merge from master

This commit is contained in:
ZoeyYoung 2013-08-21 15:32:46 +08:00
parent 2857ae45cc
commit dce353f88b
9 changed files with 178 additions and 127 deletions

View File

@ -29,19 +29,31 @@ http://jiebademo.ap01.aws.af.cm/
(Powered by Appfog) (Powered by Appfog)
Python Version 网站代码https://github.com/fxsjy/jiebademo
==============
* 目前master分支是只支持Python2.x 的
* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
Usage Python 2.x 下的安装
======== ===================
* 全自动安装:`easy_install jieba` 或者 `pip install jieba` * 全自动安装:`easy_install jieba` 或者 `pip install jieba`
* 半自动安装先下载http://pypi.python.org/pypi/jieba/ 解压后运行python setup.py install * 半自动安装先下载http://pypi.python.org/pypi/jieba/ 解压后运行python setup.py install
* 手动安装将jieba目录放置于当前目录或者site-packages目录 * 手动安装将jieba目录放置于当前目录或者site-packages目录
* 通过import jieba 来引用 第一次import时需要构建Trie树需要几秒时间 * 通过import jieba 来引用 第一次import时需要构建Trie树需要几秒时间
Python 3.x 下的安装
====================
* 目前master分支是只支持Python2.x 的
* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
git clone https://github.com/fxsjy/jieba.git
git checkout jieba3k
python setup.py install
结巴分词Java版本
================
作者piaolingxue
地址https://github.com/huaban/jieba-analysis
Algorithm Algorithm
======== ========
* 基于Trie树结构实现高效的词图扫描生成句子中汉字所有可能成词情况所构成的有向无环图DAG) * 基于Trie树结构实现高效的词图扫描生成句子中汉字所有可能成词情况所构成的有向无环图DAG)
@ -122,7 +134,7 @@ Output:
>>> import jieba.posseg as pseg >>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门") >>> words = pseg.cut("我爱北京天安门")
>>> for w in words: >>> for w in words:
... print(w.word,w.flag) ... print w.word, w.flag
... ...
我 r 我 r
爱 v 爱 v
@ -142,6 +154,50 @@ Output:
* 实验结果在4核3.4GHz Linux机器上对金庸全集进行精确分词获得了1MB/s的速度是单进程版的3.3倍。 * 实验结果在4核3.4GHz Linux机器上对金庸全集进行精确分词获得了1MB/s的速度是单进程版的3.3倍。
功能 6) : Tokenize返回词语在原文的起始位置
============================================
* 注意输入参数只接受unicode
* 默认模式
```python
result = jieba.tokenize('永和服装饰品有限公司')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))
```
```
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限公司 start: 6 end:10
```
* 搜索模式
```python
result = jieba.tokenize('永和服装饰品有限公司', mode='search')
for tk in result:
print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))
```
```
word 永和 start: 0 end:2
word 服装 start: 2 end:4
word 饰品 start: 4 end:6
word 有限 start: 6 end:8
word 公司 start: 8 end:10
word 有限公司 start: 6 end:10
```
功能 7) : ChineseAnalyzer for Whoosh搜索引擎
============================================
* 引用: `from jieba.analyse import ChineseAnalyzer `
* 用法示例https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
其他词典 其他词典
======== ========
1. 占用内存较小的词典文件 1. 占用内存较小的词典文件
@ -189,7 +245,7 @@ jieba采用延迟加载"import jieba"不会立即触发词典的加载,一
Change Log Change Log
========== ==========
http://www.oschina.net/p/jieba/news#list https://github.com/fxsjy/jieba/blob/master/Changelog
jieba jieba
======== ========

View File

@ -1,13 +1,9 @@
from __future__ import with_statement
__version__ = '0.31' __version__ = '0.31'
__license__ = 'MIT' __license__ = 'MIT'
import re import re
import math
import os import os
import sys import sys
import pprint
from . import finalseg from . import finalseg
import time import time
@ -42,7 +38,7 @@ def gen_trie(f_name):
ltotal+=freq ltotal+=freq
p = trie p = trie
for c in word: for c in word:
if not c in p: if c not in p:
p[c] ={} p[c] ={}
p = p[c] p = p[c]
p['']='' #ending flag p['']='' #ending flag
@ -153,7 +149,7 @@ def get_DAG(sentence):
if c in p: if c in p:
p = p[c] p = p[c]
if '' in p: if '' in p:
if not i in DAG: if i not in DAG:
DAG[i]=[] DAG[i]=[]
DAG[i].append(j) DAG[i].append(j)
j+=1 j+=1
@ -166,7 +162,7 @@ def get_DAG(sentence):
i+=1 i+=1
j=i j=i
for i in range(len(sentence)): for i in range(len(sentence)):
if not i in DAG: if i not in DAG:
DAG[i] =[i] DAG[i] =[i]
return DAG return DAG
@ -189,7 +185,7 @@ def __cut_DAG(sentence):
yield buf yield buf
buf='' buf=''
else: else:
if not (buf in FREQ): if (buf not in FREQ):
regognized = finalseg.cut(buf) regognized = finalseg.cut(buf)
for t in regognized: for t in regognized:
yield t yield t
@ -204,7 +200,7 @@ def __cut_DAG(sentence):
if len(buf)==1: if len(buf)==1:
yield buf yield buf
else: else:
if not (buf in FREQ): if (buf not in FREQ):
regognized = finalseg.cut(buf) regognized = finalseg.cut(buf)
for t in regognized: for t in regognized:
yield t yield t
@ -213,7 +209,7 @@ def __cut_DAG(sentence):
yield elem yield elem
def cut(sentence,cut_all=False): def cut(sentence,cut_all=False):
if( type(sentence) is bytes): if isinstance(sentence, bytes):
try: try:
sentence = sentence.decode('utf-8') sentence = sentence.decode('utf-8')
except UnicodeDecodeError: except UnicodeDecodeError:
@ -230,8 +226,9 @@ def cut(sentence,cut_all=False):
if cut_all: if cut_all:
cut_block = __cut_all cut_block = __cut_all
for blk in blocks: for blk in blocks:
if len(blk)==0:
continue
if re_han.match(blk): if re_han.match(blk):
#pprint.pprint(__cut_DAG(blk))
for word in cut_block(blk): for word in cut_block(blk):
yield word yield word
else: else:
@ -287,7 +284,7 @@ def add_word(word, freq, tag=None):
user_word_tag_tab[word] = tag.strip() user_word_tag_tab[word] = tag.strip()
p = trie p = trie
for c in word: for c in word:
if not c in p: if c not in p:
p[c] = {} p[c] = {}
p = p[c] p = p[c]
p[''] = '' # ending flag p[''] = '' # ending flag
@ -307,7 +304,7 @@ def __lcut_for_search(sentence):
def enable_parallel(processnum=None): def enable_parallel(processnum=None):
global pool,cut,cut_for_search global pool,cut,cut_for_search
if os.name=='nt': if os.name=='nt':
raise Exception("parallel mode only supports posix system") raise Exception("jieba: parallel mode only supports posix system")
if sys.version_info[0]==2 and sys.version_info[1]<6: if sys.version_info[0]==2 and sys.version_info[1]<6:
raise Exception("jieba: the parallel feature needs Python version>2.5 ") raise Exception("jieba: the parallel feature needs Python version>2.5 ")
from multiprocessing import Pool,cpu_count from multiprocessing import Pool,cpu_count
@ -348,7 +345,7 @@ def set_dictionary(dictionary_path):
with DICT_LOCK: with DICT_LOCK:
abs_path = os.path.normpath( os.path.join( os.getcwd(), dictionary_path ) ) abs_path = os.path.normpath( os.path.join( os.getcwd(), dictionary_path ) )
if not os.path.exists(abs_path): if not os.path.exists(abs_path):
raise Exception("path does not exists:" + abs_path) raise Exception("jieba: path does not exists:" + abs_path)
DICTIONARY = abs_path DICTIONARY = abs_path
initialized = False initialized = False
@ -360,7 +357,7 @@ def get_abs_path_dict():
def tokenize(unicode_sentence,mode="default"): def tokenize(unicode_sentence,mode="default"):
#mode ("default" or "search") #mode ("default" or "search")
if not isinstance(unicode_sentence, str): if not isinstance(unicode_sentence, str):
raise Exception("jieba: the input parameter should string.") raise Exception("jieba: the input parameter should unicode.")
start = 0 start = 0
if mode=='default': if mode=='default':
for w in cut(unicode_sentence): for w in cut(unicode_sentence):

View File

@ -138,7 +138,7 @@ def __cut_DAG(sentence):
yield pair(buf,word_tag_tab.get(buf,'x')) yield pair(buf,word_tag_tab.get(buf,'x'))
buf='' buf=''
else: else:
if not (buf in jieba.FREQ): if (buf not in jieba.FREQ):
regognized = __cut_detail(buf) regognized = __cut_detail(buf)
for t in regognized: for t in regognized:
yield t yield t
@ -153,7 +153,7 @@ def __cut_DAG(sentence):
if len(buf)==1: if len(buf)==1:
yield pair(buf,word_tag_tab.get(buf,'x')) yield pair(buf,word_tag_tab.get(buf,'x'))
else: else:
if not (buf in jieba.FREQ): if (buf not in jieba.FREQ):
regognized = __cut_detail(buf) regognized = __cut_detail(buf)
for t in regognized: for t in regognized:
yield t yield t
@ -162,7 +162,7 @@ def __cut_DAG(sentence):
yield pair(elem,word_tag_tab.get(elem,'x')) yield pair(elem,word_tag_tab.get(elem,'x'))
def __cut_internal(sentence): def __cut_internal(sentence):
if not ( type(sentence) is str): if not isinstance(sentence, str):
try: try:
sentence = sentence.decode('utf-8') sentence = sentence.decode('utf-8')
except: except:

View File

@ -6,14 +6,16 @@ import jieba
jieba.enable_parallel() jieba.enable_parallel()
url = sys.argv[1] url = sys.argv[1]
content = open(url,"rb").read() with open(url,"rb") as content:
content = content.read()
t1 = time.time() t1 = time.time()
words = "/ ".join(jieba.cut(content)) words = "/ ".join(jieba.cut(content))
t2 = time.time() t2 = time.time()
tm_cost = t2-t1 tm_cost = t2-t1
print('cost',tm_cost)
log_f = open("1.log","wb")
log_f.write(words.encode('utf-8'))
print('speed' , len(content)/tm_cost, " bytes/second") print('speed' , len(content)/tm_cost, " bytes/second")
with open("1.log","wb") as log_f:
log_f.write(words.encode('utf-8'))

View File

@ -5,19 +5,15 @@ import jieba
jieba.initialize() jieba.initialize()
url = sys.argv[1] url = sys.argv[1]
content = open(url,"rb").read() with open(url,"rb") as content:
content = content.read()
t1 = time.time() t1 = time.time()
words = "/ ".join(jieba.cut(content)) words = "/ ".join(jieba.cut(content))
t2 = time.time() t2 = time.time()
tm_cost = t2-t1 tm_cost = t2-t1
log_f = open("1.log","wb")
log_f.write(words.encode('utf-8'))
log_f.write(bytes("/ ".join(words),'utf-8'))
print('cost',tm_cost) print('cost',tm_cost)
print('speed' , len(content)/tm_cost, " bytes/second") print('speed' , len(content)/tm_cost, " bytes/second")
with open("1.log","wb") as log_f:
log_f.write(words.encode('utf-8'))
log_f.write(bytes("/ ".join(words),'utf-8'))