From fd9f1f2c0ee0b27dd9906086870939fb7c278c44 Mon Sep 17 00:00:00 2001 From: Dingyuan Wang Date: Sat, 25 Oct 2014 14:23:37 +0800 Subject: [PATCH] update README, textrank, etc. --- Changelog | 1 - README.md | 578 +++++++++++++++++++++---------- jieba/__main__.py | 24 +- jieba/analyse/__init__.py | 10 +- jieba/analyse/analyzer.py | 2 +- jieba/analyse/textrank.py | 74 ++++ jieba/posseg/__init__.py | 21 +- jieba/posseg/viterbi.py | 3 +- setup.py | 18 +- test/extract_tags_with_weight.py | 43 +++ test/lyric.txt | 44 +++ test/test_pos.py | 2 +- test/test_whoosh_flie.py | 6 +- 13 files changed, 601 insertions(+), 225 deletions(-) create mode 100644 jieba/analyse/textrank.py create mode 100644 test/extract_tags_with_weight.py create mode 100644 test/lyric.txt diff --git a/Changelog b/Changelog index b96e658..2d786f1 100644 --- a/Changelog +++ b/Changelog @@ -2,7 +2,6 @@ 1. 提升性能,词典结构由Trie改为Prefix Set,内存占用减少2/3, 详见:https://github.com/fxsjy/jieba/pull/187;by @gumblex 2. 修复关键词提取功能的性能问题 - 2014-08-31: version 0.33 1. 支持自定义stop words; by @fukuball 2. 支持自定义idf词典; by @fukuball diff --git a/README.md b/README.md index 42c03af..5eda9e9 100644 --- a/README.md +++ b/README.md @@ -4,24 +4,20 @@ jieba "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module. - _Scroll down for English documentation._ - 注意! ======== -这个branch `jieba3k`是专门用于Python3.x的版本 +这个branch `jieba3k` 是专门用于Python3.x的版本 - -Feature +特点 ======== * 支持三种分词模式: - * 精确模式,试图将句子最精确地切开,适合文本分析; - * 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义; - * 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。 + * 精确模式,试图将句子最精确地切开,适合文本分析; + * 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义; + * 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。 * 支持繁体分词 * 支持自定义词典 - - 在线演示 ========= http://jiebademo.ap01.aws.af.cm/ @@ -31,115 +27,102 @@ http://jiebademo.ap01.aws.af.cm/ 网站代码:https://github.com/fxsjy/jiebademo - -Python 2.x 下的安装 -=================== +安装说明 +======= +Python 2.x +----------- * 全自动安装:`easy_install jieba` 或者 `pip install jieba` * 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install * 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录 -* 通过 import jieba 来引用 +* 通过 `import jieba` 来引用 - -Python 3.x 下的安装 -==================== +Python 3.x +----------- * 目前 master 分支是只支持 Python2.x 的 -* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k +* Python 3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k + +```shell +git clone https://github.com/fxsjy/jieba.git +git checkout jieba3k +python setup.py install +``` - git clone https://github.com/fxsjy/jieba.git - git checkout jieba3k - python setup.py install * 或使用pip3安装: pip3 install jieba3k - -结巴分词 Java 版本 -================ -作者:piaolingxue -地址:https://github.com/huaban/jieba-analysis - -结巴分词 C++ 版本 -================ -作者:Aszxqw -地址:https://github.com/aszxqw/cppjieba - -结巴分词 Node.js 版本 -================ -作者:Aszxqw -地址:https://github.com/aszxqw/nodejieba - -结巴分词 Erlang 版本 -================ -作者:falood -https://github.com/falood/exjieba - -Algorithm +算法 ======== -* 基于 Trie 树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) +* 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG) * 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 * 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法 -功能 1):分词 -========== -* `jieba.cut` 方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all 参数用来控制是否采用全模式 -* `jieba.cut_for_search` 方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细 -* 注意:待分词的字符串可以是gbk字符串、utf-8 字符串或者 unicode -* `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),也可以用 list(jieba.cut(...))转化为 list +主要功能 +======= +1) :分词 +-------- +* `jieba.cut` 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型 +* `jieba.cut_for_search` 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细 +* 注意:待分词的字符串可以是 GBK 字符串、UTF-8 字符串或者 unicode +* `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),也可以用 list(jieba.cut(...)) 转化为 list 代码示例( 分词 ) - #encoding=utf-8 - import jieba +```python +#encoding=utf-8 +import jieba - seg_list = jieba.cut("我来到北京清华大学",cut_all=True) - print("Full Mode:", "/ ".join(seg_list)) # 全模式 +seg_list = jieba.cut("我来到北京清华大学", cut_all=True) +print("Full Mode:", "/ ".join(seg_list)) # 全模式 - seg_list = jieba.cut("我来到北京清华大学",cut_all=False) - print("Default Mode:", "/ ".join(seg_list)) # 精确模式 +seg_list = jieba.cut("我来到北京清华大学", cut_all=False) +print("Default Mode:", "/ ".join(seg_list)) # 精确模式 - seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式 - print(", ".join(seg_list)) +seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式 +print(", ".join(seg_list)) - seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式 - print(", ".join(seg_list)) +seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式 +print(", ".join(seg_list)) +``` -Output: +输出: - 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 + 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 - 【精确模式】: 我/ 来到/ 北京/ 清华大学 + 【精确模式】: 我/ 来到/ 北京/ 清华大学 - 【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了) + 【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了) - 【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 + 【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 -功能 2) :添加自定义词典 -================ +2) :添加自定义词典 +---------------- * 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率 * 用法: jieba.load_userdict(file_name) # file_name 为自定义词典的路径 * 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开 * 范例: - * 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt + * 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt - * 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py + * 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py - * 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / + * 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / - * 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / + * 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / * "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14 -功能 3) :关键词提取 -================ -* jieba.analyse.extract_tags(sentence,topK) #需要先 import jieba.analyse -* setence 为待提取的文本 +3) :关键词提取 +------------- +* jieba.analyse.extract_tags(sentence,topK,withWeight) #需要先 `import jieba.analyse` +* sentence 为待提取的文本 * topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20 +* withWeight 为是否一并返回关键词权重值,默认值为 False 代码示例 (关键词提取) - https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py +https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py 关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径 @@ -153,44 +136,78 @@ Output: * 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt * 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py -功能 4) : 词性标注 -================ +关键词一并返回关键词权重值示例 + +* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py + +#### 基于TextRank算法的关键词抽取实现 +算法论文: [TextRank: Bringing Order into Texts](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf) + +##### 基本思想: + +1. 将待抽取关键词的文本进行分词 +2. 以固定窗口大小(我选的5,可适当调整),词之间的共现关系,构建图 +3. 计算图中节点的PageRank,注意是无向带权图 + +##### 基本使用: +jieba.analyse.textrank(raw_text) + +##### 示例结果: +来自`__main__`的示例结果: + +``` +吉林 100.0 +欧亚 86.4592606421 +置业 55.3262889963 +实现 52.0353476663 +收入 37.9475518129 +增资 35.5042189944 +子公司 34.9286032861 +全资 30.8154823412 +城市 30.6031961172 +商业 30.4779050167 + +``` + +4) : 词性标注 +----------- * 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法 * 用法示例 - >>> import jieba.posseg as pseg - >>> words = pseg.cut("我爱北京天安门") - >>> for w in words: - ... print w.word, w.flag - ... - 我 r - 爱 v - 北京 ns - 天安门 ns +```pycon +>>> import jieba.posseg as pseg +>>> words = pseg.cut("我爱北京天安门") +>>> for w in words: +... print(w.word, w.flag) +... +我 r +爱 v +北京 ns +天安门 ns +``` -功能 5) : 并行分词 -================== +5) : 并行分词 +----------- * 原理:将目标文本按行分隔后,把各行文本分配到多个 python 进程并行分词,然后归并结果,从而获得分词速度的可观提升 * 基于 python 自带的 multiprocessing 模块,目前暂不支持 windows * 用法: - * `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数 - * `jieba.disable_parallel()` # 关闭并行分词模式 + * `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数 + * `jieba.disable_parallel()` # 关闭并行分词模式 -* 例子: - https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py +* 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py * 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。 -功能 6) : Tokenize:返回词语在原文的起始位置 -============================================ -* 注意,输入参数只接受 str +6) : Tokenize:返回词语在原文的起始位置 +---------------------------------- +* 注意,输入参数只接受 unicode * 默认模式 ```python -result = jieba.tokenize('永和服装饰品有限公司') +result = jieba.tokenize(u'永和服装饰品有限公司') for tk in result: - print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2])) + print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) ``` ``` @@ -204,9 +221,9 @@ word 有限公司 start: 6 end:10 * 搜索模式 ```python -result = jieba.tokenize('永和服装饰品有限公司', mode='search') +result = jieba.tokenize(u'永和服装饰品有限公司',mode='search') for tk in result: - print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2])) + print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) ``` ``` @@ -219,11 +236,80 @@ word 有限公司 start: 6 end:10 ``` -功能 7) : ChineseAnalyzer for Whoosh 搜索引擎 -============================================ -* 引用: `from jieba.analyse import ChineseAnalyzer ` +7) : ChineseAnalyzer for Whoosh 搜索引擎 +-------------------------------------------- +* 引用: `from jieba.analyse import ChineseAnalyzer` * 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py +8) : 命令行分词 +------------------- + +使用示例:`cat news.txt | python -m jieba > cut_result.txt` + +命令行选项(翻译): + + 使用: python -m jieba [options] filename + + 结巴命令行界面。 + + 固定参数: + filename 输入文件 + + 可选参数: + -h, --help 显示此帮助信息并退出 + -d [DELIM], --delimiter [DELIM] + 使用 DELIM 分隔词语,而不是用默认的' / '。 + 若不指定 DELIM,则使用一个空格分隔。 + -D DICT, --dict DICT 使用 DICT 代替默认词典 + -u USER_DICT, --user-dict USER_DICT + 使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用 + -a, --cut-all 全模式分词 + -n, --no-hmm 不使用隐含马尔可夫模型 + -q, --quiet 不输出载入信息到 STDERR + -V, --version 显示版本信息并退出 + + 如果没有指定文件名,则使用标准输入。 + +`--help` 选项输出: + + $> python -m jieba --help + usage: python -m jieba [options] filename + + Jieba command line interface. + + positional arguments: + filename input file + + optional arguments: + -h, --help show this help message and exit + -d [DELIM], --delimiter [DELIM] + use DELIM instead of ' / ' for word delimiter; or a + space if it is used without DELIM + -D DICT, --dict DICT use DICT as dictionary + -u USER_DICT, --user-dict USER_DICT + use USER_DICT together with the default dictionary or + DICT (if specified) + -a, --cut-all full pattern cutting + -n, --no-hmm don't use the Hidden Markov Model + -q, --quiet don't print loading messages to stderr + -V, --version show program's version number and exit + + If no filename specified, use STDIN instead. + +模块初始化机制的改变:lazy load (从0.28版本开始) +------------------------------------------- + +jieba 采用延迟加载,"import jieba" 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。 + + import jieba + jieba.initialize() # 手动初始化(可选) + + +在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径: + + jieba.set_dictionary('data/dict.txt.big') + +例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py 其他词典 ======== @@ -233,47 +319,55 @@ https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small 2. 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big -下载你所需要的词典,然后覆盖jieba/dict.txt 即可或者用 `jieba.set_dictionary('data/dict.txt.big')` - - -模块初始化机制的改变:lazy load (从0.28版本开始) -================================================ - -jieba 采用延迟加载,"import jieba" 不会立即触发词典的加载,一旦有必要才开始加载词典构建trie。如果你想手工初始 jieba,也可以手动初始化。 - - import jieba - jieba.initialize() # 手动初始化(可选) - - -在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径: - - - jieba.set_dictionary('data/dict.txt.big') - - -例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py +下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 `jieba.set_dictionary('data/dict.txt.big')` + +其他语言实现 +========== + +结巴分词 Java 版本 +---------------- +作者:piaolingxue +地址:https://github.com/huaban/jieba-analysis + +结巴分词 C++ 版本 +---------------- +作者:Aszxqw +地址:https://github.com/aszxqw/cppjieba + +结巴分词 Node.js 版本 +---------------- +作者:Aszxqw +地址:https://github.com/aszxqw/nodejieba + +结巴分词 Erlang 版本 +---------------- +作者:falood +地址:https://github.com/falood/exjieba +系统集成 +======== +1. Solr: https://github.com/sing1ee/jieba-solr 分词速度 ========= * 1.5 MB / Second in Full Mode * 400 KB / Second in Default Mode -* Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt - +* 测试环境: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt 常见问题 ========= - 1)模型的数据是如何生成的?https://github.com/fxsjy/jieba/issues/7 +1. 模型的数据是如何生成的?https://github.com/fxsjy/jieba/issues/7 +2. 这个库的授权是? https://github.com/fxsjy/jieba/issues/2 - 2)这个库的授权是? https://github.com/fxsjy/jieba/issues/2 +* 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed - 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed - -Change Log +修订历史 ========== https://github.com/fxsjy/jieba/blob/master/Changelog +-------------------- + jieba ======== "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module. @@ -281,114 +375,207 @@ jieba Features ======== * Support three types of segmentation mode: -* 1) Accurate Mode, attempt to cut the sentence into the most accurate segmentation, which is suitable for text analysis; -* 2) Full Mode, break the words of the sentence into words scanned -* 3) Search Engine Mode, based on the Accurate Mode, with an attempt to cut the long words into several short words, which can enhance the recall rate +* 1) Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis. +* 2) Full Mode gets all the possible words from the sentence. Fast but not accurate. +* 3) Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines. Usage ======== * Fully automatic installation: `easy_install jieba` or `pip install jieba` -* Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , after extracting run `python setup.py install` -* Manutal installation: place the `jieba` directory in the current directory or python site-packages directory. -* Use `import jieba` to import, which will first build the Trie tree only on first import (takes a few seconds). +* Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run `python setup.py install` after extracting. +* Manual installation: place the `jieba` directory in the current directory or python `site-packages` directory. +* `import jieba`. Algorithm ======== -* Based on the Trie tree structure to achieve efficient word graph scanning; sentences using Chinese characters constitute a directed acyclic graph (DAG) -* Employs memory search to calculate the maximum probability path, in order to identify the maximum tangential points based on word frequency combination -* For unknown words, the character position HMM-based model is used, using the Viterbi algorithm +* Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations. +* Use dynamic programming to find the most probable combination based on the word frequency. +* For unknown words, a HMM-based model is used with the Viterbi algorithm. -Function 1): cut -========== -* The `jieba.cut` method accepts to input parameters: 1) the first parameter is the string that requires segmentation, and the 2) second parameter is `cut_all`, a parameter used to control the segmentation pattern. -* `jieba.cut` returned structure is an iterative generator, where you can use a `for` loop to get the word segmentation (in unicode), or `list(jieba.cut( ... ))` to create a list. -* `jieba.cut_for_search` accpets only on parameter: the string that requires segmentation, and it will cut the sentence into short words +Main Functions +============== -Code example: segmentation -========== +1) : Cut +-------- +* The `jieba.cut` function accepts three input parameters: the first parameter is the string to be cut; the second parameter is `cut_all`, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model. +* `jieba.cut` returns an generator, from which you can use a `for` loop to get the segmentation result (in unicode), or `list(jieba.cut( ... ))` to create a list. +* `jieba.cut_for_search` accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines. - #encoding=utf-8 - import jieba +**Code example: segmentation** - seg_list = jieba.cut("我来到北京清华大学", cut_all=True) - print("Full Mode:", "/ ".join(seg_list)) # 全模式 +```python +#encoding=utf-8 +import jieba - seg_list = jieba.cut("我来到北京清华大学", cut_all=False) - print("Default Mode:", "/ ".join(seg_list)) # 默认模式 +seg_list = jieba.cut("我来到北京清华大学", cut_all=True) +print("Full Mode:", "/ ".join(seg_list)) # 全模式 - seg_list = jieba.cut("他来到了网易杭研大厦") - print(", ".join(seg_list)) +seg_list = jieba.cut("我来到北京清华大学", cut_all=False) +print("Default Mode:", "/ ".join(seg_list)) # 精确模式 - seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式 - print(", ".join(seg_list)) +seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式 +print(", ".join(seg_list)) + +seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式 +print(", ".join(seg_list)) +``` Output: - [Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 + [Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 - [Accurate Mode]: 我/ 来到/ 北京/ 清华大学 + [Accurate Mode]: 我/ 来到/ 北京/ 清华大学 - [Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm) + [Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm) - [Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在 -, 日本, 京都, 大学, 日本京都大学, 深造 + [Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 -Function 2): Add a custom dictionary -========== +2) : Add a custom dictionary +---------------------------- -* Developers can specify their own custom dictionary to include in the jieba thesaurus. jieba has the ability to identify new words, but adding your own new words can ensure a higher rate of correct segmentation. -* Usage: `jieba.load_userdict(file_name) # file_name is a custom dictionary path` +* Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but adding your own new words can ensure a higher accuracy. +* Usage: `jieba.load_userdict(file_name) # file_name is the path of the custom dictionary` * The dictionary format is the same as that of `analyse/idf.txt`: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space * Example: - 云计算 5 - 李小福 2 - 创新办 3 + 云计算 5 + 李小福 2 + 创新办 3 - [Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / + [Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / - [After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / + [After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / -Function 3): Keyword Extraction -================ -* `jieba.analyse.extract_tags(sentence,topK) # needs to first import jieba.analyse` -* `setence`: the text to be extracted -* `topK`: To return several TF / IDF weights for the biggest keywords, the default value is 20 +3) : Keyword Extraction +----------------------- +* `jieba.analyse.extract_tags(sentence,topK,withWeight) # needs to first import jieba.analyse` +* `sentence`: the text to be extracted +* `topK`: return how many keywords with the highest TF/IDF weights. The default value is 20 +* `withWeight`: whether return TF/IDF weights with the keywords. The default value is False -Code sample (keyword extraction) +Example (keyword extraction) - https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py +https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py Developers can specify their own custom IDF corpus in jieba keyword extraction -* Usage: `jieba.analyse.set_idf_path(file_name) # file_name is a custom corpus path` +* Usage: `jieba.analyse.set_idf_path(file_name) # file_name is the path for the custom corpus` * Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big * Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py Developers can specify their own custom stop words corpus in jieba keyword extraction -* Usage: `jieba.analyse.set_stop_words(file_name) # file_name is a custom corpus path` +* Usage: `jieba.analyse.set_stop_words(file_name) # file_name is the path for the custom corpus` * Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt * Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py -Using Other Dictionaries -======== -It is possible to supply Jieba with your own custom dictionary, and there are also two dictionaries readily available for download: +There's also a [TextRank](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf) implementation available. -1. You can employ a smaller dictionary for a smaller memory footprint: -https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small +Use: `jieba.analyse.textrank(raw_text)`. -2. There is also a bigger file that has better support for traditional characters (繁體): -https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big +4) : Part of Speech Tagging +----------- +* Tags the POS of each word after segmentation, using labels compatible with ictclas. +* Example: -By default, an in-between dictionary is used, called `dict.txt` and included in the distribution. +```pycon +>>> import jieba.posseg as pseg +>>> words = pseg.cut("我爱北京天安门") +>>> for w in words: +... print(w.word, w.flag) +... +我 r +爱 v +北京 ns +天安门 ns +``` -In either case, download the file you want first, and then call `jieba.set_dictionary('data/dict.txt.big')` or just replace the existing `dict.txt`. +5) : Parallel Processing +----------- +* Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster. +* Based on the multiprocessing module of Python. +* Usage: + * `jieba.enable_parallel(4)` # Enable parallel processing. The parameter is the number of processes. + * `jieba.disable_parallel()` # Disable parallel processing. + +* Example: + https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py + +* Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version. + +6) : Tokenize: return words with position +---------------------------------- +* The input must be unicode +* Default mode + +```python +result = jieba.tokenize(u'永和服装饰品有限公司') +for tk in result: + print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) +``` + +``` +word 永和 start: 0 end:2 +word 服装 start: 2 end:4 +word 饰品 start: 4 end:6 +word 有限公司 start: 6 end:10 + +``` + +* Search mode + +```python +result = jieba.tokenize(u'永和服装饰品有限公司',mode='search') +for tk in result: + print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) +``` + +``` +word 永和 start: 0 end:2 +word 服装 start: 2 end:4 +word 饰品 start: 4 end:6 +word 有限 start: 6 end:8 +word 公司 start: 8 end:10 +word 有限公司 start: 6 end:10 +``` + + +7) : ChineseAnalyzer for Whoosh +-------------------------------------------- +* `from jieba.analyse import ChineseAnalyzer` +* Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py + +8) : Command Line Interface +------------------- + + $> python -m jieba --help + usage: python -m jieba [options] filename + + Jieba command line interface. + + positional arguments: + filename input file + + optional arguments: + -h, --help show this help message and exit + -d [DELIM], --delimiter [DELIM] + use DELIM instead of ' / ' for word delimiter; or a + space if it is used without DELIM + -D DICT, --dict DICT use DICT as dictionary + -u USER_DICT, --user-dict USER_DICT + use USER_DICT together with the default dictionary or + DICT (if specified) + -a, --cut-all full pattern cutting + -n, --no-hmm don't use the Hidden Markov Model + -q, --quiet don't print loading messages to stderr + -V, --version show program's version number and exit + + If no filename specified, use STDIN instead. Initialization -======== -By default, Jieba employs lazy loading to only build the trie once it is necessary. This takes 1-3 seconds once, after which it is not initialized again. If you want to initialize Jieba manually, you can call: +--------------- +By default, Jieba don't build the prefix dictionary unless it's necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call: import jieba jieba.initialize() # (optional) @@ -397,6 +584,21 @@ You can also specify the dictionary (not supported before version 0.28) : jieba.set_dictionary('data/dict.txt.big') + +Using Other Dictionaries +======== +It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download: + +1. A smaller dictionary for a smaller memory footprint: +https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small + +2. There is also a bigger dictionary that has better support for traditional Chinese (繁體): +https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big + +By default, an in-between dictionary is used, called `dict.txt` and included in the distribution. + +In either case, download the file you want, and then call `jieba.set_dictionary('data/dict.txt.big')` or just replace the existing `dict.txt`. + Segmentation speed ========= * 1.5 MB / Second in Full Mode diff --git a/jieba/__main__.py b/jieba/__main__.py index d52f3ee..ee932e2 100644 --- a/jieba/__main__.py +++ b/jieba/__main__.py @@ -6,7 +6,10 @@ from argparse import ArgumentParser parser = ArgumentParser(usage="%s -m jieba [options] filename" % sys.executable, description="Jieba command line interface.", epilog="If no filename specified, use STDIN instead.") parser.add_argument("-d", "--delimiter", metavar="DELIM", default=' / ', nargs='?', const=' ', - help="use DELIM instead of ' / ' for word delimiter; use a space if it is without DELIM") + help="use DELIM instead of ' / ' for word delimiter; or a space if it is used without DELIM") +parser.add_argument("-D", "--dict", help="use DICT as dictionary") +parser.add_argument("-u", "--user-dict", + help="use USER_DICT together with the default dictionary or DICT (if specified)") parser.add_argument("-a", "--cut-all", action="store_true", dest="cutall", default=False, help="full pattern cutting") @@ -14,23 +17,30 @@ parser.add_argument("-n", "--no-hmm", dest="hmm", action="store_false", default=True, help="don't use the Hidden Markov Model") parser.add_argument("-q", "--quiet", action="store_true", default=False, help="don't print loading messages to stderr") -parser.add_argument("-V", '--version', action='version', version="Jieba " + jieba.__version__) +parser.add_argument("-V", '--version', action='version', + version="Jieba " + jieba.__version__) parser.add_argument("filename", nargs='?', help="input file") args = parser.parse_args() if args.quiet: - jieba.setLogLevel(60) + jieba.setLogLevel(60) delim = str(args.delimiter) cutall = args.cutall hmm = args.hmm fp = open(args.filename, 'r') if args.filename else sys.stdin -jieba.initialize() +if args.dict: + jieba.initialize(args.dict) +else: + jieba.initialize() +if args.user_dict: + jieba.load_userdict(args.user_dict) + ln = fp.readline() while ln: - l = ln.rstrip('\r\n') - print(delim.join(jieba.cut(ln.rstrip('\r\n'), cutall, hmm))) - ln = fp.readline() + l = ln.rstrip('\r\n') + print(delim.join(jieba.cut(ln.rstrip('\r\n'), cutall, hmm))) + ln = fp.readline() fp.close() diff --git a/jieba/analyse/__init__.py b/jieba/analyse/__init__.py index f70448b..d057605 100644 --- a/jieba/analyse/__init__.py +++ b/jieba/analyse/__init__.py @@ -5,6 +5,7 @@ try: from .analyzer import ChineseAnalyzer except ImportError: pass +from .textrank import textrank _curpath = os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) abs_path = os.path.join(_curpath, "idf.txt") @@ -58,7 +59,7 @@ def set_stop_words(stop_words_path): for line in lines: STOP_WORDS.add(line) -def extract_tags(sentence, topK=20): +def extract_tags(sentence, topK=20, withWeight=False): global STOP_WORDS idf_freq, median_idf = idf_loader.get_idf() @@ -77,6 +78,9 @@ def extract_tags(sentence, topK=20): tf_idf_list = [(v*idf_freq.get(k,median_idf), k) for k,v in freq] st_list = sorted(tf_idf_list, reverse=True) - top_tuples = st_list[:topK] - tags = [a[1] for a in top_tuples] + if withWeight: + tags = st_list[:topK] + else: + top_tuples = st_list[:topK] + tags = [a[1] for a in top_tuples] return tags diff --git a/jieba/analyse/analyzer.py b/jieba/analyse/analyzer.py index c5bfd12..a55271d 100644 --- a/jieba/analyse/analyzer.py +++ b/jieba/analyse/analyzer.py @@ -1,6 +1,6 @@ #encoding=utf-8 from whoosh.analysis import RegexAnalyzer,LowercaseFilter,StopFilter,StemFilter -from whoosh.analysis import Tokenizer,Token +from whoosh.analysis import Tokenizer,Token from whoosh.lang.porter import stem import jieba diff --git a/jieba/analyse/textrank.py b/jieba/analyse/textrank.py new file mode 100644 index 0000000..6a6cc83 --- /dev/null +++ b/jieba/analyse/textrank.py @@ -0,0 +1,74 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- + +import jieba.posseg as pseg +import collections +import sys + +class UndirectWeightedGraph: + d = 0.85 + + def __init__(self): + self.graph = collections.defaultdict(list) + + def addEdge(self, start, end, weight): + # use a tuple (start, end, weight) instead of a Edge object + self.graph[start].append((start, end, weight)) + self.graph[end].append((end, start, weight)) + + def rank(self): + ws = collections.defaultdict(float) + outSum = collections.defaultdict(float) + + wsdef = 1.0 / len(self.graph) + for n, out in self.graph.items(): + ws[n] = wsdef + outSum[n] = sum((e[2] for e in out), 0.0) + + for x in range(10): # 10 iters + for n, inedges in self.graph.items(): + s = 0 + for e in inedges: + s += e[2] / outSum[e[1]] * ws[e[1]] + ws[n] = (1 - self.d) + self.d * s + + (min_rank, max_rank) = (sys.float_info[0], sys.float_info[3]) + + for w in ws.values(): + if w < min_rank: + min_rank = w + elif w > max_rank: + max_rank = w + + for n, w in ws.items(): + ws[n] = (w - min_rank / 10.0) / (max_rank - min_rank / 10.0) * 100 + + return ws + + +def textrank(raw, topk=10): + pos_filt = frozenset(('ns', 'n', 'vn', 'v')) + g = UndirectWeightedGraph() + cm = collections.defaultdict(int) + span = 5 + words = [x for x in pseg.cut(raw)] + for i in range(len(words)): + if words[i].flag in pos_filt: + for j in range(i + 1, i + span): + if j >= len(words): + break + if words[j].flag not in pos_filt: + continue + cm[(words[i].word, words[j].word)] += 1 + + for terms, w in cm.items(): + g.addEdge(terms[0], terms[1], w) + + nodes_rank = g.rank() + nrs = sorted(nodes_rank.items(), key=lambda x: x[1], reverse=True) + return nrs[:topk] + +if __name__ == '__main__': + s = "此外,公司拟对全资子公司吉林欧亚置业有限公司增资4.3亿元,增资后,吉林欧亚置业注册资本由7000万元增加到5亿元。吉林欧亚置业主要经营范围为房地产开发及百货零售等业务。目前在建吉林欧亚城市商业综合体项目。2013年,实现营业收入0万元,实现净利润-139.13万元。" + for x, w in textrank(s): + print(x, w) diff --git a/jieba/posseg/__init__.py b/jieba/posseg/__init__.py index f9bfad8..1593610 100644 --- a/jieba/posseg/__init__.py +++ b/jieba/posseg/__init__.py @@ -14,32 +14,33 @@ PROB_EMIT_P = "prob_emit.p" CHAR_STATE_TAB_P = "char_state_tab.p" def load_model(f_name, isJython=True): - _curpath=os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) + _curpath = os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) result = {} with open(f_name, "rb") as f: - for line in open(f_name,"rb"): + for line in f: line = line.strip() - if not line: continue + if not line: + continue line = line.decode("utf-8") word, _, tag = line.split(" ") result[word] = tag f.closed if not isJython: return result - + start_p = {} abs_path = os.path.join(_curpath, PROB_START_P) with open(abs_path, mode='rb') as f: start_p = marshal.load(f) f.closed - + trans_p = {} abs_path = os.path.join(_curpath, PROB_TRANS_P) with open(abs_path, 'rb') as f: trans_p = marshal.load(f) f.closed - + emit_p = {} abs_path = os.path.join(_curpath, PROB_EMIT_P) with open(abs_path, 'rb') as f: @@ -62,14 +63,14 @@ else: word_tag_tab = load_model(jieba.get_abs_path_dict(), isJython=False) def makesure_userdict_loaded(fn): - + @wraps(fn) def wrapped(*args,**kwargs): - if len(jieba.user_word_tag_tab)>0: + if jieba.user_word_tag_tab: word_tag_tab.update(jieba.user_word_tag_tab) jieba.user_word_tag_tab = {} return fn(*args,**kwargs) - + return wrapped class pair(object): @@ -152,7 +153,7 @@ def __cut_DAG_NO_HMM(sentence): def __cut_DAG(sentence): DAG = jieba.get_DAG(sentence) route = {} - + jieba.calc(sentence,DAG,0,route=route) x = 0 diff --git a/jieba/posseg/viterbi.py b/jieba/posseg/viterbi.py index dd707cd..96c1108 100644 --- a/jieba/posseg/viterbi.py +++ b/jieba/posseg/viterbi.py @@ -3,8 +3,7 @@ MIN_FLOAT = -3.14e100 MIN_INF = float("-inf") def get_top_states(t_state_v, K=4): - items = t_state_v.items() - topK = sorted(items, key=operator.itemgetter(1), reverse=True)[:K] + topK = sorted(t_state_v.items(), key=operator.itemgetter(1), reverse=True)[:K] return [x[0] for x in topK] def viterbi(obs, states, start_p, trans_p, emit_p): diff --git a/setup.py b/setup.py index a70200b..d084544 100644 --- a/setup.py +++ b/setup.py @@ -1,11 +1,11 @@ -from distutils.core import setup -setup(name='jieba3k', - version='0.34', - description='Chinese Words Segementation Utilities', - author='Sun, Junyi', - author_email='ccnusjy@gmail.com', - url='http://github.com/fxsjy', - packages=['jieba'], +from distutils.core import setup +setup(name='jieba3k', + version='0.34', + description='Chinese Words Segementation Utilities', + author='Sun, Junyi', + author_email='ccnusjy@gmail.com', + url='http://github.com/fxsjy', + packages=['jieba'], package_dir={'jieba':'jieba'}, package_data={'jieba':['*.*','finalseg/*','analyse/*','posseg/*']} -) +) diff --git a/test/extract_tags_with_weight.py b/test/extract_tags_with_weight.py new file mode 100644 index 0000000..827eb0b --- /dev/null +++ b/test/extract_tags_with_weight.py @@ -0,0 +1,43 @@ +import sys +sys.path.append('../') + +import jieba +import jieba.analyse +from optparse import OptionParser + +USAGE = "usage: python extract_tags_with_weight.py [file name] -k [top k] -w [with weight=1 or 0]" + +parser = OptionParser(USAGE) +parser.add_option("-k", dest="topK") +parser.add_option("-w", dest="withWeight") +opt, args = parser.parse_args() + + +if len(args) < 1: + print(USAGE) + sys.exit(1) + +file_name = args[0] + +if opt.topK is None: + topK = 10 +else: + topK = int(opt.topK) + +if opt.withWeight is None: + withWeight = False +else: + if int(opt.withWeight) is 1: + withWeight = True + else: + withWeight = False + +content = open(file_name, 'rb').read() + +tags = jieba.analyse.extract_tags(content, topK=topK, withWeight=withWeight) + +if withWeight is True: + for tag in tags: + print("tag: %s\t\t weight: %f" % (tag[1],tag[0])) +else: + print(",".join(tags)) diff --git a/test/lyric.txt b/test/lyric.txt new file mode 100644 index 0000000..db2d23b --- /dev/null +++ b/test/lyric.txt @@ -0,0 +1,44 @@ +我沒有心 +我沒有真實的自我 +我只有消瘦的臉孔 +所謂軟弱 +所謂的順從一向是我 +的座右銘 + +而我 +沒有那海洋的寬闊 +我只要熱情的撫摸 +所謂空洞 +所謂不安全感是我 +的墓誌銘 + +而你 +是否和我一般怯懦 +是否和我一般矯作 +和我一般囉唆 + +而你 +是否和我一般退縮 +是否和我一般肌迫 +一般地困惑 + +我沒有力 +我沒有滿腔的熱火 +我只有滿肚的如果 +所謂勇氣 +所謂的認同感是我 +隨便說說 + +而你 +是否和我一般怯懦 +是否和我一般矯作 +是否對你來說 +只是一場遊戲 +雖然沒有把握 + +而你 +是否和我一般退縮 +是否和我一般肌迫 +是否對你來說 +只是逼不得已 +雖然沒有藉口 \ No newline at end of file diff --git a/test/test_pos.py b/test/test_pos.py index 45c885b..d3d83c8 100644 --- a/test/test_pos.py +++ b/test/test_pos.py @@ -6,7 +6,7 @@ import jieba.posseg as pseg def cuttest(test_sent): result = pseg.cut(test_sent) for w in result: - print(w.word, "/", w.flag, ", ", end=' ') + print(w.word, "/", w.flag, ", ", end=' ') print("") diff --git a/test/test_whoosh_flie.py b/test/test_whoosh_flie.py index ede45c3..da096a6 100644 --- a/test/test_whoosh_flie.py +++ b/test/test_whoosh_flie.py @@ -6,7 +6,7 @@ from whoosh.index import create_in from whoosh.fields import * from whoosh.qparser import QueryParser -from jieba.analyse import ChineseAnalyzer +from jieba.analyse import ChineseAnalyzer analyzer = ChineseAnalyzer() @@ -23,7 +23,7 @@ with open(file_name,"rb") as inf: for line in inf: i+=1 writer.add_document( - title="line"+str(i), + title="line"+str(i), path="/a", content=line.decode('gbk','ignore') ) @@ -36,6 +36,6 @@ for keyword in ("水果小姐","你","first","中文","交换机","交换"): print("result of ",keyword) q = parser.parse(keyword) results = searcher.search(q) - for hit in results: + for hit in results: print(hit.highlights("content")) print("="*10)