version chage; doc update

This commit is contained in:
Sun Junyi 2012-11-27 14:06:46 +08:00
parent 18e4016436
commit e0bd9a6a50
4 changed files with 134 additions and 19 deletions

View File

@ -7,8 +7,9 @@ jieba
Feature
========
* 支持两种分词模式:
* 1默认模式试图将句子最精确地切开适合文本分析
* 2全模式把句子中所有的可以成词的词语都扫描出来适合搜索引擎。
* 1精确模式试图将句子最精确地切开适合文本分析
* 2全模式把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
* 3) 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
Usage
========
@ -25,9 +26,10 @@ Algorithm
功能 1):分词
==========
* jieba.cut方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2cut_all参数用来控制分词模式
* 待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
* jieba.cut返回的结构是一个可迭代的generator可以使用for循环来获得分词后得到的每一个词语(unicode)也可以用list(jieba.cut(...))转化为list
* `jieba.cut`方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2cut_all参数用来控制是否采用全模式
* `jieba.cut_for_search`方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
* 注意待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
* `jieba.cut`以及`jieba.cut_for_search`返回的结构都是一个可迭代的generator可以使用for循环来获得分词后得到的每一个词语(unicode)也可以用list(jieba.cut(...))转化为list
代码示例( 分词 )
@ -38,18 +40,24 @@ Algorithm
print "Full Mode:", "/ ".join(seg_list) #全模式
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #默认模式
print "Default Mode:", "/ ".join(seg_list) #精确模式
seg_list = jieba.cut("他来到了网易杭研大厦")
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式
print ", ".join(seg_list)
Output:
Full Mode: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
Default Mode: 我/ 来到/ 北京/ 清华大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
他, 来到, 了, 网易, 杭研, 大厦 (此处“杭研”并没有在词典中但是也被Viterbi算法识别出来了)
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处“杭研”并没有在词典中但是也被Viterbi算法识别出来了)
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在
, 日本, 京都, 大学, 日本京都大学, 深造
功能 2) :添加自定义词典
================
@ -67,7 +75,7 @@ Output:
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
* 通过用户自定义词典来增强歧义纠错能力 https://github.com/fxsjy/jieba/issues/14
* 代码示例:"通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
功能 3) :关键词提取
================
@ -119,9 +127,10 @@ jieba
Features
========
* Support two types of segmentation mode:
* 1) Default mode, attempt to cut the sentence into the most accurate segmentation, which is suitable for text analysis;
* 2) Full mode, break the words of the sentence into words scanned, which is suitable for search engines.
* Support three types of segmentation mode:
* 1) Accurate Mode, attempt to cut the sentence into the most accurate segmentation, which is suitable for text analysis;
* 2) Full Mode, break the words of the sentence into words scanned
* 3) Search Engine Mode, based on the Accurate Mode, with an attempt to cut the long words into several short words, which can enhance the recall rate
Usage
========
@ -134,12 +143,13 @@ Algorithm
========
* Based on the Trie tree structure to achieve efficient word graph scanning; sentences using Chinese characters constitute a directed acyclic graph (DAG)
* Employs memory search to calculate the maximum probability path, in order to identify the maximum tangential points based on word frequency combination
* For unknown words, the character position probability-based model is used, using the Viterbi algorithm
* For unknown words, the character position HMM-based model is used, using the Viterbi algorithm
Function 1): cut
==========
* The `jieba.cut` method accepts to input parameters: 1) the first parameter is the string that requires segmentation, and the 2) second parameter is `cut_all`, a parameter used to control the segmentation pattern.
* `jieba.cut` returned structure is an iterative generator, where you can use a `for` loop to get the word segmentation (in unicode), or `list(jieba.cut( ... ))` to create a list.
* `jieba.cut_for_search` accpets only on parameter: the string that requires segmentation, and it will cut the sentence into short words
Code example: segmentation
==========
@ -156,14 +166,20 @@ Code example: segmentation
seg_list = jieba.cut("他来到了网易杭研大厦")
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式
print ", ".join(seg_list)
Output:
Full Mode: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
Default Mode: 我/ 来到/ 北京/ 清华大学
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
[Search Engine Mode] 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在
, 日本, 京都, 大学, 日本京都大学, 深造
他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
Function 2): Add a custom dictionary
==========

View File

@ -1,6 +1,6 @@
from distutils.core import setup
setup(name='jieba',
version='0.21',
version='0.22',
description='Chinese Words Segementation Utilities',
author='Sun, Junyi',
author_email='ccnusjy@gmail.com',

View File

@ -1,4 +1,7 @@
#encoding=utf-8
import sys
sys.path.append("../")
import jieba
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
@ -8,4 +11,7 @@ seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #默认模式
seg_list = jieba.cut("他来到了网易杭研大厦")
print ", ".join(seg_list)
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式
print ", ".join(seg_list)

View File

@ -0,0 +1,93 @@
#encoding=utf-8
import sys
sys.path.append("../")
import jieba
def cuttest(test_sent):
result = jieba.cut_for_search(test_sent)
for word in result:
print word, "/",
print ""
if __name__ == "__main__":
cuttest("这是一个伸手不见五指的黑夜。我叫孙悟空我爱北京我爱Python和C++。")
cuttest("我不喜欢日本和服。")
cuttest("雷猴回归人间。")
cuttest("工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作")
cuttest("我需要廉租房")
cuttest("永和服装饰品有限公司")
cuttest("我爱北京天安门")
cuttest("abc")
cuttest("隐马尔可夫")
cuttest("雷猴是个好网站")
cuttest("“Microsoft”一词由“MICROcomputer微型计算机”和“SOFTware软件”两部分组成")
cuttest("草泥马和欺实马是今年的流行词汇")
cuttest("伊藤洋华堂总府店")
cuttest("中国科学院计算技术研究所")
cuttest("罗密欧与朱丽叶")
cuttest("我购买了道具和服装")
cuttest("PS: 我觉得开源有一个好处,就是能够敦促自己不断改进,避免敞帚自珍")
cuttest("湖北省石首市")
cuttest("湖北省十堰市")
cuttest("总经理完成了这件事情")
cuttest("电脑修好了")
cuttest("做好了这件事情就一了百了了")
cuttest("人们审美的观点是不同的")
cuttest("我们买了一个美的空调")
cuttest("线程初始化时我们要注意")
cuttest("一个分子是由好多原子组织成的")
cuttest("祝你马到功成")
cuttest("他掉进了无底洞里")
cuttest("中国的首都是北京")
cuttest("孙君意")
cuttest("外交部发言人马朝旭")
cuttest("领导人会议和第四届东亚峰会")
cuttest("在过去的这五年")
cuttest("还需要很长的路要走")
cuttest("60周年首都阅兵")
cuttest("你好人们审美的观点是不同的")
cuttest("买水果然后来世博园")
cuttest("买水果然后去世博园")
cuttest("但是后来我才知道你是对的")
cuttest("存在即合理")
cuttest("的的的的的在的的的的就以和和和")
cuttest("I love你不以为耻反以为rong")
cuttest("")
cuttest("")
cuttest("hello你好人们审美的观点是不同的")
cuttest("很好但主要是基于网页形式")
cuttest("hello你好人们审美的观点是不同的")
cuttest("为什么我不能拥有想要的生活")
cuttest("后来我才")
cuttest("此次来中国是为了")
cuttest("使用了它就可以解决一些问题")
cuttest(",使用了它就可以解决一些问题")
cuttest("其实使用了它就可以解决一些问题")
cuttest("好人使用了它就可以解决一些问题")
cuttest("是因为和国家")
cuttest("老年搜索还支持")
cuttest("干脆就把那部蒙人的闲法给废了拉倒RT @laoshipukong : 27日全国人大常委会第三次审议侵权责任法草案删除了有关医疗损害责任“举证倒置”的规定。在医患纠纷中本已处于弱势地位的消费者由此将陷入万劫不复的境地。 ")
cuttest("")
cuttest("")
cuttest("他说的确实在理")
cuttest("长春市长春节讲话")
cuttest("结婚的和尚未结婚的")
cuttest("结合成分子时")
cuttest("旅游和服务是最好的")
cuttest("这件事情的确是我的错")
cuttest("供大家参考指正")
cuttest("哈尔滨政府公布塌桥原因")
cuttest("我在机场入口处")
cuttest("邢永臣摄影报道")
cuttest("BP神经网络如何训练才能在分类时增加区分度")
cuttest("南京市长江大桥")
cuttest("应一些使用者的建议也为了便于利用NiuTrans用于SMT研究")
cuttest('长春市长春药店')
cuttest('邓颖超生前最喜欢的衣服')
cuttest('胡锦涛是热爱世界和平的政治局常委')
cuttest('程序员祝海林和朱会震是在孙健的左面和右面, 范凯在最右面.再往左是李松洪')
cuttest('一次性交多少钱')
cuttest('两块五一套,三块八一斤,四块七一本,五块六一条')
cuttest('小和尚留了一个像大和尚一样的和尚头')
cuttest('我是中华人民共和国公民;我爸爸是共和党党员; 地铁和平门站')