mirror of
https://github.com/fxsjy/jieba.git
synced 2025-07-10 00:01:33 +08:00
merge from master
This commit is contained in:
parent
2857ae45cc
commit
dce353f88b
160
README.md
160
README.md
@ -14,9 +14,9 @@ jieba
|
|||||||
Feature
|
Feature
|
||||||
========
|
========
|
||||||
* 支持三种分词模式:
|
* 支持三种分词模式:
|
||||||
* 精确模式,试图将句子最精确地切开,适合文本分析;
|
* 精确模式,试图将句子最精确地切开,适合文本分析;
|
||||||
* 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
|
* 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
|
||||||
* 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
|
* 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
|
||||||
|
|
||||||
* 支持繁体分词
|
* 支持繁体分词
|
||||||
* 支持自定义词典
|
* 支持自定义词典
|
||||||
@ -29,19 +29,31 @@ http://jiebademo.ap01.aws.af.cm/
|
|||||||
|
|
||||||
(Powered by Appfog)
|
(Powered by Appfog)
|
||||||
|
|
||||||
Python Version
|
网站代码:https://github.com/fxsjy/jiebademo
|
||||||
==============
|
|
||||||
* 目前master分支是只支持Python2.x 的
|
|
||||||
* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
|
|
||||||
|
|
||||||
|
|
||||||
Usage
|
Python 2.x 下的安装
|
||||||
========
|
===================
|
||||||
* 全自动安装:`easy_install jieba` 或者 `pip install jieba`
|
* 全自动安装:`easy_install jieba` 或者 `pip install jieba`
|
||||||
* 半自动安装:先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install
|
* 半自动安装:先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install
|
||||||
* 手动安装:将jieba目录放置于当前目录或者site-packages目录
|
* 手动安装:将jieba目录放置于当前目录或者site-packages目录
|
||||||
* 通过import jieba 来引用 (第一次import时需要构建Trie树,需要几秒时间)
|
* 通过import jieba 来引用 (第一次import时需要构建Trie树,需要几秒时间)
|
||||||
|
|
||||||
|
|
||||||
|
Python 3.x 下的安装
|
||||||
|
====================
|
||||||
|
* 目前master分支是只支持Python2.x 的
|
||||||
|
* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
|
||||||
|
|
||||||
|
git clone https://github.com/fxsjy/jieba.git
|
||||||
|
git checkout jieba3k
|
||||||
|
python setup.py install
|
||||||
|
|
||||||
|
结巴分词Java版本
|
||||||
|
================
|
||||||
|
作者:piaolingxue
|
||||||
|
地址:https://github.com/huaban/jieba-analysis
|
||||||
|
|
||||||
Algorithm
|
Algorithm
|
||||||
========
|
========
|
||||||
* 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)
|
* 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)
|
||||||
@ -76,13 +88,13 @@ Algorithm
|
|||||||
|
|
||||||
Output:
|
Output:
|
||||||
|
|
||||||
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
|
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
|
||||||
|
|
||||||
【精确模式】: 我/ 来到/ 北京/ 清华大学
|
【精确模式】: 我/ 来到/ 北京/ 清华大学
|
||||||
|
|
||||||
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
|
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
|
||||||
|
|
||||||
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
|
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
|
||||||
|
|
||||||
功能 2) :添加自定义词典
|
功能 2) :添加自定义词典
|
||||||
================
|
================
|
||||||
@ -92,14 +104,14 @@ Output:
|
|||||||
* 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开
|
* 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开
|
||||||
* 范例:
|
* 范例:
|
||||||
|
|
||||||
* 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
|
* 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
|
||||||
|
|
||||||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
|
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
|
||||||
|
|
||||||
|
|
||||||
* 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
|
* 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
|
||||||
|
|
||||||
* 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
|
* 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
|
||||||
|
|
||||||
|
|
||||||
* "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
|
* "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
|
||||||
@ -112,36 +124,80 @@ Output:
|
|||||||
|
|
||||||
代码示例 (关键词提取)
|
代码示例 (关键词提取)
|
||||||
|
|
||||||
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
|
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
|
||||||
|
|
||||||
功能 4) : 词性标注
|
功能 4) : 词性标注
|
||||||
================
|
================
|
||||||
* 标注句子分词后每个词的词性,采用和ictclas兼容的标记法
|
* 标注句子分词后每个词的词性,采用和ictclas兼容的标记法
|
||||||
* 用法示例
|
* 用法示例
|
||||||
|
|
||||||
>>> import jieba.posseg as pseg
|
>>> import jieba.posseg as pseg
|
||||||
>>> words =pseg.cut("我爱北京天安门")
|
>>> words = pseg.cut("我爱北京天安门")
|
||||||
>>> for w in words:
|
>>> for w in words:
|
||||||
... print(w.word,w.flag)
|
... print w.word, w.flag
|
||||||
...
|
...
|
||||||
我 r
|
我 r
|
||||||
爱 v
|
爱 v
|
||||||
北京 ns
|
北京 ns
|
||||||
天安门 ns
|
天安门 ns
|
||||||
|
|
||||||
功能 5) : 并行分词
|
功能 5) : 并行分词
|
||||||
==================
|
==================
|
||||||
* 原理:将目标文本按行分隔后,把各行文本分配到多个python进程并行分词,然后归并结果,从而获得分词速度的可观提升
|
* 原理:将目标文本按行分隔后,把各行文本分配到多个python进程并行分词,然后归并结果,从而获得分词速度的可观提升
|
||||||
* 基于python自带的multiprocessing模块,目前暂不支持windows
|
* 基于python自带的multiprocessing模块,目前暂不支持windows
|
||||||
* 用法:
|
* 用法:
|
||||||
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
|
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
|
||||||
* `jieba.disable_parallel()` # 关闭并行分词模式
|
* `jieba.disable_parallel()` # 关闭并行分词模式
|
||||||
|
|
||||||
* 例子:
|
* 例子:
|
||||||
https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
|
https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
|
||||||
|
|
||||||
* 实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。
|
* 实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。
|
||||||
|
|
||||||
|
|
||||||
|
功能 6) : Tokenize:返回词语在原文的起始位置
|
||||||
|
============================================
|
||||||
|
* 注意,输入参数只接受unicode
|
||||||
|
* 默认模式
|
||||||
|
|
||||||
|
```python
|
||||||
|
result = jieba.tokenize('永和服装饰品有限公司')
|
||||||
|
for tk in result:
|
||||||
|
print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
word 永和 start: 0 end:2
|
||||||
|
word 服装 start: 2 end:4
|
||||||
|
word 饰品 start: 4 end:6
|
||||||
|
word 有限公司 start: 6 end:10
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
* 搜索模式
|
||||||
|
|
||||||
|
```python
|
||||||
|
result = jieba.tokenize('永和服装饰品有限公司', mode='search')
|
||||||
|
for tk in result:
|
||||||
|
print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
word 永和 start: 0 end:2
|
||||||
|
word 服装 start: 2 end:4
|
||||||
|
word 饰品 start: 4 end:6
|
||||||
|
word 有限 start: 6 end:8
|
||||||
|
word 公司 start: 8 end:10
|
||||||
|
word 有限公司 start: 6 end:10
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
功能 7) : ChineseAnalyzer for Whoosh搜索引擎
|
||||||
|
============================================
|
||||||
|
* 引用: `from jieba.analyse import ChineseAnalyzer `
|
||||||
|
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
|
||||||
|
|
||||||
|
|
||||||
其他词典
|
其他词典
|
||||||
========
|
========
|
||||||
1. 占用内存较小的词典文件
|
1. 占用内存较小的词典文件
|
||||||
@ -189,7 +245,7 @@ jieba采用延迟加载,"import jieba"不会立即触发词典的加载,一
|
|||||||
|
|
||||||
Change Log
|
Change Log
|
||||||
==========
|
==========
|
||||||
http://www.oschina.net/p/jieba/news#list
|
https://github.com/fxsjy/jieba/blob/master/Changelog
|
||||||
|
|
||||||
jieba
|
jieba
|
||||||
========
|
========
|
||||||
@ -224,30 +280,30 @@ Function 1): cut
|
|||||||
Code example: segmentation
|
Code example: segmentation
|
||||||
==========
|
==========
|
||||||
|
|
||||||
#encoding=utf-8
|
#encoding=utf-8
|
||||||
import jieba
|
import jieba
|
||||||
|
|
||||||
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
|
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||||||
print("Full Mode:", "/ ".join(seg_list)) #全模式
|
print("Full Mode:", "/ ".join(seg_list)) # 全模式
|
||||||
|
|
||||||
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
|
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
|
||||||
print("Default Mode:", "/ ".join(seg_list)) #默认模式
|
print("Default Mode:", "/ ".join(seg_list)) # 默认模式
|
||||||
|
|
||||||
seg_list = jieba.cut("他来到了网易杭研大厦")
|
seg_list = jieba.cut("他来到了网易杭研大厦")
|
||||||
print(", ".join(seg_list))
|
print(", ".join(seg_list))
|
||||||
|
|
||||||
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式
|
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||||||
print(", ".join(seg_list))
|
print(", ".join(seg_list))
|
||||||
|
|
||||||
Output:
|
Output:
|
||||||
|
|
||||||
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
|
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
|
||||||
|
|
||||||
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
|
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
|
||||||
|
|
||||||
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
|
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
|
||||||
|
|
||||||
[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在
|
[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在
|
||||||
, 日本, 京都, 大学, 日本京都大学, 深造
|
, 日本, 京都, 大学, 日本京都大学, 深造
|
||||||
|
|
||||||
|
|
||||||
@ -259,13 +315,13 @@ Function 2): Add a custom dictionary
|
|||||||
* The dictionary format is the same as that of `analyse/idf.txt`: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space
|
* The dictionary format is the same as that of `analyse/idf.txt`: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space
|
||||||
* Example:
|
* Example:
|
||||||
|
|
||||||
云计算 5
|
云计算 5
|
||||||
李小福 2
|
李小福 2
|
||||||
创新办 3
|
创新办 3
|
||||||
|
|
||||||
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
|
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
|
||||||
|
|
||||||
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
|
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
|
||||||
|
|
||||||
Function 3): Keyword Extraction
|
Function 3): Keyword Extraction
|
||||||
================
|
================
|
||||||
@ -275,7 +331,7 @@ Function 3): Keyword Extraction
|
|||||||
|
|
||||||
Code sample (keyword extraction)
|
Code sample (keyword extraction)
|
||||||
|
|
||||||
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
|
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
|
||||||
|
|
||||||
Using Other Dictionaries
|
Using Other Dictionaries
|
||||||
========
|
========
|
||||||
@ -296,7 +352,7 @@ Initialization
|
|||||||
By default, Jieba employs lazy loading to only build the trie once it is necessary. This takes 1-3 seconds once, after which it is not initialized again. If you want to initialize Jieba manually, you can call:
|
By default, Jieba employs lazy loading to only build the trie once it is necessary. This takes 1-3 seconds once, after which it is not initialized again. If you want to initialize Jieba manually, you can call:
|
||||||
|
|
||||||
import jieba
|
import jieba
|
||||||
jieba.initialize() #(optional)
|
jieba.initialize() # (optional)
|
||||||
|
|
||||||
You can also specify the dictionary (not supported before version 0.28) :
|
You can also specify the dictionary (not supported before version 0.28) :
|
||||||
|
|
||||||
|
@ -1,13 +1,9 @@
|
|||||||
from __future__ import with_statement
|
|
||||||
__version__ = '0.31'
|
__version__ = '0.31'
|
||||||
__license__ = 'MIT'
|
__license__ = 'MIT'
|
||||||
|
|
||||||
import re
|
import re
|
||||||
|
|
||||||
import math
|
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import pprint
|
|
||||||
from . import finalseg
|
from . import finalseg
|
||||||
import time
|
import time
|
||||||
|
|
||||||
@ -42,7 +38,7 @@ def gen_trie(f_name):
|
|||||||
ltotal+=freq
|
ltotal+=freq
|
||||||
p = trie
|
p = trie
|
||||||
for c in word:
|
for c in word:
|
||||||
if not c in p:
|
if c not in p:
|
||||||
p[c] ={}
|
p[c] ={}
|
||||||
p = p[c]
|
p = p[c]
|
||||||
p['']='' #ending flag
|
p['']='' #ending flag
|
||||||
@ -153,7 +149,7 @@ def get_DAG(sentence):
|
|||||||
if c in p:
|
if c in p:
|
||||||
p = p[c]
|
p = p[c]
|
||||||
if '' in p:
|
if '' in p:
|
||||||
if not i in DAG:
|
if i not in DAG:
|
||||||
DAG[i]=[]
|
DAG[i]=[]
|
||||||
DAG[i].append(j)
|
DAG[i].append(j)
|
||||||
j+=1
|
j+=1
|
||||||
@ -166,7 +162,7 @@ def get_DAG(sentence):
|
|||||||
i+=1
|
i+=1
|
||||||
j=i
|
j=i
|
||||||
for i in range(len(sentence)):
|
for i in range(len(sentence)):
|
||||||
if not i in DAG:
|
if i not in DAG:
|
||||||
DAG[i] =[i]
|
DAG[i] =[i]
|
||||||
return DAG
|
return DAG
|
||||||
|
|
||||||
@ -189,7 +185,7 @@ def __cut_DAG(sentence):
|
|||||||
yield buf
|
yield buf
|
||||||
buf=''
|
buf=''
|
||||||
else:
|
else:
|
||||||
if not (buf in FREQ):
|
if (buf not in FREQ):
|
||||||
regognized = finalseg.cut(buf)
|
regognized = finalseg.cut(buf)
|
||||||
for t in regognized:
|
for t in regognized:
|
||||||
yield t
|
yield t
|
||||||
@ -204,7 +200,7 @@ def __cut_DAG(sentence):
|
|||||||
if len(buf)==1:
|
if len(buf)==1:
|
||||||
yield buf
|
yield buf
|
||||||
else:
|
else:
|
||||||
if not (buf in FREQ):
|
if (buf not in FREQ):
|
||||||
regognized = finalseg.cut(buf)
|
regognized = finalseg.cut(buf)
|
||||||
for t in regognized:
|
for t in regognized:
|
||||||
yield t
|
yield t
|
||||||
@ -213,7 +209,7 @@ def __cut_DAG(sentence):
|
|||||||
yield elem
|
yield elem
|
||||||
|
|
||||||
def cut(sentence,cut_all=False):
|
def cut(sentence,cut_all=False):
|
||||||
if( type(sentence) is bytes):
|
if isinstance(sentence, bytes):
|
||||||
try:
|
try:
|
||||||
sentence = sentence.decode('utf-8')
|
sentence = sentence.decode('utf-8')
|
||||||
except UnicodeDecodeError:
|
except UnicodeDecodeError:
|
||||||
@ -230,8 +226,9 @@ def cut(sentence,cut_all=False):
|
|||||||
if cut_all:
|
if cut_all:
|
||||||
cut_block = __cut_all
|
cut_block = __cut_all
|
||||||
for blk in blocks:
|
for blk in blocks:
|
||||||
|
if len(blk)==0:
|
||||||
|
continue
|
||||||
if re_han.match(blk):
|
if re_han.match(blk):
|
||||||
#pprint.pprint(__cut_DAG(blk))
|
|
||||||
for word in cut_block(blk):
|
for word in cut_block(blk):
|
||||||
yield word
|
yield word
|
||||||
else:
|
else:
|
||||||
@ -287,7 +284,7 @@ def add_word(word, freq, tag=None):
|
|||||||
user_word_tag_tab[word] = tag.strip()
|
user_word_tag_tab[word] = tag.strip()
|
||||||
p = trie
|
p = trie
|
||||||
for c in word:
|
for c in word:
|
||||||
if not c in p:
|
if c not in p:
|
||||||
p[c] = {}
|
p[c] = {}
|
||||||
p = p[c]
|
p = p[c]
|
||||||
p[''] = '' # ending flag
|
p[''] = '' # ending flag
|
||||||
@ -307,7 +304,7 @@ def __lcut_for_search(sentence):
|
|||||||
def enable_parallel(processnum=None):
|
def enable_parallel(processnum=None):
|
||||||
global pool,cut,cut_for_search
|
global pool,cut,cut_for_search
|
||||||
if os.name=='nt':
|
if os.name=='nt':
|
||||||
raise Exception("parallel mode only supports posix system")
|
raise Exception("jieba: parallel mode only supports posix system")
|
||||||
if sys.version_info[0]==2 and sys.version_info[1]<6:
|
if sys.version_info[0]==2 and sys.version_info[1]<6:
|
||||||
raise Exception("jieba: the parallel feature needs Python version>2.5 ")
|
raise Exception("jieba: the parallel feature needs Python version>2.5 ")
|
||||||
from multiprocessing import Pool,cpu_count
|
from multiprocessing import Pool,cpu_count
|
||||||
@ -348,7 +345,7 @@ def set_dictionary(dictionary_path):
|
|||||||
with DICT_LOCK:
|
with DICT_LOCK:
|
||||||
abs_path = os.path.normpath( os.path.join( os.getcwd(), dictionary_path ) )
|
abs_path = os.path.normpath( os.path.join( os.getcwd(), dictionary_path ) )
|
||||||
if not os.path.exists(abs_path):
|
if not os.path.exists(abs_path):
|
||||||
raise Exception("path does not exists:" + abs_path)
|
raise Exception("jieba: path does not exists:" + abs_path)
|
||||||
DICTIONARY = abs_path
|
DICTIONARY = abs_path
|
||||||
initialized = False
|
initialized = False
|
||||||
|
|
||||||
@ -360,7 +357,7 @@ def get_abs_path_dict():
|
|||||||
def tokenize(unicode_sentence,mode="default"):
|
def tokenize(unicode_sentence,mode="default"):
|
||||||
#mode ("default" or "search")
|
#mode ("default" or "search")
|
||||||
if not isinstance(unicode_sentence, str):
|
if not isinstance(unicode_sentence, str):
|
||||||
raise Exception("jieba: the input parameter should string.")
|
raise Exception("jieba: the input parameter should unicode.")
|
||||||
start = 0
|
start = 0
|
||||||
if mode=='default':
|
if mode=='default':
|
||||||
for w in cut(unicode_sentence):
|
for w in cut(unicode_sentence):
|
||||||
|
@ -2,9 +2,9 @@ import jieba
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from analyzer import ChineseAnalyzer
|
from analyzer import ChineseAnalyzer
|
||||||
except ImportError:
|
except ImportError:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
_curpath=os.path.normpath( os.path.join( os.getcwd(), os.path.dirname(__file__) ) )
|
_curpath=os.path.normpath( os.path.join( os.getcwd(), os.path.dirname(__file__) ) )
|
||||||
f_name = os.path.join(_curpath,"idf.txt")
|
f_name = os.path.join(_curpath,"idf.txt")
|
||||||
|
@ -138,7 +138,7 @@ def __cut_DAG(sentence):
|
|||||||
yield pair(buf,word_tag_tab.get(buf,'x'))
|
yield pair(buf,word_tag_tab.get(buf,'x'))
|
||||||
buf=''
|
buf=''
|
||||||
else:
|
else:
|
||||||
if not (buf in jieba.FREQ):
|
if (buf not in jieba.FREQ):
|
||||||
regognized = __cut_detail(buf)
|
regognized = __cut_detail(buf)
|
||||||
for t in regognized:
|
for t in regognized:
|
||||||
yield t
|
yield t
|
||||||
@ -153,7 +153,7 @@ def __cut_DAG(sentence):
|
|||||||
if len(buf)==1:
|
if len(buf)==1:
|
||||||
yield pair(buf,word_tag_tab.get(buf,'x'))
|
yield pair(buf,word_tag_tab.get(buf,'x'))
|
||||||
else:
|
else:
|
||||||
if not (buf in jieba.FREQ):
|
if (buf not in jieba.FREQ):
|
||||||
regognized = __cut_detail(buf)
|
regognized = __cut_detail(buf)
|
||||||
for t in regognized:
|
for t in regognized:
|
||||||
yield t
|
yield t
|
||||||
@ -162,7 +162,7 @@ def __cut_DAG(sentence):
|
|||||||
yield pair(elem,word_tag_tab.get(elem,'x'))
|
yield pair(elem,word_tag_tab.get(elem,'x'))
|
||||||
|
|
||||||
def __cut_internal(sentence):
|
def __cut_internal(sentence):
|
||||||
if not ( type(sentence) is str):
|
if not isinstance(sentence, str):
|
||||||
try:
|
try:
|
||||||
sentence = sentence.decode('utf-8')
|
sentence = sentence.decode('utf-8')
|
||||||
except:
|
except:
|
||||||
|
@ -6,14 +6,16 @@ import jieba
|
|||||||
jieba.enable_parallel()
|
jieba.enable_parallel()
|
||||||
|
|
||||||
url = sys.argv[1]
|
url = sys.argv[1]
|
||||||
content = open(url,"rb").read()
|
with open(url,"rb") as content:
|
||||||
t1 = time.time()
|
content = content.read()
|
||||||
words = "/ ".join(jieba.cut(content))
|
t1 = time.time()
|
||||||
|
words = "/ ".join(jieba.cut(content))
|
||||||
|
t2 = time.time()
|
||||||
|
tm_cost = t2-t1
|
||||||
|
print('cost',tm_cost)
|
||||||
|
print('speed' , len(content)/tm_cost, " bytes/second")
|
||||||
|
|
||||||
t2 = time.time()
|
with open("1.log","wb") as log_f:
|
||||||
tm_cost = t2-t1
|
log_f.write(words.encode('utf-8'))
|
||||||
|
|
||||||
log_f = open("1.log","wb")
|
|
||||||
log_f.write(words.encode('utf-8'))
|
|
||||||
print('speed' , len(content)/tm_cost, " bytes/second")
|
|
||||||
|
|
||||||
|
@ -5,19 +5,15 @@ import jieba
|
|||||||
jieba.initialize()
|
jieba.initialize()
|
||||||
|
|
||||||
url = sys.argv[1]
|
url = sys.argv[1]
|
||||||
content = open(url,"rb").read()
|
with open(url,"rb") as content:
|
||||||
t1 = time.time()
|
content = content.read()
|
||||||
words = "/ ".join(jieba.cut(content))
|
t1 = time.time()
|
||||||
|
words = "/ ".join(jieba.cut(content))
|
||||||
t2 = time.time()
|
t2 = time.time()
|
||||||
tm_cost = t2-t1
|
tm_cost = t2-t1
|
||||||
|
print('cost',tm_cost)
|
||||||
log_f = open("1.log","wb")
|
print('speed' , len(content)/tm_cost, " bytes/second")
|
||||||
log_f.write(words.encode('utf-8'))
|
|
||||||
|
|
||||||
|
|
||||||
log_f.write(bytes("/ ".join(words),'utf-8'))
|
|
||||||
|
|
||||||
print('cost',tm_cost)
|
|
||||||
print('speed' , len(content)/tm_cost, " bytes/second")
|
|
||||||
|
|
||||||
|
with open("1.log","wb") as log_f:
|
||||||
|
log_f.write(words.encode('utf-8'))
|
||||||
|
log_f.write(bytes("/ ".join(words),'utf-8'))
|
||||||
|
Loading…
x
Reference in New Issue
Block a user