Updated English docs

This commit is contained in:
Herman Schaaf 2012-10-27 22:33:51 +02:00
parent e8f9f0eeee
commit e42650b7f2

View File

@ -1,7 +1,5 @@
jieba
========
"结巴"中文分词做最好的Python中文分词组件jieba
========
"结巴"中文分词做最好的Python中文分词组件
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
- _Scroll down for English documentation._
@ -180,90 +178,3 @@ Segmentation speed
Online demo
=========
http://209.222.69.242:9000/
Feature
========
* 支持两种分词模式:
* 1默认模式试图将句子最精确地切开适合文本分析
* 2全模式把句子中所有的可以成词的词语都扫描出来适合搜索引擎。
Usage
========
* 全自动安装easy_install jieba 或者 pip install jieba
* 半自动安装先下载http://pypi.python.org/pypi/jieba/ 解压后运行python setup.py install
* 手动安装将jieba目录放置于当前目录或者site-packages目录
* 通过import jieba 来引用 第一次import时需要构建Trie树需要几秒时间
Algorithm
========
* 基于Trie树结构实现高效的词图扫描生成句子中汉字构成的有向无环图DAG)
* 采用了记忆化搜索实现最大概率路径的计算, 找出基于词频的最大切分组合
* 对于未登录词采用了基于汉字位置概率的模型使用了Viterbi算法
功能 1):分词
==========
* jieba.cut方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2cut_all参数用来控制分词模式
* 待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
* jieba.cut返回的结构是一个可迭代的generator可以使用for循环来获得分词后得到的每一个词语(unicode)也可以用list(jieba.cut(...))转化为list
代码示例( 分词 )
#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print "Full Mode:", "/ ".join(seg_list) #全模式
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #默认模式
seg_list = jieba.cut("他来到了网易杭研大厦")
print ", ".join(seg_list)
Output:
Full Mode: 我/ 来/ 来到/ 到/ 北/ 北京/ 京/ 清/ 清华/ 清华大学/ 华/ 华大/ 大/ 大学/ 学
Default Mode: 我/ 来到/ 北京/ 清华大学
他, 来到, 了, 网易, 杭研, 大厦 (此处“杭研”并没有在词典中但是也被Viterbi算法识别出来了)
功能 2) :添加自定义词典
================
* 开发者可以指定自己自定义的词典以便包含jieba词库里没有的词。虽然jieba有新词识别能力但是自行添加新词可以保证更高的正确率
* 用法: jieba.load_userdict(file_name) # file_name为自定义词典的路径
* 词典格式和dict.txt一样一个词占一行每一行分为两部分一部分为词语另一部分为词频用空格隔开
* 范例:
云计算 5
李小福 2
创新办 3
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
功能 3) :关键词提取
================
* jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse
* setence为待提取的文本
* topK为返回几个TF/IDF权重最大的关键词默认值为20
代码示例 (关键词提取)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
分词速度
=========
* 1.5 MB / Second in Full Mode
* 400 KB / Second in Default Mode
* Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
在线演示
=========
http://209.222.69.242:9000/