merge from master

This commit is contained in:
ZoeyYoung 2013-08-21 15:32:46 +08:00
parent 2857ae45cc
commit dce353f88b
9 changed files with 178 additions and 127 deletions

View File

@ -1,9 +1,9 @@
2013-07-01: version 0.31
1. 修改了代码缩进格式遵循PEP8标准
2. 支持Jython解析器感谢 @piaolingxue
2. 支持Jython解析器感谢 @piaolingxue
3. 修复中英混合词汇不能识别数字在前词语的Bug
4. 部分代码重构,感谢 @chao78787
5. 多进程并行分词模式下自动检测CPU个数设置合适的进程数感谢@linkerlin
4. 部分代码重构,感谢 @chao78787
5. 多进程并行分词模式下自动检测CPU个数设置合适的进程数感谢@linkerlin
6. 修复了0.3版中jieba.extra_tags方法对whoosh模块的错误依赖
@ -42,8 +42,8 @@
2013-04-27: version 0.28
========================
1) 新增词典lazy load功能用户可以在'import jieba'后再改变词典的路径. 感谢hermanschaaf
2) 显示词典加载异常时错误的词条信息. 感谢neuront
3) 修正了词典被vim编辑后会加载失败的bug. 感谢neuront
2) 显示词典加载异常时错误的词条信息. 感谢neuront
3) 修正了词典被vim编辑后会加载失败的bug. 感谢neuront
2013-04-22: version 0.27
========================
@ -80,7 +80,7 @@
2012-11-28: version 0.22
========================
1) 新增jieba.cut_for_search方法 该方法在精确分词的基础上对“长词”进行再次切分,适用于搜索引擎领域的分词,比精确分词模式有更高的召回率。
2) 开始支持Python3.x版。 之前一直是只支持Python2.x系列从这个版本起有一个单独的jieba3k
2) 开始支持Python3.x版。 之前一直是只支持Python2.x系列从这个版本起有一个单独的jieba3k
2012-11-23: version 0.21
@ -91,7 +91,7 @@
2012-11-06: version 0.20
========================
1) 新增词性标注功能
1) 新增词性标注功能
2012-10-25: version 0.19

176
README.md
View File

@ -14,9 +14,9 @@ jieba
Feature
========
* 支持三种分词模式:
* 精确模式,试图将句子最精确地切开,适合文本分析;
* 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
* 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
* 精确模式,试图将句子最精确地切开,适合文本分析;
* 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
* 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
* 支持繁体分词
* 支持自定义词典
@ -29,19 +29,31 @@ http://jiebademo.ap01.aws.af.cm/
(Powered by Appfog)
Python Version
==============
* 目前master分支是只支持Python2.x 的
* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
网站代码https://github.com/fxsjy/jiebademo
Usage
========
Python 2.x 下的安装
===================
* 全自动安装:`easy_install jieba` 或者 `pip install jieba`
* 半自动安装先下载http://pypi.python.org/pypi/jieba/ 解压后运行python setup.py install
* 手动安装将jieba目录放置于当前目录或者site-packages目录
* 通过import jieba 来引用 第一次import时需要构建Trie树需要几秒时间
Python 3.x 下的安装
====================
* 目前master分支是只支持Python2.x 的
* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
git clone https://github.com/fxsjy/jieba.git
git checkout jieba3k
python setup.py install
结巴分词Java版本
================
作者piaolingxue
地址https://github.com/huaban/jieba-analysis
Algorithm
========
* 基于Trie树结构实现高效的词图扫描生成句子中汉字所有可能成词情况所构成的有向无环图DAG)
@ -76,13 +88,13 @@ Algorithm
Output:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处“杭研”并没有在词典中但是也被Viterbi算法识别出来了)
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处“杭研”并没有在词典中但是也被Viterbi算法识别出来了)
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
功能 2) :添加自定义词典
================
@ -92,16 +104,16 @@ Output:
* 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开
* 范例:
* 自定义词典https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
* 用法示例https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
* 自定义词典https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
* 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
* 用法示例https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
* 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
* 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
* 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
* "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
功能 3) :关键词提取
@ -112,36 +124,80 @@ Output:
代码示例 (关键词提取)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
功能 4) : 词性标注
================
* 标注句子分词后每个词的词性采用和ictclas兼容的标记法
* 用法示例
>>> import jieba.posseg as pseg
>>> words =pseg.cut("我爱北京天安门")
>>> for w in words:
... print(w.word,w.flag)
...
我 r
爱 v
北京 ns
天安门 ns
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for w in words:
... print w.word, w.flag
...
我 r
爱 v
北京 ns
天安门 ns
功能 5) : 并行分词
==================
* 原理将目标文本按行分隔后把各行文本分配到多个python进程并行分词然后归并结果从而获得分词速度的可观提升
* 基于python自带的multiprocessing模块目前暂不支持windows
* 用法:
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
* `jieba.disable_parallel()` # 关闭并行分词模式
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
* `jieba.disable_parallel()` # 关闭并行分词模式
* 例子:
https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
* 实验结果在4核3.4GHz Linux机器上对金庸全集进行精确分词获得了1MB/s的速度是单进程版的3.3倍。
功能 6) : Tokenize返回词语在原文的起始位置
============================================
* 注意输入参数只接受unicode
* 默认模式
```python
result = jieba.tokenize('永和服装饰品有限公司')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))
```
```
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限公司 start: 6 end:10
```
* 搜索模式
```python
result = jieba.tokenize('永和服装饰品有限公司', mode='search')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))
```
```
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限 start: 6 end:8
word 公司 start: 8 end:10
word 有限公司 start: 6 end:10
```
功能 7) : ChineseAnalyzer for Whoosh搜索引擎
============================================
* 引用: `from jieba.analyse import ChineseAnalyzer `
* 用法示例https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
其他词典
========
1. 占用内存较小的词典文件
@ -182,14 +238,14 @@ jieba采用延迟加载"import jieba"不会立即触发词典的加载,一
常见问题
=========
1模型的数据是如何生成的https://github.com/fxsjy/jieba/issues/7
2这个库的授权是? https://github.com/fxsjy/jieba/issues/2
更多问题请点击https://github.com/fxsjy/jieba/issues?sort=updated&state=closed
Change Log
==========
http://www.oschina.net/p/jieba/news#list
https://github.com/fxsjy/jieba/blob/master/Changelog
jieba
========
@ -224,30 +280,30 @@ Function 1): cut
Code example: segmentation
==========
#encoding=utf-8
import jieba
#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print("Full Mode:", "/ ".join(seg_list)) #全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode:", "/ ".join(seg_list)) # 全模式
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print("Default Mode:", "/ ".join(seg_list)) #默认模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode:", "/ ".join(seg_list)) # 默认模式
seg_list = jieba.cut("他来到了网易杭研大厦")
print(", ".join(seg_list))
seg_list = jieba.cut("他来到了网易杭研大厦")
print(", ".join(seg_list))
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式
print(", ".join(seg_list))
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print(", ".join(seg_list))
Output:
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
[Search Engine Mode] 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在
[Search Engine Mode] 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在
, 日本, 京都, 大学, 日本京都大学, 深造
@ -259,13 +315,13 @@ Function 2): Add a custom dictionary
* The dictionary format is the same as that of `analyse/idf.txt`: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space
* Example
云计算 5
李小福 2
创新办 3
云计算 5
李小福 2
创新办 3
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
Function 3): Keyword Extraction
================
@ -275,7 +331,7 @@ Function 3): Keyword Extraction
Code sample (keyword extraction)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
Using Other Dictionaries
========
@ -296,10 +352,10 @@ Initialization
By default, Jieba employs lazy loading to only build the trie once it is necessary. This takes 1-3 seconds once, after which it is not initialized again. If you want to initialize Jieba manually, you can call:
import jieba
jieba.initialize() #(optional)
jieba.initialize() # (optional)
You can also specify the dictionary (not supported before version 0.28) :
jieba.set_dictionary('data/dict.txt.big')
Segmentation speed

View File

@ -1,13 +1,9 @@
from __future__ import with_statement
__version__ = '0.31'
__license__ = 'MIT'
import re
import math
import os
import sys
import pprint
from . import finalseg
import time
@ -32,7 +28,7 @@ def gen_trie(f_name):
trie = {}
ltotal = 0.0
with open(f_name, 'rb') as f:
lineno = 0
lineno = 0
for line in f.read().rstrip().decode('utf-8').split('\n'):
lineno += 1
try:
@ -42,7 +38,7 @@ def gen_trie(f_name):
ltotal+=freq
p = trie
for c in word:
if not c in p:
if c not in p:
p[c] ={}
p = p[c]
p['']='' #ending flag
@ -127,7 +123,7 @@ def __cut_all(sentence):
for k,L in dag.items():
if len(L)==1 and k>old_j:
yield sentence[k:L[0]+1]
old_j = L[0]
old_j = L[0]
else:
for j in L:
if j>k:
@ -153,7 +149,7 @@ def get_DAG(sentence):
if c in p:
p = p[c]
if '' in p:
if not i in DAG:
if i not in DAG:
DAG[i]=[]
DAG[i].append(j)
j+=1
@ -166,7 +162,7 @@ def get_DAG(sentence):
i+=1
j=i
for i in range(len(sentence)):
if not i in DAG:
if i not in DAG:
DAG[i] =[i]
return DAG
@ -189,7 +185,7 @@ def __cut_DAG(sentence):
yield buf
buf=''
else:
if not (buf in FREQ):
if (buf not in FREQ):
regognized = finalseg.cut(buf)
for t in regognized:
yield t
@ -197,14 +193,14 @@ def __cut_DAG(sentence):
for elem in buf:
yield elem
buf=''
yield l_word
yield l_word
x =y
if len(buf)>0:
if len(buf)==1:
yield buf
else:
if not (buf in FREQ):
if (buf not in FREQ):
regognized = finalseg.cut(buf)
for t in regognized:
yield t
@ -213,7 +209,7 @@ def __cut_DAG(sentence):
yield elem
def cut(sentence,cut_all=False):
if( type(sentence) is bytes):
if isinstance(sentence, bytes):
try:
sentence = sentence.decode('utf-8')
except UnicodeDecodeError:
@ -230,8 +226,9 @@ def cut(sentence,cut_all=False):
if cut_all:
cut_block = __cut_all
for blk in blocks:
if len(blk)==0:
continue
if re_han.match(blk):
#pprint.pprint(__cut_DAG(blk))
for word in cut_block(blk):
yield word
else:
@ -287,7 +284,7 @@ def add_word(word, freq, tag=None):
user_word_tag_tab[word] = tag.strip()
p = trie
for c in word:
if not c in p:
if c not in p:
p[c] = {}
p = p[c]
p[''] = '' # ending flag
@ -307,7 +304,7 @@ def __lcut_for_search(sentence):
def enable_parallel(processnum=None):
global pool,cut,cut_for_search
if os.name=='nt':
raise Exception("parallel mode only supports posix system")
raise Exception("jieba: parallel mode only supports posix system")
if sys.version_info[0]==2 and sys.version_info[1]<6:
raise Exception("jieba: the parallel feature needs Python version>2.5 ")
from multiprocessing import Pool,cpu_count
@ -318,7 +315,7 @@ def enable_parallel(processnum=None):
def pcut(sentence,cut_all=False):
parts = re.compile(b'([\r\n]+)').split(sentence)
if cut_all:
result = pool.map(__lcut_all,parts)
result = pool.map(__lcut_all,parts)
else:
result = pool.map(__lcut,parts)
for r in result:
@ -348,7 +345,7 @@ def set_dictionary(dictionary_path):
with DICT_LOCK:
abs_path = os.path.normpath( os.path.join( os.getcwd(), dictionary_path ) )
if not os.path.exists(abs_path):
raise Exception("path does not exists:" + abs_path)
raise Exception("jieba: path does not exists:" + abs_path)
DICTIONARY = abs_path
initialized = False
@ -360,8 +357,8 @@ def get_abs_path_dict():
def tokenize(unicode_sentence,mode="default"):
#mode ("default" or "search")
if not isinstance(unicode_sentence, str):
raise Exception("jieba: the input parameter should string.")
start = 0
raise Exception("jieba: the input parameter should unicode.")
start = 0
if mode=='default':
for w in cut(unicode_sentence):
width = len(w)

View File

@ -2,9 +2,9 @@ import jieba
import os
try:
from analyzer import ChineseAnalyzer
from analyzer import ChineseAnalyzer
except ImportError:
pass
pass
_curpath=os.path.normpath( os.path.join( os.getcwd(), os.path.dirname(__file__) ) )
f_name = os.path.join(_curpath,"idf.txt")

View File

@ -1,6 +1,6 @@
#encoding=utf-8
from whoosh.analysis import RegexAnalyzer,LowercaseFilter,StopFilter
from whoosh.analysis import Tokenizer,Token
from whoosh.analysis import Tokenizer,Token
import jieba
import re
@ -31,4 +31,4 @@ class ChineseTokenizer(Tokenizer):
yield token
def ChineseAnalyzer(stoplist=STOP_WORDS,minsize=1):
return ChineseTokenizer() | LowercaseFilter() | StopFilter(stoplist=stoplist,minsize=minsize)
return ChineseTokenizer() | LowercaseFilter() | StopFilter(stoplist=stoplist,minsize=minsize)

View File

@ -25,13 +25,13 @@ def load_model():
with open(abs_path, mode='rb') as f:
start_p = marshal.load(f)
f.closed
trans_p = {}
abs_path = os.path.join(_curpath, PROB_TRANS_P)
with open(abs_path, 'rb') as f:
trans_p = marshal.load(f)
f.closed
emit_p = {}
abs_path = os.path.join(_curpath, PROB_EMIT_P)
with file(abs_path, 'rb') as f:
@ -41,7 +41,7 @@ def load_model():
return start_p, trans_p, emit_p
if sys.platform.startswith("java"):
start_P, trans_P, emit_P = load_model()
start_P, trans_P, emit_P = load_model()
else:
import prob_start,prob_trans,prob_emit
start_P, trans_P, emit_P = prob_start.P, prob_trans.P, prob_emit.P
@ -61,9 +61,9 @@ def viterbi(obs, states, start_p, trans_p, emit_p):
V[t][y] =prob
newpath[y] = path[state] + [y]
path = newpath
(prob, state) = max([(V[len(obs) - 1][y], y) for y in ('E','S')])
return (prob, path[state])

View File

@ -26,19 +26,19 @@ def load_model(f_name,isJython=True):
f.closed
if not isJython:
return result
start_p = {}
abs_path = os.path.join(_curpath, PROB_START_P)
with open(abs_path, mode='rb') as f:
start_p = marshal.load(f)
f.closed
trans_p = {}
abs_path = os.path.join(_curpath, PROB_TRANS_P)
with open(abs_path, 'rb') as f:
trans_p = marshal.load(f)
f.closed
emit_p = {}
abs_path = os.path.join(_curpath, PROB_EMIT_P)
with file(abs_path, 'rb') as f:
@ -121,7 +121,7 @@ def __cut_detail(sentence):
def __cut_DAG(sentence):
DAG = jieba.get_DAG(sentence)
route ={}
jieba.calc(sentence,DAG,0,route=route)
x = 0
@ -138,7 +138,7 @@ def __cut_DAG(sentence):
yield pair(buf,word_tag_tab.get(buf,'x'))
buf=''
else:
if not (buf in jieba.FREQ):
if (buf not in jieba.FREQ):
regognized = __cut_detail(buf)
for t in regognized:
yield t
@ -153,7 +153,7 @@ def __cut_DAG(sentence):
if len(buf)==1:
yield pair(buf,word_tag_tab.get(buf,'x'))
else:
if not (buf in jieba.FREQ):
if (buf not in jieba.FREQ):
regognized = __cut_detail(buf)
for t in regognized:
yield t
@ -162,7 +162,7 @@ def __cut_DAG(sentence):
yield pair(elem,word_tag_tab.get(elem,'x'))
def __cut_internal(sentence):
if not ( type(sentence) is str):
if not isinstance(sentence, str):
try:
sentence = sentence.decode('utf-8')
except:
@ -199,7 +199,7 @@ def cut(sentence):
yield w
else:
parts = re.compile('([\r\n]+)').split(sentence)
result = jieba.pool.map(__lcut_internal,parts)
result = jieba.pool.map(__lcut_internal,parts)
for r in result:
for w in r:
yield w

View File

@ -6,14 +6,16 @@ import jieba
jieba.enable_parallel()
url = sys.argv[1]
content = open(url,"rb").read()
t1 = time.time()
words = "/ ".join(jieba.cut(content))
with open(url,"rb") as content:
content = content.read()
t1 = time.time()
words = "/ ".join(jieba.cut(content))
t2 = time.time()
tm_cost = t2-t1
print('cost',tm_cost)
print('speed' , len(content)/tm_cost, " bytes/second")
t2 = time.time()
tm_cost = t2-t1
with open("1.log","wb") as log_f:
log_f.write(words.encode('utf-8'))
log_f = open("1.log","wb")
log_f.write(words.encode('utf-8'))
print('speed' , len(content)/tm_cost, " bytes/second")

View File

@ -5,19 +5,15 @@ import jieba
jieba.initialize()
url = sys.argv[1]
content = open(url,"rb").read()
t1 = time.time()
words = "/ ".join(jieba.cut(content))
t2 = time.time()
tm_cost = t2-t1
log_f = open("1.log","wb")
log_f.write(words.encode('utf-8'))
log_f.write(bytes("/ ".join(words),'utf-8'))
print('cost',tm_cost)
print('speed' , len(content)/tm_cost, " bytes/second")
with open(url,"rb") as content:
content = content.read()
t1 = time.time()
words = "/ ".join(jieba.cut(content))
t2 = time.time()
tm_cost = t2-t1
print('cost',tm_cost)
print('speed' , len(content)/tm_cost, " bytes/second")
with open("1.log","wb") as log_f:
log_f.write(words.encode('utf-8'))
log_f.write(bytes("/ ".join(words),'utf-8'))