_path]
except KeyError:
pass
logger.debug("Loading model cost %s seconds." % (time.time() - t1))
logger.debug("Prefix dict has been built succesfully.")
self.initialized = True
default_logger.debug(
"Loading model cost %.3f seconds." % (time.time() - t1))
default_logger.debug("Prefix dict has been built succesfully.")
def check_initialized(self):
if not self.initialized:
self.initialize()
def require_initialized(fn):
def calc(self, sentence, DAG, route):
N = len(sentence)
route[N] = (0, 0)
logtotal = log(self.total)
for idx in xrange(N - 1, -1, -1):
route[idx] = max((log(self.FREQ.get(sentence[idx:x + 1]) or 1) -
logtotal + route[x + 1][0], x) for x in DAG[idx])
@wraps(fn)
def wrapped(*args, **kwargs):
global initialized
if initialized:
return fn(*args, **kwargs)
else:
initialize(DICTIONARY)
return fn(*args, **kwargs)
def get_DAG(self, sentence):
self.check_initialized()
DAG = {}
N = len(sentence)
for k in xrange(N):
tmplist = []
i = k
frag = sentence[k]
while i < N and frag in self.FREQ:
if self.FREQ[frag]:
tmplist.append(i)
i += 1
frag = sentence[k:i + 1]
if not tmplist:
tmplist.append(k)
DAG[k] = tmplist
return DAG
return wrapped
def __cut_all(sentence):
dag = get_DAG(sentence)
def __cut_all(self, sentence):
dag = self.get_DAG(sentence)
old_j = -1
for k, L in iteritems(dag):
if len(L) == 1 and k > old_j:
@ -137,42 +196,10 @@ def __cut_all(sentence):
yield sentence[k:j + 1]
old_j = j
def calc(sentence, DAG, route):
N = len(sentence)
route[N] = (0, 0)
logtotal = log(total)
for idx in xrange(N - 1, -1, -1):
route[idx] = max((log(FREQ.get(sentence[idx:x + 1]) or 1) -
logtotal + route[x + 1][0], x) for x in DAG[idx])
@require_initialized
def get_DAG(sentence):
global FREQ
DAG = {}
N = len(sentence)
for k in xrange(N):
tmplist = []
i = k
frag = sentence[k]
while i < N and frag in FREQ:
if FREQ[frag]:
tmplist.append(i)
i += 1
frag = sentence[k:i + 1]
if not tmplist:
tmplist.append(k)
DAG[k] = tmplist
return DAG
re_eng = re.compile('[a-zA-Z0-9]', re.U)
def __cut_DAG_NO_HMM(sentence):
DAG = get_DAG(sentence)
def __cut_DAG_NO_HMM(self, sentence):
DAG = self.get_DAG(sentence)
route = {}
calc(sentence, DAG, route)
self.calc(sentence, DAG, route)
x = 0
N = len(sentence)
buf = ''
@ -192,11 +219,10 @@ def __cut_DAG_NO_HMM(sentence):
yield buf
buf = ''
def __cut_DAG(sentence):
DAG = get_DAG(sentence)
def __cut_DAG(self, sentence):
DAG = self.get_DAG(sentence)
route = {}
calc(sentence, DAG, route=route)
self.calc(sentence, DAG, route)
x = 0
buf = ''
N = len(sentence)
@ -211,7 +237,7 @@ def __cut_DAG(sentence):
yield buf
buf = ''
else:
if not FREQ.get(buf):
if not self.FREQ.get(buf):
recognized = finalseg.cut(buf)
for t in recognized:
yield t
@ -225,7 +251,7 @@ def __cut_DAG(sentence):
if buf:
if len(buf) == 1:
yield buf
elif not FREQ.get(buf):
elif not self.FREQ.get(buf):
recognized = finalseg.cut(buf)
for t in recognized:
yield t
@ -233,13 +259,7 @@ def __cut_DAG(sentence):
for elem in buf:
yield elem
re_han_default = re.compile("([\u4E00-\u9FA5a-zA-Z0-9+#&\._]+)", re.U)
re_skip_default = re.compile("(\r\n|\s)", re.U)
re_han_cut_all = re.compile("([\u4E00-\u9FA5]+)", re.U)
re_skip_cut_all = re.compile("[^a-zA-Z0-9+#\n]", re.U)
def cut(sentence, cut_all=False, HMM=True):
def cut(self, sentence, cut_all=False, HMM=True):
'''
The main function that segments an entire sentence that contains
Chinese characters into seperated words.
@ -251,22 +271,19 @@ def cut(sentence, cut_all=False, HMM=True):
'''
sentence = strdecode(sentence)
# \u4E00-\u9FA5a-zA-Z0-9+#&\._ : All non-space characters. Will be handled with re_han
# \r\n|\s : whitespace characters. Will not be handled.
if cut_all:
re_han = re_han_cut_all
re_skip = re_skip_cut_all
else:
re_han = re_han_default
re_skip = re_skip_default
blocks = re_han.split(sentence)
if cut_all:
cut_block = __cut_all
cut_block = self.__cut_all
elif HMM:
cut_block = __cut_DAG
cut_block = self.__cut_DAG
else:
cut_block = __cut_DAG_NO_HMM
cut_block = self.__cut_DAG_NO_HMM
blocks = re_han.split(sentence)
for blk in blocks:
if not blk:
continue
@ -284,12 +301,11 @@ def cut(sentence, cut_all=False, HMM=True):
else:
yield x
def cut_for_search(sentence, HMM=True):
def cut_for_search(self, sentence, HMM=True):
"""
Finer segmentation for search engines.
"""
words = cut(sentence, HMM=HMM)
words = self.cut(sentence, HMM=HMM)
for w in words:
if len(w) > 2:
for i in xrange(len(w) - 1):
@ -303,9 +319,28 @@ def cut_for_search(sentence, HMM=True):
yield gram3
yield w
def lcut(self, *args, **kwargs):
return list(self.cut(*args, **kwargs))
@require_initialized
def load_userdict(f):
def lcut_for_search(self, *args, **kwargs):
return list(self.cut_for_search(*args, **kwargs))
_lcut = lcut
_lcut_for_search = lcut_for_search
def _lcut_no_hmm(self, sentence):
return self.lcut(sentence, False, False)
def _lcut_all(self, sentence):
return self.lcut(sentence, True)
def _lcut_for_search_no_hmm(self, sentence):
return self.lcut_for_search(sentence, False)
def get_abs_path_dict(self):
return _get_abs_path(self.dictionary)
def load_userdict(self, f):
'''
Load personalized dict to improve detect rate.
@ -318,56 +353,50 @@ def load_userdict(f):
...
Word type may be ignored
'''
self.check_initialized()
if isinstance(f, string_types):
f = open(f, 'rb')
content = f.read().decode('utf-8').lstrip('\ufeff')
line_no = 0
for line in content.splitlines():
for lineno, ln in enumerate(f, 1):
try:
line_no += 1
line = line.strip()
line = ln.strip().decode('utf-8').lstrip('\ufeff')
if not line:
continue
tup = line.split(" ")
add_word(*tup)
except Exception as e:
logger.debug('%s at line %s %s' % (f.name, line_no, line))
raise e
self.add_word(*tup)
except Exception:
raise ValueError(
'invalid dictionary entry in %s at Line %s: %s' % (
f.name, lineno, line))
@require_initialized
def add_word(word, freq=None, tag=None):
def add_word(self, word, freq=None, tag=None):
"""
Add a word to dictionary.
freq and tag can be omitted, freq defaults to be a calculated value
that ensures the word can be cut out.
"""
global FREQ, total, user_word_tag_tab
self.check_initialized()
word = strdecode(word)
if freq is None:
freq = suggest_freq(word, False)
freq = self.suggest_freq(word, False)
else:
freq = int(freq)
FREQ[word] = freq
total += freq
self.FREQ[word] = freq
self.total += freq
if tag is not None:
user_word_tag_tab[word] = tag
self.user_word_tag_tab[word] = tag
for ch in xrange(len(word)):
wfrag = word[:ch + 1]
if wfrag not in FREQ:
FREQ[wfrag] = 0
if wfrag not in self.FREQ:
self.FREQ[wfrag] = 0
def del_word(word):
def del_word(self, word):
"""
Convenient function for deleting a word.
"""
add_word(word, 0)
self.add_word(word, 0)
@require_initialized
def suggest_freq(segment, tune=False):
def suggest_freq(self, segment, tune=False):
"""
Suggest word frequency to force the characters in a word to be
joined or splitted.
@ -380,101 +409,25 @@ def suggest_freq(segment, tune=False):
Note that HMM may affect the final result. If the result doesn't change,
set HMM=False.
"""
ftotal = float(total)
self.check_initialized()
ftotal = float(self.total)
freq = 1
if isinstance(segment, string_types):
word = segment
for seg in cut(word, HMM=False):
freq *= FREQ.get(seg, 1) / ftotal
freq = max(int(freq*total) + 1, FREQ.get(word, 1))
for seg in self.cut(word, HMM=False):
freq *= self.FREQ.get(seg, 1) / ftotal
freq = max(int(freq * self.total) + 1, self.FREQ.get(word, 1))
else:
segment = tuple(map(strdecode, segment))
word = ''.join(segment)
for seg in segment:
freq *= FREQ.get(seg, 1) / ftotal
freq = min(int(freq*total), FREQ.get(word, 0))
freq *= self.FREQ.get(seg, 1) / ftotal
freq = min(int(freq * self.total), self.FREQ.get(word, 0))
if tune:
add_word(word, freq)
return freq
__ref_cut = cut
__ref_cut_for_search = cut_for_search
def __lcut(sentence):
return list(__ref_cut(sentence, False))
def __lcut_no_hmm(sentence):
return list(__ref_cut(sentence, False, False))
def __lcut_all(sentence):
return list(__ref_cut(sentence, True))
def __lcut_for_search(sentence):
return list(__ref_cut_for_search(sentence))
@require_initialized
def enable_parallel(processnum=None):
global pool, cut, cut_for_search
if os.name == 'nt':
raise Exception("jieba: parallel mode only supports posix system")
from multiprocessing import Pool, cpu_count
if processnum is None:
processnum = cpu_count()
pool = Pool(processnum)
def pcut(sentence, cut_all=False, HMM=True):
parts = strdecode(sentence).splitlines(True)
if cut_all:
result = pool.map(__lcut_all, parts)
elif HMM:
result = pool.map(__lcut, parts)
else:
result = pool.map(__lcut_no_hmm, parts)
for r in result:
for w in r:
yield w
def pcut_for_search(sentence):
parts = strdecode(sentence).splitlines(True)
result = pool.map(__lcut_for_search, parts)
for r in result:
for w in r:
yield w
cut = pcut
cut_for_search = pcut_for_search
def disable_parallel():
global pool, cut, cut_for_search
if pool:
pool.close()
pool = None
cut = __ref_cut
cut_for_search = __ref_cut_for_search
def set_dictionary(dictionary_path):
global initialized, DICTIONARY
with DICT_LOCK:
abs_path = os.path.normpath(os.path.join(os.getcwd(), dictionary_path))
if not os.path.isfile(abs_path):
raise Exception("jieba: file does not exist: " + abs_path)
DICTIONARY = abs_path
initialized = False
def get_abs_path_dict():
return os.path.join(_curpath, DICTIONARY)
def tokenize(unicode_sentence, mode="default", HMM=True):
def tokenize(self, unicode_sentence, mode="default", HMM=True):
"""
Tokenize a sentence and yields tuples of (word, start, end)
@ -484,25 +437,133 @@ def tokenize(unicode_sentence, mode="default", HMM=True):
- HMM: whether to use the Hidden Markov Model.
"""
if not isinstance(unicode_sentence, text_type):
raise Exception("jieba: the input parameter should be unicode.")
raise ValueError("jieba: the input parameter should be unicode.")
start = 0
if mode == 'default':
for w in cut(unicode_sentence, HMM=HMM):
for w in self.cut(unicode_sentence, HMM=HMM):
width = len(w)
yield (w, start, start + width)
start += width
else:
for w in cut(unicode_sentence, HMM=HMM):
for w in self.cut(unicode_sentence, HMM=HMM):
width = len(w)
if len(w) > 2:
for i in xrange(len(w) - 1):
gram2 = w[i:i + 2]
if FREQ.get(gram2):
if self.FREQ.get(gram2):
yield (gram2, start + i, start + i + 2)
if len(w) > 3:
for i in xrange(len(w) - 2):
gram3 = w[i:i + 3]
if FREQ.get(gram3):
if self.FREQ.get(gram3):
yield (gram3, start + i, start + i + 3)
yield (w, start, start + width)
start += width
def set_dictionary(self, dictionary_path):
with self.lock:
abs_path = _get_abs_path(dictionary_path)
if not os.path.isfile(abs_path):
raise Exception("jieba: file does not exist: " + abs_path)
self.dictionary = abs_path
self.initialized = False
# default Tokenizer instance
dt = Tokenizer()
# global functions
FREQ = dt.FREQ
add_word = dt.add_word
calc = dt.calc
cut = dt.cut
lcut = dt.lcut
cut_for_search = dt.cut_for_search
lcut_for_search = dt.lcut_for_search
del_word = dt.del_word
get_DAG = dt.get_DAG
get_abs_path_dict = dt.get_abs_path_dict
initialize = dt.initialize
load_userdict = dt.load_userdict
set_dictionary = dt.set_dictionary
suggest_freq = dt.suggest_freq
tokenize = dt.tokenize
user_word_tag_tab = dt.user_word_tag_tab
def _lcut_all(s):
return dt._lcut_all(s)
def _lcut(s):
return dt._lcut(s)
def _lcut_all(s):
return dt._lcut_all(s)
def _lcut_for_search(s):
return dt._lcut_for_search(s)
def _lcut_for_search_no_hmm(s):
return dt._lcut_for_search_no_hmm(s)
def _pcut(sentence, cut_all=False, HMM=True):
parts = strdecode(sentence).splitlines(True)
if cut_all:
result = pool.map(_lcut_all, parts)
elif HMM:
result = pool.map(_lcut, parts)
else:
result = pool.map(_lcut_no_hmm, parts)
for r in result:
for w in r:
yield w
def _pcut_for_search(sentence, HMM=True):
parts = strdecode(sentence).splitlines(True)
if HMM:
result = pool.map(_lcut_for_search, parts)
else:
result = pool.map(_lcut_for_search_no_hmm, parts)
for r in result:
for w in r:
yield w
def enable_parallel(processnum=None):
"""
Change the module's `cut` and `cut_for_search` functions to the
parallel version.
Note that this only works using dt, custom Tokenizer
instances are not supported.
"""
global pool, dt, cut, cut_for_search
from multiprocessing import cpu_count
if os.name == 'nt':
raise NotImplementedError(
"jieba: parallel mode only supports posix system")
else:
from multiprocessing import Pool
dt.check_initialized()
if processnum is None:
processnum = cpu_count()
pool = Pool(processnum)
cut = _pcut
cut_for_search = _pcut_for_search
def disable_parallel():
global pool, dt, cut, cut_for_search
if pool:
pool.close()
pool = None
cut = dt.cut
cut_for_search = dt.cut_for_search

View File

@ -1,103 +1,18 @@
#encoding=utf-8
from __future__ import absolute_import
import jieba
import jieba.posseg
import os
from operator import itemgetter
from .textrank import textrank
from .tfidf import TFIDF
from .textrank import TextRank
try:
from .analyzer import ChineseAnalyzer
except ImportError:
pass
_curpath = os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
abs_path = os.path.join(_curpath, "idf.txt")
default_tfidf = TFIDF()
default_textrank = TextRank()
STOP_WORDS = set((
"the","of","is","and","to","in","that","we","for","an","are",
"by","be","as","on","with","can","if","from","which","you","it",
"this","then","at","have","all","not","one","has","or","that"
))
class IDFLoader:
def __init__(self):
self.path = ""
self.idf_freq = {}
self.median_idf = 0.0
def set_new_path(self, new_idf_path):
if self.path != new_idf_path:
content = open(new_idf_path, 'rb').read().decode('utf-8')
idf_freq = {}
lines = content.rstrip('\n').split('\n')
for line in lines:
word, freq = line.split(' ')
idf_freq[word] = float(freq)
median_idf = sorted(idf_freq.values())[len(idf_freq)//2]
self.idf_freq = idf_freq
self.median_idf = median_idf
self.path = new_idf_path
def get_idf(self):
return self.idf_freq, self.median_idf
idf_loader = IDFLoader()
idf_loader.set_new_path(abs_path)
def set_idf_path(idf_path):
new_abs_path = os.path.normpath(os.path.join(os.getcwd(), idf_path))
if not os.path.exists(new_abs_path):
raise Exception("jieba: path does not exist: " + new_abs_path)
idf_loader.set_new_path(new_abs_path)
extract_tags = tfidf = default_tfidf.extract_tags
set_idf_path = default_tfidf.set_idf_path
textrank = default_textrank.extract_tags
def set_stop_words(stop_words_path):
global STOP_WORDS
abs_path = os.path.normpath(os.path.join(os.getcwd(), stop_words_path))
if not os.path.exists(abs_path):
raise Exception("jieba: path does not exist: " + abs_path)
content = open(abs_path,'rb').read().decode('utf-8')
lines = content.replace("\r", "").split('\n')
for line in lines:
STOP_WORDS.add(line)
def extract_tags(sentence, topK=20, withWeight=False, allowPOS=[]):
"""
Extract keywords from sentence using TF-IDF algorithm.
Parameter:
- topK: return how many top keywords. `None` for all possible words.
- withWeight: if True, return a list of (word, weight);
if False, return a list of words.
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v','nr'].
if the POS of w is not in this list,it will be filtered.
"""
global STOP_WORDS, idf_loader
idf_freq, median_idf = idf_loader.get_idf()
if allowPOS:
allowPOS = frozenset(allowPOS)
words = jieba.posseg.cut(sentence)
else:
words = jieba.cut(sentence)
freq = {}
for w in words:
if allowPOS:
if w.flag not in allowPOS:
continue
else:
w = w.word
if len(w.strip()) < 2 or w.lower() in STOP_WORDS:
continue
freq[w] = freq.get(w, 0.0) + 1.0
total = sum(freq.values())
for k in freq:
freq[k] *= idf_freq.get(k, median_idf) / total
if withWeight:
tags = sorted(freq.items(), key=itemgetter(1), reverse=True)
else:
tags = sorted(freq, key=freq.__getitem__, reverse=True)
if topK:
return tags[:topK]
else:
return tags
default_tfidf.set_stop_words(stop_words_path)
default_textrank.set_stop_words(stop_words_path)

View File

@ -15,7 +15,9 @@ STOP_WORDS = frozenset(('a', 'an', 'and', 'are', 'as', 'at', 'be', 'by', 'can',
accepted_chars = re.compile(r"[\u4E00-\u9FA5]+")
class ChineseTokenizer(Tokenizer):
def __call__(self, text, **kargs):
words = jieba.tokenize(text, mode="search")
token = Token()
@ -28,6 +30,7 @@ class ChineseTokenizer(Tokenizer):
token.endchar = stop_pos
yield token
def ChineseAnalyzer(stoplist=STOP_WORDS, minsize=1, stemfn=stem, cachesize=50000):
return (ChineseTokenizer() | LowercaseFilter() |
StopFilter(stoplist=stoplist, minsize=minsize) |

View File

@ -3,9 +3,10 @@
from __future__ import absolute_import, unicode_literals
import sys
import collections
from operator import itemgetter
import jieba.posseg as pseg
from collections import defaultdict
import jieba.posseg
from .tfidf import KeywordExtractor
from .._compat import *
@ -13,7 +14,7 @@ class UndirectWeightedGraph:
d = 0.85
def __init__(self):
self.graph = collections.defaultdict(list)
self.graph = defaultdict(list)
def addEdge(self, start, end, weight):
# use a tuple (start, end, weight) instead of a Edge object
@ -21,8 +22,8 @@ class UndirectWeightedGraph:
self.graph[end].append((end, start, weight))
def rank(self):
ws = collections.defaultdict(float)
outSum = collections.defaultdict(float)
ws = defaultdict(float)
outSum = defaultdict(float)
wsdef = 1.0 / (len(self.graph) or 1.0)
for n, out in self.graph.items():
@ -53,7 +54,19 @@ class UndirectWeightedGraph:
return ws
def textrank(sentence, topK=10, withWeight=False, allowPOS=['ns', 'n', 'vn', 'v']):
class TextRank(KeywordExtractor):
def __init__(self):
self.tokenizer = self.postokenizer = jieba.posseg.dt
self.stop_words = self.STOP_WORDS.copy()
self.pos_filt = frozenset(('ns', 'n', 'vn', 'v'))
self.span = 5
def pairfilter(self, wp):
return (wp.flag in self.pos_filt and len(wp.word.strip()) >= 2
and wp.word.lower() not in self.stop_words)
def textrank(self, sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')):
"""
Extract keywords from sentence using TextRank algorithm.
Parameter:
@ -63,19 +76,18 @@ def textrank(sentence, topK=10, withWeight=False, allowPOS=['ns', 'n', 'vn', 'v'
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v'].
if the POS of w is not in this list, it will be filtered.
"""
pos_filt = frozenset(allowPOS)
self.pos_filt = frozenset(allowPOS)
g = UndirectWeightedGraph()
cm = collections.defaultdict(int)
span = 5
words = list(pseg.cut(sentence))
for i in xrange(len(words)):
if words[i].flag in pos_filt:
for j in xrange(i + 1, i + span):
cm = defaultdict(int)
words = tuple(self.tokenizer.cut(sentence))
for i, wp in enumerate(words):
if self.pairfilter(wp):
for j in xrange(i + 1, i + self.span):
if j >= len(words):
break
if words[j].flag not in pos_filt:
if not self.pairfilter(words[j]):
continue
cm[(words[i].word, words[j].word)] += 1
cm[(wp.word, words[j].word)] += 1
for terms, w in cm.items():
g.addEdge(terms[0], terms[1], w)
@ -89,7 +101,4 @@ def textrank(sentence, topK=10, withWeight=False, allowPOS=['ns', 'n', 'vn', 'v'
else:
return tags
if __name__ == '__main__':
s = "此外公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元增资后吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年实现营业收入0万元实现净利润-139.13万元。"
for x, w in textrank(s, withWeight=True):
print('%s %s' % (x, w))
extract_tags = textrank

111
jieba/analyse/tfidf.py Executable file
View File

@ -0,0 +1,111 @@
# encoding=utf-8
from __future__ import absolute_import
import os
import jieba
import jieba.posseg
from operator import itemgetter
_get_module_path = lambda path: os.path.normpath(os.path.join(os.getcwd(),
os.path.dirname(__file__), path))
_get_abs_path = jieba._get_abs_path
DEFAULT_IDF = _get_module_path("idf.txt")
class KeywordExtractor(object):
STOP_WORDS = set((
"the", "of", "is", "and", "to", "in", "that", "we", "for", "an", "are",
"by", "be", "as", "on", "with", "can", "if", "from", "which", "you", "it",
"this", "then", "at", "have", "all", "not", "one", "has", "or", "that"
))
def set_stop_words(self, stop_words_path):
abs_path = _get_abs_path(stop_words_path)
if not os.path.isfile(abs_path):
raise Exception("jieba: file does not exist: " + abs_path)
content = open(abs_path, 'rb').read().decode('utf-8')
for line in content.splitlines():
self.stop_words.add(line)
def extract_tags(self, *args, **kwargs):
raise NotImplementedError
class IDFLoader(object):
def __init__(self, idf_path=None):
self.path = ""
self.idf_freq = {}
self.median_idf = 0.0
if idf_path:
self.set_new_path(idf_path)
def set_new_path(self, new_idf_path):
if self.path != new_idf_path:
self.path = new_idf_path
content = open(new_idf_path, 'rb').read().decode('utf-8')
self.idf_freq = {}
for line in content.splitlines():
word, freq = line.strip().split(' ')
self.idf_freq[word] = float(freq)
self.median_idf = sorted(
self.idf_freq.values())[len(self.idf_freq) // 2]
def get_idf(self):
return self.idf_freq, self.median_idf
class TFIDF(KeywordExtractor):
def __init__(self, idf_path=None):
self.tokenizer = jieba.dt
self.postokenizer = jieba.posseg.dt
self.stop_words = self.STOP_WORDS.copy()
self.idf_loader = IDFLoader(idf_path or DEFAULT_IDF)
self.idf_freq, self.median_idf = self.idf_loader.get_idf()
def set_idf_path(self, idf_path):
new_abs_path = _get_abs_path(idf_path)
if not os.path.isfile(new_abs_path):
raise Exception("jieba: file does not exist: " + new_abs_path)
self.idf_loader.set_new_path(new_abs_path)
self.idf_freq, self.median_idf = self.idf_loader.get_idf()
def extract_tags(self, sentence, topK=20, withWeight=False, allowPOS=()):
"""
Extract keywords from sentence using TF-IDF algorithm.
Parameter:
- topK: return how many top keywords. `None` for all possible words.
- withWeight: if True, return a list of (word, weight);
if False, return a list of words.
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v','nr'].
if the POS of w is not in this list,it will be filtered.
"""
if allowPOS:
allowPOS = frozenset(allowPOS)
words = self.postokenizer.cut(sentence)
else:
words = self.tokenizer.cut(sentence)
freq = {}
for w in words:
if allowPOS:
if w.flag not in allowPOS:
continue
else:
w = w.word
if len(w.strip()) < 2 or w.lower() in self.stop_words:
continue
freq[w] = freq.get(w, 0.0) + 1.0
total = sum(freq.values())
for k in freq:
freq[k] *= self.idf_freq.get(k, self.median_idf) / total
if withWeight:
tags = sorted(freq.items(), key=itemgetter(1), reverse=True)
else:
tags = sorted(freq, key=freq.__getitem__, reverse=True)
if topK:
return tags[:topK]
else:
return tags

View File

@ -1,10 +1,9 @@
from __future__ import absolute_import, unicode_literals
import re
import os
import jieba
import re
import sys
import jieba
import marshal
from functools import wraps
from .._compat import *
from .viterbi import viterbi
@ -24,23 +23,10 @@ re_num = re.compile("[\.0-9]+")
re_eng1 = re.compile('^[a-zA-Z0-9]$', re.U)
def load_model(f_name, isJython=True):
def load_model(f_name):
_curpath = os.path.normpath(
os.path.join(os.getcwd(), os.path.dirname(__file__)))
result = {}
with open(f_name, "rb") as f:
for line in f:
line = line.strip()
if not line:
continue
line = line.decode("utf-8")
word, _, tag = line.split(" ")
result[word] = tag
if not isJython:
return result
# For Jython
start_p = {}
abs_path = os.path.join(_curpath, PROB_START_P)
with open(abs_path, 'rb') as f:
@ -64,29 +50,15 @@ def load_model(f_name, isJython=True):
return state, start_p, trans_p, emit_p, result
if sys.platform.startswith("java"):
char_state_tab_P, start_P, trans_P, emit_P, word_tag_tab = load_model(
jieba.get_abs_path_dict())
char_state_tab_P, start_P, trans_P, emit_P, word_tag_tab = load_model()
else:
from .char_state_tab import P as char_state_tab_P
from .prob_start import P as start_P
from .prob_trans import P as trans_P
from .prob_emit import P as emit_P
word_tag_tab = load_model(jieba.get_abs_path_dict(), isJython=False)
def makesure_userdict_loaded(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
if jieba.user_word_tag_tab:
word_tag_tab.update(jieba.user_word_tag_tab)
jieba.user_word_tag_tab = {}
return fn(*args, **kwargs)
return wrapped
class pair(object):
@ -110,7 +82,45 @@ class pair(object):
return self.__unicode__().encode(arg)
def __cut(sentence):
class POSTokenizer(object):
def __init__(self, tokenizer=None):
self.tokenizer = tokenizer or jieba.Tokenizer()
self.load_word_tag(self.tokenizer.get_abs_path_dict())
def __repr__(self):
return '<POSTokenizer tokenizer=%r>' % self.tokenizer
def __getattr__(self, name):
if name in ('cut_for_search', 'lcut_for_search', 'tokenize'):
# may be possible?
raise NotImplementedError
return getattr(self.tokenizer, name)
def initialize(self, dictionary=None):
self.tokenizer.initialize(dictionary)
self.load_word_tag(self.tokenizer.get_abs_path_dict())
def load_word_tag(self, f_name):
self.word_tag_tab = {}
with open(f_name, "rb") as f:
for lineno, line in enumerate(f, 1):
try:
line = line.strip().decode("utf-8")
if not line:
continue
word, _, tag = line.split(" ")
self.word_tag_tab[word] = tag
except Exception:
raise ValueError(
'invalid POS dictionary entry in %s at Line %s: %s' % (f_name, lineno, line))
def makesure_userdict_loaded(self):
if self.tokenizer.user_word_tag_tab:
self.word_tag_tab.update(self.tokenizer.user_word_tag_tab)
self.tokenizer.user_word_tag_tab = {}
def __cut(self, sentence):
prob, pos_list = viterbi(
sentence, char_state_tab_P, start_P, trans_P, emit_P)
begin, nexti = 0, 0
@ -128,12 +138,11 @@ def __cut(sentence):
if nexti < len(sentence):
yield pair(sentence[nexti:], pos_list[nexti][1])
def __cut_detail(sentence):
def __cut_detail(self, sentence):
blocks = re_han_detail.split(sentence)
for blk in blocks:
if re_han_detail.match(blk):
for word in __cut(blk):
for word in self.__cut(blk):
yield word
else:
tmp = re_skip_detail.split(blk)
@ -146,11 +155,10 @@ def __cut_detail(sentence):
else:
yield pair(x, 'x')
def __cut_DAG_NO_HMM(sentence):
DAG = jieba.get_DAG(sentence)
def __cut_DAG_NO_HMM(self, sentence):
DAG = self.tokenizer.get_DAG(sentence)
route = {}
jieba.calc(sentence, DAG, route)
self.tokenizer.calc(sentence, DAG, route)
x = 0
N = len(sentence)
buf = ''
@ -164,18 +172,17 @@ def __cut_DAG_NO_HMM(sentence):
if buf:
yield pair(buf, 'eng')
buf = ''
yield pair(l_word, word_tag_tab.get(l_word, 'x'))
yield pair(l_word, self.word_tag_tab.get(l_word, 'x'))
x = y
if buf:
yield pair(buf, 'eng')
buf = ''
def __cut_DAG(sentence):
DAG = jieba.get_DAG(sentence)
def __cut_DAG(self, sentence):
DAG = self.tokenizer.get_DAG(sentence)
route = {}
jieba.calc(sentence, DAG, route)
self.tokenizer.calc(sentence, DAG, route)
x = 0
buf = ''
@ -188,41 +195,41 @@ def __cut_DAG(sentence):
else:
if buf:
if len(buf) == 1:
yield pair(buf, word_tag_tab.get(buf, 'x'))
elif not jieba.FREQ.get(buf):
recognized = __cut_detail(buf)
yield pair(buf, self.word_tag_tab.get(buf, 'x'))
elif not self.tokenizer.FREQ.get(buf):
recognized = self.__cut_detail(buf)
for t in recognized:
yield t
else:
for elem in buf:
yield pair(elem, word_tag_tab.get(elem, 'x'))
yield pair(elem, self.word_tag_tab.get(elem, 'x'))
buf = ''
yield pair(l_word, word_tag_tab.get(l_word, 'x'))
yield pair(l_word, self.word_tag_tab.get(l_word, 'x'))
x = y
if buf:
if len(buf) == 1:
yield pair(buf, word_tag_tab.get(buf, 'x'))
elif not jieba.FREQ.get(buf):
recognized = __cut_detail(buf)
yield pair(buf, self.word_tag_tab.get(buf, 'x'))
elif not self.tokenizer.FREQ.get(buf):
recognized = self.__cut_detail(buf)
for t in recognized:
yield t
else:
for elem in buf:
yield pair(elem, word_tag_tab.get(elem, 'x'))
yield pair(elem, self.word_tag_tab.get(elem, 'x'))
def __cut_internal(sentence, HMM=True):
def __cut_internal(self, sentence, HMM=True):
self.makesure_userdict_loaded()
sentence = strdecode(sentence)
blocks = re_han_internal.split(sentence)
if HMM:
__cut_blk = __cut_DAG
cut_blk = self.__cut_DAG
else:
__cut_blk = __cut_DAG_NO_HMM
cut_blk = self.__cut_DAG_NO_HMM
for blk in blocks:
if re_han_internal.match(blk):
for word in __cut_blk(blk):
for word in cut_blk(blk):
yield word
else:
tmp = re_skip_internal.split(blk)
@ -238,26 +245,57 @@ def __cut_internal(sentence, HMM=True):
else:
yield pair(xx, 'x')
def _lcut_internal(self, sentence):
return list(self.__cut_internal(sentence))
def __lcut_internal(sentence):
return list(__cut_internal(sentence))
def _lcut_internal_no_hmm(self, sentence):
return list(self.__cut_internal(sentence, False))
def cut(self, sentence, HMM=True):
for w in self.__cut_internal(sentence, HMM=HMM):
yield w
def lcut(self, *args, **kwargs):
return list(self.cut(*args, **kwargs))
# default Tokenizer instance
dt = POSTokenizer(jieba.dt)
# global functions
initialize = dt.initialize
def __lcut_internal_no_hmm(sentence):
return list(__cut_internal(sentence, False))
def _lcut_internal(s):
return dt._lcut_internal(s)
def _lcut_internal_no_hmm(s):
return dt._lcut_internal_no_hmm(s)
@makesure_userdict_loaded
def cut(sentence, HMM=True):
"""
Global `cut` function that supports parallel processing.
Note that this only works using dt, custom POSTokenizer
instances are not supported.
"""
global dt
if jieba.pool is None:
for w in __cut_internal(sentence, HMM=HMM):
for w in dt.cut(sentence, HMM=HMM):
yield w
else:
parts = strdecode(sentence).splitlines(True)
if HMM:
result = jieba.pool.map(__lcut_internal, parts)
result = jieba.pool.map(_lcut_internal, parts)
else:
result = jieba.pool.map(__lcut_internal_no_hmm, parts)
result = jieba.pool.map(_lcut_internal_no_hmm, parts)
for r in result:
for w in r:
yield w
def lcut(sentence, HMM=True):
return list(cut(sentence, HMM))

View File

@ -4,6 +4,12 @@ import sys
sys.path.append("../")
import jieba
import jieba.posseg
import jieba.analyse
print('='*40)
print('1. 分词')
print('-'*40)
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list)) # 全模式
@ -16,3 +22,63 @@ print(", ".join(seg_list))
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print(", ".join(seg_list))
print('='*40)
print('2. 添加自定义词典/调整词典')
print('-'*40)
print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
#如果/放到/post/中将/出错/。
print(jieba.suggest_freq(('', ''), True))
#494
print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
#如果/放到/post/中/将/出错/。
print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
#「/台/中/」/正确/应该/不会/被/切开
print(jieba.suggest_freq('台中', True))
#69
print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
#「/台中/」/正确/应该/不会/被/切开
print('='*40)
print('3. 关键词提取')
print('-'*40)
print(' TF-IDF')
print('-'*40)
s = "此外公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元增资后吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年实现营业收入0万元实现净利润-139.13万元。"
for x, w in jieba.analyse.extract_tags(s, withWeight=True):
print('%s %s' % (x, w))
print('-'*40)
print(' TextRank')
print('-'*40)
for x, w in jieba.analyse.textrank(s, withWeight=True):
print('%s %s' % (x, w))
print('='*40)
print('4. 词性标注')
print('-'*40)
words = jieba.posseg.cut("我爱北京天安门")
for w in words:
print('%s %s' % (w.word, w.flag))
print('='*40)
print('6. Tokenize: 返回词语在原文的起止位置')
print('-'*40)
print(' 默认模式')
print('-'*40)
result = jieba.tokenize('永和服装饰品有限公司')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
print('-'*40)
print(' 搜索模式')
print('-'*40)
result = jieba.tokenize('永和服装饰品有限公司', mode='search')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))

42
test/test_lock.py Normal file
View File

@ -0,0 +1,42 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import jieba
import threading
def inittokenizer(tokenizer, group):
print('===> Thread %s:%s started' % (group, threading.current_thread().ident))
tokenizer.initialize()
print('<=== Thread %s:%s finished' % (group, threading.current_thread().ident))
tokrs1 = [jieba.Tokenizer() for n in range(5)]
tokrs2 = [jieba.Tokenizer('../extra_dict/dict.txt.small') for n in range(5)]
thr1 = [threading.Thread(target=inittokenizer, args=(tokr, 1)) for tokr in tokrs1]
thr2 = [threading.Thread(target=inittokenizer, args=(tokr, 2)) for tokr in tokrs2]
for thr in thr1:
thr.start()
for thr in thr2:
thr.start()
for thr in thr1:
thr.join()
for thr in thr2:
thr.join()
del tokrs1, tokrs2
print('='*40)
tokr1 = jieba.Tokenizer()
tokr2 = jieba.Tokenizer('../extra_dict/dict.txt.small')
thr1 = [threading.Thread(target=inittokenizer, args=(tokr1, 1)) for n in range(5)]
thr2 = [threading.Thread(target=inittokenizer, args=(tokr2, 2)) for n in range(5)]
for thr in thr1:
thr.start()
for thr in thr2:
thr.start()
for thr in thr1:
thr.join()
for thr in thr2:
thr.join()