add custom dictionary to __main__; update README; slightly optimize textrank

This commit is contained in:
Dingyuan Wang 2014-10-25 12:59:36 +08:00
parent 0049b0c5b4
commit a6119cc995
4 changed files with 367 additions and 235 deletions

511
README.md
View File

@ -5,18 +5,16 @@ jieba
- _Scroll down for English documentation._
Feature
特点
========
* 支持三种分词模式:
* 精确模式,试图将句子最精确地切开,适合文本分析;
* 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
* 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
* 精确模式,试图将句子最精确地切开,适合文本分析;
* 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
* 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
* 支持繁体分词
* 支持自定义词典
在线演示
=========
http://jiebademo.ap01.aws.af.cm/
@ -26,116 +24,98 @@ http://jiebademo.ap01.aws.af.cm/
网站代码https://github.com/fxsjy/jiebademo
Python 2.x 下的安装
===================
安装说明
=======
Python 2.x
-----------
* 全自动安装:`easy_install jieba` 或者 `pip install jieba`
* 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install
* 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录
* 通过 import jieba 来引用
* 通过 `import jieba` 来引用
Python 3.x 下的安装
====================
Python 3.x
-----------
* 目前 master 分支是只支持 Python2.x 的
* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
* Python 3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
git clone https://github.com/fxsjy/jieba.git
git checkout jieba3k
python setup.py install
* 或使用pip3安装 pip3 install jieba3k
结巴分词 Java 版本
================
作者piaolingxue
地址https://github.com/huaban/jieba-analysis
结巴分词 C++ 版本
================
作者Aszxqw
地址https://github.com/aszxqw/cppjieba
结巴分词 Node.js 版本
================
作者Aszxqw
地址https://github.com/aszxqw/nodejieba
结巴分词 Erlang 版本
================
作者falood
https://github.com/falood/exjieba
Algorithm
算法
========
* 基于 Trie 树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图DAG)
* 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
* 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
* 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法
功能 1):分词
==========
* `jieba.cut` 方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2cut_all 参数用来控制是否采用全模式
* `jieba.cut_for_search` 方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
* 注意待分词的字符串可以是gbk字符串、utf-8 字符串或者 unicode
* `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator可以使用 for 循环来获得分词后得到的每一个词语(unicode),也可以用 list(jieba.cut(...))转化为 list
主要功能
=======
1) :分词
--------
* `jieba.cut` 方法接受三个输入参数: 需要分词的字符串cut_all 参数用来控制是否采用全模式HMM 参数用来控制是否使用 HMM 模型
* `jieba.cut_for_search` 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
* 注意:待分词的字符串可以是 GBK 字符串、UTF-8 字符串或者 unicode
* `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator可以使用 for 循环来获得分词后得到的每一个词语(unicode),也可以用 list(jieba.cut(...)) 转化为 list
代码示例( 分词 )
#encoding=utf-8
import jieba
#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print "Full Mode:", "/ ".join(seg_list) # 全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print "Full Mode:", "/ ".join(seg_list) # 全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print "Default Mode:", "/ ".join(seg_list) # 精确模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print "Default Mode:", "/ ".join(seg_list) # 精确模式
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
print ", ".join(seg_list)
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print ", ".join(seg_list)
Output:
输出:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处“杭研”并没有在词典中但是也被Viterbi算法识别出来了)
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处“杭研”并没有在词典中但是也被Viterbi算法识别出来了)
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
功能 2) :添加自定义词典
================
2) :添加自定义词典
----------------
* 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
* 用法: jieba.load_userdict(file_name) # file_name 为自定义词典的路径
* 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开
* 范例:
* 自定义词典https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
* 自定义词典https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
* 用法示例https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
* 用法示例https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
* 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
* 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
* 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
* 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
* "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
功能 3) :关键词提取
================
* jieba.analyse.extract_tags(sentence,topK,withWeight) #需要先 import jieba.analyse
* setence 为待提取的文本
3) :关键词提取
-------------
* jieba.analyse.extract_tags(sentence,topK,withWeight) #需要先 `import jieba.analyse`
* sentence 为待提取的文本
* topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
* withWeight 为是否一并返回关键词权重值,默认值为 False
代码示例 (关键词提取)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
关键词提取所使用逆向文件频率IDF文本语料库可以切换成自定义语料库的路径
@ -153,22 +133,24 @@ Output:
* 用法示例https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py
####基于TextRank算法的关键词抽取实现
[算法论文链接](http://digital.library.unt.edu/ark:/67531/metadc30962/m2/1/high_res_d/Mihalcea-2004-TextRank-Bringing_Order_into_Texts.pdf)
#### 基于TextRank算法的关键词抽取实现
算法论文:
#####基本思想:
[TextRank: Bringing Order into Texts](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf)
##### 基本思想:
1. 将待抽取关键词的文本进行分词
1. 以固定窗口大小(我选的5可适当调整),词之间的共现关系,构建图
1. 计算图中节点的PageRank注意是无向带权图
2. 以固定窗口大小(我选的5可适当调整),词之间的共现关系,构建图
3. 计算图中节点的PageRank注意是无向带权图
#####基本使用:
1. jieba.analyse.textrank.textrank(raw_text),注意导入包的路径。
##### 基本使用:
jieba.analyse.textrank(raw_text)
#####示例结果:
来自__main__的示例结果
##### 示例结果:
来自`__main__`的示例结果:
```shell
```
吉林 100.0
欧亚 86.4592606421
置业 55.3262889963
@ -182,37 +164,37 @@ Output:
```
功能 4) : 词性标注
================
4) : 词性标注
-----------
* 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法
* 用法示例
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for w in words:
... print w.word, w.flag
...
我 r
爱 v
北京 ns
天安门 ns
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for w in words:
... print w.word, w.flag
...
我 r
爱 v
北京 ns
天安门 ns
功能 5) : 并行分词
==================
5) : 并行分词
-----------
* 原理:将目标文本按行分隔后,把各行文本分配到多个 python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
* 基于 python 自带的 multiprocessing 模块,目前暂不支持 windows
* 用法:
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
* `jieba.disable_parallel()` # 关闭并行分词模式
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
* `jieba.disable_parallel()` # 关闭并行分词模式
* 例子:
https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
* 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。
功能 6) : Tokenize返回词语在原文的起始位置
============================================
6) : Tokenize返回词语在原文的起始位置
----------------------------------
* 注意,输入参数只接受 unicode
* 默认模式
@ -248,38 +230,65 @@ word 有限公司 start: 6 end:10
```
功能 7) : ChineseAnalyzer for Whoosh 搜索引擎
============================================
* 引用: `from jieba.analyse import ChineseAnalyzer `
7) : ChineseAnalyzer for Whoosh 搜索引擎
--------------------------------------------
* 引用: `from jieba.analyse import ChineseAnalyzer`
* 用法示例https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
功能 8) : 命令行分词
====================
8) : 命令行分词
-------------------
example:
cat news.txt | python -m jieba > cut_result.txt
使用示例:`cat news.txt | python -m jieba > cut_result.txt`
$> python -m jieba --help
usage: c:\python27\python.exe -m jieba [options] filename
命令行选项(翻译):
Jieba command line interface.
使用: python -m jieba [options] filename
positional arguments:
filename input file
结巴命令行界面。
optional arguments:
-h, --help show this help message and exit
-d [DELIM], --delimiter [DELIM]
use DELIM instead of ' / ' for word delimiter; use a
space if it is without DELIM
-a, --cut-all full pattern cutting
-n, --no-hmm don't use the Hidden Markov Model
-q, --quiet don't print loading messages to stderr
-V, --version show program's version number and exit
固定参数:
filename 输入文件
系统集成
========
1. Solr: https://github.com/sing1ee/jieba-solr
可选参数:
-h, --help 显示此帮助信息并退出
-d [DELIM], --delimiter [DELIM]
使用 DELIM 分隔词语,而不是用默认的' / '。
若不指定 DELIM则使用一个空格分隔。
-D DICT, --dict DICT 使用 DICT 代替默认词典
-u USER_DICT, --user-dict USER_DICT
使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用
-a, --cut-all 全模式分词
-n, --no-hmm 不使用隐含马尔可夫模型
-q, --quiet 不输出载入信息到 STDERR
-V, --version 显示版本信息并退出
如果没有指定文件名,则使用标准输入。
`--help` 选项输出:
$> python -m jieba --help
usage: python -m jieba [options] filename
Jieba command line interface.
positional arguments:
filename input file
optional arguments:
-h, --help show this help message and exit
-d [DELIM], --delimiter [DELIM]
use DELIM instead of ' / ' for word delimiter; or a
space if it is used without DELIM
-D DICT, --dict DICT use DICT as dictionary
-u USER_DICT, --user-dict USER_DICT
use USER_DICT together with the default dictionary or
DICT (if specified)
-a, --cut-all full pattern cutting
-n, --no-hmm don't use the Hidden Markov Model
-q, --quiet don't print loading messages to stderr
-V, --version show program's version number and exit
If no filename specified, use STDIN instead.
其他词典
========
@ -289,13 +298,40 @@ https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
2. 支持繁体分词更好的词典文件
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
下载你所需要的词典然后覆盖jieba/dict.txt 即可或者用 `jieba.set_dictionary('data/dict.txt.big')`
下载你所需要的词典,然后覆盖 jieba/dict.txt 即可或者用 `jieba.set_dictionary('data/dict.txt.big')`
其他语言实现
==========
结巴分词 Java 版本
----------------
作者piaolingxue
地址https://github.com/huaban/jieba-analysis
结巴分词 C++ 版本
----------------
作者Aszxqw
地址https://github.com/aszxqw/cppjieba
结巴分词 Node.js 版本
----------------
作者Aszxqw
地址https://github.com/aszxqw/nodejieba
结巴分词 Erlang 版本
----------------
作者falood
https://github.com/falood/exjieba
系统集成
========
1. Solr: https://github.com/sing1ee/jieba-solr
模块初始化机制的改变:lazy load 从0.28版本开始)
================================================
jieba 采用延迟加载,"import jieba" 不会立即触发词典的加载一旦有必要才开始加载词典构建trie。如果你想手工初始 jieba也可以手动初始化。
jieba 采用延迟加载,"import jieba" 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba也可以手动初始化。
import jieba
jieba.initialize() # 手动初始化(可选)
@ -303,33 +339,29 @@ jieba 采用延迟加载,"import jieba" 不会立即触发词典的加载,
在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:
jieba.set_dictionary('data/dict.txt.big')
例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py
分词速度
=========
* 1.5 MB / Second in Full Mode
* 400 KB / Second in Default Mode
* Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
* 测试环境: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
常见问题
=========
1模型的数据是如何生成的https://github.com/fxsjy/jieba/issues/7
1. 模型的数据是如何生成的https://github.com/fxsjy/jieba/issues/7
2. 这个库的授权是? https://github.com/fxsjy/jieba/issues/2
2这个库的授权是? https://github.com/fxsjy/jieba/issues/2
* 更多问题请点击https://github.com/fxsjy/jieba/issues?sort=updated&state=closed
更多问题请点击https://github.com/fxsjy/jieba/issues?sort=updated&state=closed
Change Log
修订历史
==========
https://github.com/fxsjy/jieba/blob/master/Changelog
--------------------
jieba
========
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
@ -337,114 +369,217 @@ jieba
Features
========
* Support three types of segmentation mode:
* 1) Accurate Mode, attempt to cut the sentence into the most accurate segmentation, which is suitable for text analysis;
* 2) Full Mode, break the words of the sentence into words scanned
* 3) Search Engine Mode, based on the Accurate Mode, with an attempt to cut the long words into several short words, which can enhance the recall rate
* 1) Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis.
* 2) Full Mode gets all the possible words from the sentence. Fast but not accurate.
* 3) Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines.
Usage
========
* Fully automatic installation: `easy_install jieba` or `pip install jieba`
* Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , after extracting run `python setup.py install`
* Manutal installation: place the `jieba` directory in the current directory or python site-packages directory.
* Use `import jieba` to import, which will first build the Trie tree only on first import (takes a few seconds).
* Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run `python setup.py install` after extracting.
* Manual installation: place the `jieba` directory in the current directory or python `site-packages` directory.
* `import jieba`.
Algorithm
========
* Based on the Trie tree structure to achieve efficient word graph scanning; sentences using Chinese characters constitute a directed acyclic graph (DAG)
* Employs memory search to calculate the maximum probability path, in order to identify the maximum tangential points based on word frequency combination
* For unknown words, the character position HMM-based model is used, using the Viterbi algorithm
* Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations.
* Use dynamic programming to find the most probable combination based on the word frequency.
* For unknown words, a HMM-based model is used with the Viterbi algorithm.
Function 1): cut
==========
* The `jieba.cut` method accepts to input parameters: 1) the first parameter is the string that requires segmentation, and the 2) second parameter is `cut_all`, a parameter used to control the segmentation pattern.
* `jieba.cut` returned structure is an iterative generator, where you can use a `for` loop to get the word segmentation (in unicode), or `list(jieba.cut( ... ))` to create a list.
* `jieba.cut_for_search` accpets only on parameter: the string that requires segmentation, and it will cut the sentence into short words
Main Functions
==============
Code example: segmentation
==========
1) : Cut
--------
* The `jieba.cut` function accepts three input parameters: the first parameter is the string to be cut; the second parameter is `cut_all`, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model.
* `jieba.cut` returns an generator, from which you can use a `for` loop to get the segmentation result (in unicode), or `list(jieba.cut( ... ))` to create a list.
* `jieba.cut_for_search` accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines.
#encoding=utf-8
import jieba
**Code example: segmentation**
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print "Full Mode:", "/ ".join(seg_list) # 全模式
#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print "Default Mode:", "/ ".join(seg_list) # 默认模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print "Full Mode:", "/ ".join(seg_list) # 全模式
seg_list = jieba.cut("他来到了网易杭研大厦")
print ", ".join(seg_list)
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print "Default Mode:", "/ ".join(seg_list) # 默认模式
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print ", ".join(seg_list)
seg_list = jieba.cut("他来到了网易杭研大厦")
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print ", ".join(seg_list)
Output:
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
[Search Engine Mode] 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在
, 日本, 京都, 大学, 日本京都大学, 深造
[Search Engine Mode] 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
Function 2): Add a custom dictionary
==========
2) : Add a custom dictionary
----------------------------
* Developers can specify their own custom dictionary to include in the jieba thesaurus. jieba has the ability to identify new words, but adding your own new words can ensure a higher rate of correct segmentation.
* Usage `jieba.load_userdict(file_name) # file_name is a custom dictionary path`
* Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but adding your own new words can ensure a higher accuracy.
* Usage `jieba.load_userdict(file_name) # file_name is the path of the custom dictionary`
* The dictionary format is the same as that of `analyse/idf.txt`: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space
* Example
云计算 5
李小福 2
创新办 3
云计算 5
李小福 2
创新办 3
[Before] 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
[Before] 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
Function 3): Keyword Extraction
================
* `jieba.analyse.extract_tags(sentence,topK) # needs to first import jieba.analyse`
* `setence`: the text to be extracted
* `topK`: To return several TF / IDF weights for the biggest keywords, the default value is 20
3) : Keyword Extraction
-----------------------
* `jieba.analyse.extract_tags(sentence,topK,withWeight) # needs to first import jieba.analyse`
* `sentence`: the text to be extracted
* `topK`: return how many keywords with the highest TF/IDF weights. The default value is 20
* `withWeight`: whether return TF/IDF weights with the keywords. The default value is False
Code sample (keyword extraction)
Example (keyword extraction)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
Developers can specify their own custom IDF corpus in jieba keyword extraction
* Usage `jieba.analyse.set_idf_path(file_name) # file_name is a custom corpus path`
* Usage `jieba.analyse.set_idf_path(file_name) # file_name is the path for the custom corpus`
* Custom Corpus Samplehttps://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big
* Sample Codehttps://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py
Developers can specify their own custom stop words corpus in jieba keyword extraction
* Usage `jieba.analyse.set_stop_words(file_name) # file_name is a custom corpus path`
* Usage `jieba.analyse.set_stop_words(file_name) # file_name is the path for the custom corpus`
* Custom Corpus Samplehttps://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt
* Sample Codehttps://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py
There's also a [TextRank](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf) implementation available.
Use: `jieba.analyse.textrank(raw_text)`.
4) : Part of Speech Tagging
-----------
* Tags the POS of each word after segmentation, using labels compatible with ictclas.
* Example:
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for w in words:
... print w.word, w.flag
...
我 r
爱 v
北京 ns
天安门 ns
5) : Parallel Processing
-----------
* Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster.
* Based on the multiprocessing module of Python.
* Usage:
* `jieba.enable_parallel(4)` # Enable parallel processing. The parameter is the number of processes.
* `jieba.disable_parallel()` # Disable parallel processing.
* Example:
https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
* Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version.
6) : Tokenize: return words with position
----------------------------------
* The input must be unicode
* Default mode
```python
result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
```
```
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限公司 start: 6 end:10
```
* Search mode
```python
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
for tk in result:
print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
```
```
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限 start: 6 end:8
word 公司 start: 8 end:10
word 有限公司 start: 6 end:10
```
7) : ChineseAnalyzer for Whoosh
--------------------------------------------
* `from jieba.analyse import ChineseAnalyzer`
* Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
8) : Command Line Interface
-------------------
$> python -m jieba --help
usage: python -m jieba [options] filename
Jieba command line interface.
positional arguments:
filename input file
optional arguments:
-h, --help show this help message and exit
-d [DELIM], --delimiter [DELIM]
use DELIM instead of ' / ' for word delimiter; or a
space if it is used without DELIM
-D DICT, --dict DICT use DICT as dictionary
-u USER_DICT, --user-dict USER_DICT
use USER_DICT together with the default dictionary or
DICT (if specified)
-a, --cut-all full pattern cutting
-n, --no-hmm don't use the Hidden Markov Model
-q, --quiet don't print loading messages to stderr
-V, --version show program's version number and exit
If no filename specified, use STDIN instead.
Using Other Dictionaries
========
It is possible to supply Jieba with your own custom dictionary, and there are also two dictionaries readily available for download:
It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download:
1. You can employ a smaller dictionary for a smaller memory footprint:
1. A smaller dictionary for a smaller memory footprint:
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
2. There is also a bigger file that has better support for traditional characters (繁體):
2. There is also a bigger dictionary that has better support for traditional Chinese (繁體):
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
By default, an in-between dictionary is used, called `dict.txt` and included in the distribution.
In either case, download the file you want first, and then call `jieba.set_dictionary('data/dict.txt.big')` or just replace the existing `dict.txt`.
In either case, download the file you want, and then call `jieba.set_dictionary('data/dict.txt.big')` or just replace the existing `dict.txt`.
Initialization
========
By default, Jieba employs lazy loading to only build the trie once it is necessary. This takes 1-3 seconds once, after which it is not initialized again. If you want to initialize Jieba manually, you can call:
By default, Jieba don't build the prefix dictionary unless it's necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call:
import jieba
jieba.initialize() # (optional)

View File

@ -6,7 +6,10 @@ from argparse import ArgumentParser
parser = ArgumentParser(usage="%s -m jieba [options] filename" % sys.executable, description="Jieba command line interface.", epilog="If no filename specified, use STDIN instead.")
parser.add_argument("-d", "--delimiter", metavar="DELIM", default=' / ',
nargs='?', const=' ',
help="use DELIM instead of ' / ' for word delimiter; use a space if it is without DELIM")
help="use DELIM instead of ' / ' for word delimiter; or a space if it is used without DELIM")
parser.add_argument("-D", "--dict", help="use DICT as dictionary")
parser.add_argument("-u", "--user-dict",
help="use USER_DICT together with the default dictionary or DICT (if specified)")
parser.add_argument("-a", "--cut-all",
action="store_true", dest="cutall", default=False,
help="full pattern cutting")
@ -15,23 +18,29 @@ parser.add_argument("-n", "--no-hmm", dest="hmm", action="store_false",
parser.add_argument("-q", "--quiet", action="store_true", default=False,
help="don't print loading messages to stderr")
parser.add_argument("-V", '--version', action='version',
version="Jieba " + jieba.__version__)
version="Jieba " + jieba.__version__)
parser.add_argument("filename", nargs='?', help="input file")
args = parser.parse_args()
if args.quiet:
jieba.setLogLevel(60)
jieba.setLogLevel(60)
delim = unicode(args.delimiter)
cutall = args.cutall
hmm = args.hmm
fp = open(args.filename, 'r') if args.filename else sys.stdin
jieba.initialize()
if args.dict:
jieba.initialize(args.dict)
else:
jieba.initialize()
if args.user_dict:
jieba.load_userdict(args.user_dict)
ln = fp.readline()
while ln:
l = ln.rstrip('\r\n')
print(delim.join(jieba.cut(ln.rstrip('\r\n'), cutall, hmm)).encode('utf-8'))
ln = fp.readline()
l = ln.rstrip('\r\n')
print(delim.join(jieba.cut(ln.rstrip('\r\n'), cutall, hmm)).encode('utf-8'))
ln = fp.readline()
fp.close()

View File

@ -5,6 +5,7 @@ try:
from analyzer import ChineseAnalyzer
except ImportError:
pass
from textrank import textrank
_curpath = os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
abs_path = os.path.join(_curpath, "idf.txt")
@ -58,7 +59,7 @@ def set_stop_words(stop_words_path):
for line in lines:
STOP_WORDS.add(line)
def extract_tags(sentence,topK=20,withWeight=False):
def extract_tags(sentence, topK=20, withWeight=False):
global STOP_WORDS
idf_freq, median_idf = idf_loader.get_idf()

View File

@ -5,15 +5,6 @@ import jieba.posseg as pseg
import collections
import sys
class Edge:
def __init__(self, start, end, weight):
self.start = start
self.end = end
self.weight = weight
class UndirectWeightedGraph:
d = 0.85
@ -21,37 +12,32 @@ class UndirectWeightedGraph:
self.graph = collections.defaultdict(list)
def addEdge(self, start, end, weight):
e1 = Edge(start, end, weight)
e2 = Edge(end, start, weight)
self.graph[start].append(e1)
self.graph[end].append(e2)
# use a tuple (start, end, weight) instead of a Edge object
self.graph[start].append((start, end, weight))
self.graph[end].append((end, start, weight))
def rank(self):
ws = collections.defaultdict(float)
outSum = collections.defaultdict(float)
for n, _ in self.graph.items():
ws[n] = 1.0 / len(self.graph)
wsdef = 1.0 / len(self.graph)
for n, out in self.graph.items():
os = 0.0
for e in out:
os += e.weight
outSum[n] = os
ws[n] = wsdef
outSum[n] = sum((e[2] for e in out), 0.0)
for x in xrange(10): # 10 iters
for n, inedges in self.graph.items():
s = 0
for e in inedges:
s += e.weight / outSum[e.end] * ws[e.end]
s += e[2] / outSum[e[1]] * ws[e[1]]
ws[n] = (1 - self.d) + self.d * s
(min_rank, max_rank) = (sys.float_info[0], sys.float_info[3])
for _, w in ws.items():
for w in ws.itervalues():
if w < min_rank:
min_rank = w
if w > max_rank:
elif w > max_rank:
max_rank = w
for n, w in ws.items():
@ -60,22 +46,22 @@ class UndirectWeightedGraph:
return ws
def textrank(raw=None, topk=10):
pos_filt = set(['ns', 'n', 'vn', 'v'])
def textrank(raw, topk=10):
pos_filt = frozenset(('ns', 'n', 'vn', 'v'))
g = UndirectWeightedGraph()
cm = collections.defaultdict(int)
span = 5
words = [x for x in pseg.cut(raw)]
for i in xrange(len(words)):
for j in xrange(i + 1, i + span):
if j >= len(words):
break
if words[i].flag not in pos_filt or words[j].flag not in pos_filt:
continue
cm['%s:%s' % (words[i].word, words[j].word)] += 1
if words[i].flag in pos_filt:
for j in xrange(i + 1, i + span):
if j >= len(words):
break
if words[j].flag not in pos_filt:
continue
cm[(words[i].word, words[j].word)] += 1
for pair, w in cm.items():
terms = pair.split(':')
for terms, w in cm.items():
g.addEdge(terms[0], terms[1], w)
nodes_rank = g.rank()
@ -83,5 +69,6 @@ def textrank(raw=None, topk=10):
return nrs[:topk]
if __name__ == '__main__':
for x, w in textrank("此外公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元增资后吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年实现营业收入0万元实现净利润-139.13万元。"):
s = "此外公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元增资后吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年实现营业收入0万元实现净利润-139.13万元。"
for x, w in textrank(s):
print x, w