diff --git a/.gitignore b/.gitignore index d5e1f8e..8c2c5f4 100644 --- a/.gitignore +++ b/.gitignore @@ -164,3 +164,7 @@ pip-log.txt *.log test/tmp/* +#jython +*.class + +MANIFEST diff --git a/Changelog b/Changelog index 8a563cd..bfa0a1f 100644 --- a/Changelog +++ b/Changelog @@ -1,3 +1,20 @@ +2013-07-01: version 0.31 +1. 修改了代码缩进格式,遵循PEP8标准 +2. 支持Jython解析器,感谢 @piaolingxue +3. 修复中英混合词汇不能识别数字在前词语的Bug +4. 部分代码重构,感谢 @chao78787 +5. 多进程并行分词模式下自动检测CPU个数设置合适的进程数,感谢@linkerlin +6. 修复了0.3版中jieba.extra_tags方法对whoosh模块的错误依赖 + + + +2013-07-01: version 0.30 +========================== +1) 新增jieba.tokenize方法,返回每个词的起始位置 +2) 新增ChineseAnalyzer,用于支持whoosh搜索引擎 +3)添加了更多的中英混合词汇 +4)修改了一些py文件的加载方法,从而支持py2exe,cxfree打包为exe + 2013-06-17: version 0.29.1 ========================== 1) 优化了viterbi算法的代码,分词速度提升15% @@ -25,8 +42,8 @@ 2013-04-27: version 0.28 ======================== 1) 新增词典lazy load功能,用户可以在'import jieba'后再改变词典的路径. 感谢hermanschaaf -2) 显示词典加载异常时错误的词条信息. 感谢neuront -3) 修正了词典被vim编辑后会加载失败的bug. 感谢neuront +2) 显示词典加载异常时错误的词条信息. 感谢neuront +3) 修正了词典被vim编辑后会加载失败的bug. 感谢neuront 2013-04-22: version 0.27 ======================== @@ -63,7 +80,7 @@ 2012-11-28: version 0.22 ======================== 1) 新增jieba.cut_for_search方法, 该方法在精确分词的基础上对“长词”进行再次切分,适用于搜索引擎领域的分词,比精确分词模式有更高的召回率。 -2) 开始支持Python3.x版。 之前一直是只支持Python2.x系列,从这个版本起有一个单独的jieba3k +2) 开始支持Python3.x版。 之前一直是只支持Python2.x系列,从这个版本起有一个单独的jieba3k 2012-11-23: version 0.21 @@ -74,7 +91,7 @@ 2012-11-06: version 0.20 ======================== -1) 新增词性标注功能 +1) 新增词性标注功能 2012-10-25: version 0.19 diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..9d7e66b --- /dev/null +++ b/LICENSE @@ -0,0 +1,20 @@ +The MIT License (MIT) + +Copyright (c) 2013 Sun Junyi + +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal in +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of +the Software, and to permit persons to whom the Software is furnished to do so, +subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS +FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR +COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER +IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. \ No newline at end of file diff --git a/MANIFEST.in b/MANIFEST.in new file mode 100644 index 0000000..344e2f0 --- /dev/null +++ b/MANIFEST.in @@ -0,0 +1,2 @@ +graft README.md +graft Changelog diff --git a/README.md b/README.md index b1e0f42..0a2c9c9 100644 --- a/README.md +++ b/README.md @@ -14,9 +14,9 @@ jieba Feature ======== * 支持三种分词模式: - * 精确模式,试图将句子最精确地切开,适合文本分析; - * 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义; - * 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。 + * 精确模式,试图将句子最精确地切开,适合文本分析; + * 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义; + * 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。 * 支持繁体分词 * 支持自定义词典 @@ -29,19 +29,31 @@ http://jiebademo.ap01.aws.af.cm/ (Powered by Appfog) -Python Version -============== -* 目前master分支是只支持Python2.x 的 -* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k +网站代码:https://github.com/fxsjy/jiebademo -Usage -======== +Python 2.x 下的安装 +=================== * 全自动安装:`easy_install jieba` 或者 `pip install jieba` * 半自动安装:先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install * 手动安装:将jieba目录放置于当前目录或者site-packages目录 * 通过import jieba 来引用 (第一次import时需要构建Trie树,需要几秒时间) + +Python 3.x 下的安装 +==================== +* 目前master分支是只支持Python2.x 的 +* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k + + git clone https://github.com/fxsjy/jieba.git + git checkout jieba3k + python setup.py install + +结巴分词Java版本 +================ +作者:piaolingxue +地址:https://github.com/huaban/jieba-analysis + Algorithm ======== * 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) @@ -76,13 +88,13 @@ Algorithm Output: - 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 + 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 - 【精确模式】: 我/ 来到/ 北京/ 清华大学 + 【精确模式】: 我/ 来到/ 北京/ 清华大学 - 【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了) + 【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了) - 【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 + 【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 功能 2) :添加自定义词典 ================ @@ -92,16 +104,16 @@ Output: * 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开 * 范例: - * 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt - - * 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py - + * 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt - * 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / + * 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py + + + * 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / + + * 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / - * 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / - * "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14 功能 3) :关键词提取 @@ -112,36 +124,80 @@ Output: 代码示例 (关键词提取) - https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py + https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py 功能 4) : 词性标注 ================ * 标注句子分词后每个词的词性,采用和ictclas兼容的标记法 * 用法示例 - >>> import jieba.posseg as pseg - >>> words =pseg.cut("我爱北京天安门") - >>> for w in words: - ... print(w.word,w.flag) - ... - 我 r - 爱 v - 北京 ns - 天安门 ns - + >>> import jieba.posseg as pseg + >>> words = pseg.cut("我爱北京天安门") + >>> for w in words: + ... print w.word, w.flag + ... + 我 r + 爱 v + 北京 ns + 天安门 ns + 功能 5) : 并行分词 ================== * 原理:将目标文本按行分隔后,把各行文本分配到多个python进程并行分词,然后归并结果,从而获得分词速度的可观提升 * 基于python自带的multiprocessing模块,目前暂不支持windows * 用法: - * `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数 - * `jieba.disable_parallel()` # 关闭并行分词模式 + * `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数 + * `jieba.disable_parallel()` # 关闭并行分词模式 * 例子: - https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py + https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py * 实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。 + +功能 6) : Tokenize:返回词语在原文的起始位置 +============================================ +* 注意,输入参数只接受unicode +* 默认模式 + +```python +result = jieba.tokenize('永和服装饰品有限公司') +for tk in result: + print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2])) +``` + +``` +word 永和 start: 0 end:2 +word 服装 start: 2 end:4 +word 饰品 start: 4 end:6 +word 有限公司 start: 6 end:10 + +``` + +* 搜索模式 + +```python +result = jieba.tokenize('永和服装饰品有限公司', mode='search') +for tk in result: + print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2])) +``` + +``` +word 永和 start: 0 end:2 +word 服装 start: 2 end:4 +word 饰品 start: 4 end:6 +word 有限 start: 6 end:8 +word 公司 start: 8 end:10 +word 有限公司 start: 6 end:10 +``` + + +功能 7) : ChineseAnalyzer for Whoosh搜索引擎 +============================================ +* 引用: `from jieba.analyse import ChineseAnalyzer ` +* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py + + 其他词典 ======== 1. 占用内存较小的词典文件 @@ -182,14 +238,14 @@ jieba采用延迟加载,"import jieba"不会立即触发词典的加载,一 常见问题 ========= 1)模型的数据是如何生成的?https://github.com/fxsjy/jieba/issues/7 - + 2)这个库的授权是? https://github.com/fxsjy/jieba/issues/2 - + 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed - + Change Log ========== -http://www.oschina.net/p/jieba/news#list +https://github.com/fxsjy/jieba/blob/master/Changelog jieba ======== @@ -224,30 +280,30 @@ Function 1): cut Code example: segmentation ========== - #encoding=utf-8 - import jieba + #encoding=utf-8 + import jieba - seg_list = jieba.cut("我来到北京清华大学",cut_all=True) - print("Full Mode:", "/ ".join(seg_list)) #全模式 + seg_list = jieba.cut("我来到北京清华大学", cut_all=True) + print("Full Mode:", "/ ".join(seg_list)) # 全模式 - seg_list = jieba.cut("我来到北京清华大学",cut_all=False) - print("Default Mode:", "/ ".join(seg_list)) #默认模式 + seg_list = jieba.cut("我来到北京清华大学", cut_all=False) + print("Default Mode:", "/ ".join(seg_list)) # 默认模式 - seg_list = jieba.cut("他来到了网易杭研大厦") - print(", ".join(seg_list)) + seg_list = jieba.cut("他来到了网易杭研大厦") + print(", ".join(seg_list)) - seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式 - print(", ".join(seg_list)) + seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式 + print(", ".join(seg_list)) Output: - [Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 + [Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 - [Accurate Mode]: 我/ 来到/ 北京/ 清华大学 + [Accurate Mode]: 我/ 来到/ 北京/ 清华大学 - [Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm) + [Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm) - [Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在 + [Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在 , 日本, 京都, 大学, 日本京都大学, 深造 @@ -259,13 +315,13 @@ Function 2): Add a custom dictionary * The dictionary format is the same as that of `analyse/idf.txt`: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space * Example: - 云计算 5 - 李小福 2 - 创新办 3 + 云计算 5 + 李小福 2 + 创新办 3 - 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / + 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / - 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / + 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / Function 3): Keyword Extraction ================ @@ -275,7 +331,7 @@ Function 3): Keyword Extraction Code sample (keyword extraction) - https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py + https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py Using Other Dictionaries ======== @@ -296,10 +352,10 @@ Initialization By default, Jieba employs lazy loading to only build the trie once it is necessary. This takes 1-3 seconds once, after which it is not initialized again. If you want to initialize Jieba manually, you can call: import jieba - jieba.initialize() #(optional) + jieba.initialize() # (optional) You can also specify the dictionary (not supported before version 0.28) : - + jieba.set_dictionary('data/dict.txt.big') Segmentation speed diff --git a/jieba/__init__.py b/jieba/__init__.py index 95c76fe..9817b41 100644 --- a/jieba/__init__.py +++ b/jieba/__init__.py @@ -1,10 +1,9 @@ -from __future__ import with_statement -import re +__version__ = '0.31' +__license__ = 'MIT' -import math +import re import os import sys -import pprint from . import finalseg import time @@ -29,7 +28,7 @@ def gen_trie(f_name): trie = {} ltotal = 0.0 with open(f_name, 'rb') as f: - lineno = 0 + lineno = 0 for line in f.read().rstrip().decode('utf-8').split('\n'): lineno += 1 try: @@ -39,7 +38,7 @@ def gen_trie(f_name): ltotal+=freq p = trie for c in word: - if not c in p: + if c not in p: p[c] ={} p = p[c] p['']='' #ending flag @@ -124,7 +123,7 @@ def __cut_all(sentence): for k,L in dag.items(): if len(L)==1 and k>old_j: yield sentence[k:L[0]+1] - old_j = L[0] + old_j = L[0] else: for j in L: if j>k: @@ -150,7 +149,7 @@ def get_DAG(sentence): if c in p: p = p[c] if '' in p: - if not i in DAG: + if i not in DAG: DAG[i]=[] DAG[i].append(j) j+=1 @@ -163,7 +162,7 @@ def get_DAG(sentence): i+=1 j=i for i in range(len(sentence)): - if not i in DAG: + if i not in DAG: DAG[i] =[i] return DAG @@ -186,7 +185,7 @@ def __cut_DAG(sentence): yield buf buf='' else: - if not (buf in FREQ): + if (buf not in FREQ): regognized = finalseg.cut(buf) for t in regognized: yield t @@ -194,14 +193,14 @@ def __cut_DAG(sentence): for elem in buf: yield elem buf='' - yield l_word + yield l_word x =y if len(buf)>0: if len(buf)==1: yield buf else: - if not (buf in FREQ): + if (buf not in FREQ): regognized = finalseg.cut(buf) for t in regognized: yield t @@ -210,7 +209,7 @@ def __cut_DAG(sentence): yield elem def cut(sentence,cut_all=False): - if( type(sentence) is bytes): + if isinstance(sentence, bytes): try: sentence = sentence.decode('utf-8') except UnicodeDecodeError: @@ -227,8 +226,9 @@ def cut(sentence,cut_all=False): if cut_all: cut_block = __cut_all for blk in blocks: + if len(blk)==0: + continue if re_han.match(blk): - #pprint.pprint(__cut_DAG(blk)) for word in cut_block(blk): yield word else: @@ -284,7 +284,7 @@ def add_word(word, freq, tag=None): user_word_tag_tab[word] = tag.strip() p = trie for c in word: - if not c in p: + if c not in p: p[c] = {} p = p[c] p[''] = '' # ending flag @@ -299,19 +299,23 @@ def __lcut_all(sentence): def __lcut_for_search(sentence): return list(__ref_cut_for_search(sentence)) + @require_initialized -def enable_parallel(processnum): +def enable_parallel(processnum=None): global pool,cut,cut_for_search if os.name=='nt': - raise Exception("parallel mode only supports posix system") - - from multiprocessing import Pool + raise Exception("jieba: parallel mode only supports posix system") + if sys.version_info[0]==2 and sys.version_info[1]<6: + raise Exception("jieba: the parallel feature needs Python version>2.5 ") + from multiprocessing import Pool,cpu_count + if processnum==None: + processnum = cpu_count() pool = Pool(processnum) def pcut(sentence,cut_all=False): parts = re.compile(b'([\r\n]+)').split(sentence) if cut_all: - result = pool.map(__lcut_all,parts) + result = pool.map(__lcut_all,parts) else: result = pool.map(__lcut,parts) for r in result: @@ -341,7 +345,7 @@ def set_dictionary(dictionary_path): with DICT_LOCK: abs_path = os.path.normpath( os.path.join( os.getcwd(), dictionary_path ) ) if not os.path.exists(abs_path): - raise Exception("path does not exists:" + abs_path) + raise Exception("jieba: path does not exists:" + abs_path) DICTIONARY = abs_path initialized = False @@ -353,8 +357,8 @@ def get_abs_path_dict(): def tokenize(unicode_sentence,mode="default"): #mode ("default" or "search") if not isinstance(unicode_sentence, str): - raise Exception("jieba: the input parameter should string.") - start = 0 + raise Exception("jieba: the input parameter should unicode.") + start = 0 if mode=='default': for w in cut(unicode_sentence): width = len(w) diff --git a/jieba/analyse/__init__.py b/jieba/analyse/__init__.py index 4e7f46a..daccded 100644 --- a/jieba/analyse/__init__.py +++ b/jieba/analyse/__init__.py @@ -2,9 +2,9 @@ import jieba import os try: - from analyzer import ChineseAnalyzer + from analyzer import ChineseAnalyzer except ImportError: - pass + pass _curpath=os.path.normpath( os.path.join( os.getcwd(), os.path.dirname(__file__) ) ) f_name = os.path.join(_curpath,"idf.txt") diff --git a/jieba/analyse/analyzer.py b/jieba/analyse/analyzer.py index 04216b4..206fcfe 100644 --- a/jieba/analyse/analyzer.py +++ b/jieba/analyse/analyzer.py @@ -1,6 +1,6 @@ #encoding=utf-8 from whoosh.analysis import RegexAnalyzer,LowercaseFilter,StopFilter -from whoosh.analysis import Tokenizer,Token +from whoosh.analysis import Tokenizer,Token import jieba import re @@ -31,4 +31,4 @@ class ChineseTokenizer(Tokenizer): yield token def ChineseAnalyzer(stoplist=STOP_WORDS,minsize=1): - return ChineseTokenizer() | LowercaseFilter() | StopFilter(stoplist=stoplist,minsize=minsize) \ No newline at end of file + return ChineseTokenizer() | LowercaseFilter() | StopFilter(stoplist=stoplist,minsize=minsize) diff --git a/jieba/finalseg/__init__.py b/jieba/finalseg/__init__.py index 8590743..7c70d00 100644 --- a/jieba/finalseg/__init__.py +++ b/jieba/finalseg/__init__.py @@ -1,12 +1,15 @@ import re import os -from math import log -from . import prob_start -from . import prob_trans -from . import prob_emit +import marshal +import sys MIN_FLOAT=-3.14e100 +PROB_START_P = "prob_start.p" +PROB_TRANS_P = "prob_trans.p" +PROB_EMIT_P = "prob_emit.p" + + PrevStatus = { 'B':('E','S'), 'M':('M','B'), @@ -14,6 +17,35 @@ PrevStatus = { 'E':('B','M') } +def load_model(): + _curpath=os.path.normpath( os.path.join( os.getcwd(), os.path.dirname(__file__) ) ) + + start_p = {} + abs_path = os.path.join(_curpath, PROB_START_P) + with open(abs_path, mode='rb') as f: + start_p = marshal.load(f) + f.closed + + trans_p = {} + abs_path = os.path.join(_curpath, PROB_TRANS_P) + with open(abs_path, 'rb') as f: + trans_p = marshal.load(f) + f.closed + + emit_p = {} + abs_path = os.path.join(_curpath, PROB_EMIT_P) + with file(abs_path, 'rb') as f: + emit_p = marshal.load(f) + f.closed + + return start_p, trans_p, emit_p + +if sys.platform.startswith("java"): + start_P, trans_P, emit_P = load_model() +else: + import prob_start,prob_trans,prob_emit + start_P, trans_P, emit_P = prob_start.P, prob_trans.P, prob_emit.P + def viterbi(obs, states, start_p, trans_p, emit_p): V = [{}] #tabular path = {} @@ -29,14 +61,15 @@ def viterbi(obs, states, start_p, trans_p, emit_p): V[t][y] =prob newpath[y] = path[state] + [y] path = newpath - + (prob, state) = max([(V[len(obs) - 1][y], y) for y in ('E','S')]) - + return (prob, path[state]) def __cut(sentence): - prob, pos_list = viterbi(sentence,('B','M','E','S'), prob_start.P, prob_trans.P, prob_emit.P) + global emit_P + prob, pos_list = viterbi(sentence,('B','M','E','S'), start_P, trans_P, emit_P) begin, next = 0,0 #print pos_list, sentence for i,char in enumerate(sentence): diff --git a/jieba/finalseg/prob_emit.p b/jieba/finalseg/prob_emit.p new file mode 100644 index 0000000..6552b5a Binary files /dev/null and b/jieba/finalseg/prob_emit.p differ diff --git a/jieba/finalseg/prob_start.p b/jieba/finalseg/prob_start.p new file mode 100644 index 0000000..4f7c5ed Binary files /dev/null and b/jieba/finalseg/prob_start.p differ diff --git a/jieba/finalseg/prob_trans.p b/jieba/finalseg/prob_trans.p new file mode 100644 index 0000000..d6d36a3 Binary files /dev/null and b/jieba/finalseg/prob_trans.p differ diff --git a/jieba/posseg/__init__.py b/jieba/posseg/__init__.py index bc680df..16a5e7d 100644 --- a/jieba/posseg/__init__.py +++ b/jieba/posseg/__init__.py @@ -3,29 +3,62 @@ import os from . import viterbi import jieba import sys -from . import prob_start -from . import prob_trans -from . import prob_emit -from . import char_state_tab +import marshal default_encoding = sys.getfilesystemencoding() -def load_model(f_name): +PROB_START_P = "prob_start.p" +PROB_TRANS_P = "prob_trans.p" +PROB_EMIT_P = "prob_emit.p" +CHAR_STATE_TAB_P = "char_state_tab.p" + +def load_model(f_name,isJython=True): _curpath=os.path.normpath( os.path.join( os.getcwd(), os.path.dirname(__file__) ) ) - prob_p_path = os.path.join(_curpath,f_name) - if f_name.endswith(".py"): - return eval(open(prob_p_path,"rb").read()) - else: - result = {} + + result = {} + with file(f_name, "rb") as f: for line in open(f_name,"rb"): line = line.strip() if line=="":continue line = line.decode("utf-8") word, _, tag = line.split(" ") result[word]=tag + f.closed + if not isJython: return result -word_tag_tab = load_model(jieba.get_abs_path_dict()) + start_p = {} + abs_path = os.path.join(_curpath, PROB_START_P) + with open(abs_path, mode='rb') as f: + start_p = marshal.load(f) + f.closed + + trans_p = {} + abs_path = os.path.join(_curpath, PROB_TRANS_P) + with open(abs_path, 'rb') as f: + trans_p = marshal.load(f) + f.closed + + emit_p = {} + abs_path = os.path.join(_curpath, PROB_EMIT_P) + with file(abs_path, 'rb') as f: + emit_p = marshal.load(f) + f.closed + + state = {} + abs_path = os.path.join(_curpath, CHAR_STATE_TAB_P) + with file(abs_path, 'rb') as f: + state = marshal.load(f) + f.closed + + return state, start_p, trans_p, emit_p, result + +if sys.platform.startswith("java"): + char_state_tab_P, start_P, trans_P, emit_P, word_tag_tab = load_model(jieba.get_abs_path_dict()) +else: + import char_state_tab, prob_start, prob_trans, prob_emit + char_state_tab_P, start_P, trans_P, emit_P = char_state_tab.P, prob_start.P, prob_trans.P, prob_emit.P + word_tag_tab = load_model(jieba.get_abs_path_dict(),isJython=False) if jieba.user_word_tag_tab: word_tag_tab.update(jieba.user_word_tag_tab) @@ -48,7 +81,7 @@ class pair(object): return self.__unicode__().encode(arg) def __cut(sentence): - prob, pos_list = viterbi.viterbi(sentence,char_state_tab.P, prob_start.P, prob_trans.P, prob_emit.P) + prob, pos_list = viterbi.viterbi(sentence,char_state_tab_P, start_P, trans_P, emit_P) begin, next = 0,0 for i,char in enumerate(sentence): @@ -88,7 +121,7 @@ def __cut_detail(sentence): def __cut_DAG(sentence): DAG = jieba.get_DAG(sentence) route ={} - + jieba.calc(sentence,DAG,0,route=route) x = 0 @@ -105,7 +138,7 @@ def __cut_DAG(sentence): yield pair(buf,word_tag_tab.get(buf,'x')) buf='' else: - if not (buf in jieba.FREQ): + if (buf not in jieba.FREQ): regognized = __cut_detail(buf) for t in regognized: yield t @@ -120,7 +153,7 @@ def __cut_DAG(sentence): if len(buf)==1: yield pair(buf,word_tag_tab.get(buf,'x')) else: - if not (buf in jieba.FREQ): + if (buf not in jieba.FREQ): regognized = __cut_detail(buf) for t in regognized: yield t @@ -129,7 +162,7 @@ def __cut_DAG(sentence): yield pair(elem,word_tag_tab.get(elem,'x')) def __cut_internal(sentence): - if not ( type(sentence) is str): + if not isinstance(sentence, str): try: sentence = sentence.decode('utf-8') except: @@ -166,7 +199,7 @@ def cut(sentence): yield w else: parts = re.compile('([\r\n]+)').split(sentence) - result = jieba.pool.map(__lcut_internal,parts) + result = jieba.pool.map(__lcut_internal,parts) for r in result: for w in r: yield w diff --git a/jieba/posseg/char_state_tab.p b/jieba/posseg/char_state_tab.p new file mode 100644 index 0000000..600b68c Binary files /dev/null and b/jieba/posseg/char_state_tab.p differ diff --git a/jieba/posseg/prob_emit.p b/jieba/posseg/prob_emit.p new file mode 100644 index 0000000..3bf54e8 Binary files /dev/null and b/jieba/posseg/prob_emit.p differ diff --git a/jieba/posseg/prob_start.p b/jieba/posseg/prob_start.p new file mode 100644 index 0000000..b9d2f1d Binary files /dev/null and b/jieba/posseg/prob_start.p differ diff --git a/jieba/posseg/prob_trans.p b/jieba/posseg/prob_trans.p new file mode 100644 index 0000000..4f67f0c Binary files /dev/null and b/jieba/posseg/prob_trans.p differ diff --git a/setup.py b/setup.py index 5f74b78..b719aaa 100644 --- a/setup.py +++ b/setup.py @@ -1,6 +1,6 @@ from distutils.core import setup setup(name='jieba', - version='0.29.1', + version='0.31', description='Chinese Words Segementation Utilities', author='Sun, Junyi', author_email='ccnusjy@gmail.com', diff --git a/test/parallel/test_file.py b/test/parallel/test_file.py index 2fc147d..03e62f9 100644 --- a/test/parallel/test_file.py +++ b/test/parallel/test_file.py @@ -2,18 +2,20 @@ import sys,time import sys sys.path.append("../../") import jieba -jieba.enable_parallel(4) + +jieba.enable_parallel() url = sys.argv[1] -content = open(url,"rb").read() -t1 = time.time() -words = list(jieba.cut(content)) +with open(url,"rb") as content: + content = content.read() + t1 = time.time() + words = "/ ".join(jieba.cut(content)) + t2 = time.time() + tm_cost = t2-t1 + print('cost',tm_cost) + print('speed' , len(content)/tm_cost, " bytes/second") -t2 = time.time() -tm_cost = t2-t1 +with open("1.log","wb") as log_f: + log_f.write(words.encode('utf-8')) -log_f = open("1.log","wb") -for w in words: - log_f.write(w.encode("utf-8")) -print('speed' , len(content)/tm_cost, " bytes/second") diff --git a/test/test_file.py b/test/test_file.py index 21dcca5..0c43f1c 100644 --- a/test/test_file.py +++ b/test/test_file.py @@ -5,17 +5,15 @@ import jieba jieba.initialize() url = sys.argv[1] -content = open(url,"rb").read() -t1 = time.time() -words = list(jieba.cut(content)) - -t2 = time.time() -tm_cost = t2-t1 - -log_f = open("1.log","wb") - -log_f.write(bytes("/ ".join(words),'utf-8')) - -print('cost',tm_cost) -print('speed' , len(content)/tm_cost, " bytes/second") +with open(url,"rb") as content: + content = content.read() + t1 = time.time() + words = "/ ".join(jieba.cut(content)) + t2 = time.time() + tm_cost = t2-t1 + print('cost',tm_cost) + print('speed' , len(content)/tm_cost, " bytes/second") +with open("1.log","wb") as log_f: + log_f.write(words.encode('utf-8')) + log_f.write(bytes("/ ".join(words),'utf-8'))