* Updating test matrix for 7.6 + removing oss for now.

* Resolving 7.6.0 docs issues

* Updating ML docs

* Bumping version following doc fixes

* Change ExternalMLModel to ImportedMLModel
This commit is contained in:
stevedodson 2020-02-15 20:29:03 +01:00 committed by GitHub
parent fa930b6cea
commit 1a90e9232e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 49 additions and 49 deletions

View File

@ -753,7 +753,7 @@
{
"data": {
"text/plain": [
"<eland.index.Index at 0x11631ffd0>"
"<eland.index.Index at 0x116b3efd0>"
]
},
"execution_count": 17,
@ -2704,15 +2704,15 @@
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>410.011039</td>\n",
" <td>410.008918</td>\n",
" <td>2470.545974</td>\n",
" <td>...</td>\n",
" <td>251.773003</td>\n",
" <td>251.938710</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>640.387285</td>\n",
" <td>640.362667</td>\n",
" <td>7612.072403</td>\n",
" <td>...</td>\n",
" <td>503.148975</td>\n",
@ -2720,11 +2720,11 @@
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>842.213490</td>\n",
" <td>9734.960478</td>\n",
" <td>840.617448</td>\n",
" <td>9738.206675</td>\n",
" <td>...</td>\n",
" <td>720.505705</td>\n",
" <td>4.172535</td>\n",
" <td>720.026320</td>\n",
" <td>4.160448</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
@ -2745,9 +2745,9 @@
"mean 628.253689 7092.142457 ... 511.127842 2.835975\n",
"std 266.386661 4578.263193 ... 334.741135 1.939365\n",
"min 100.020531 0.000000 ... 0.000000 0.000000\n",
"25% 410.011039 2470.545974 ... 251.773003 1.000000\n",
"50% 640.387285 7612.072403 ... 503.148975 3.000000\n",
"75% 842.213490 9734.960478 ... 720.505705 4.172535\n",
"25% 410.008918 2470.545974 ... 251.938710 1.000000\n",
"50% 640.362667 7612.072403 ... 503.148975 3.000000\n",
"75% 840.617448 9738.206675 ... 720.026320 4.160448\n",
"max 1199.729004 19881.482422 ... 1902.901978 6.000000\n",
"\n",
"[8 rows x 7 columns]"

View File

@ -1023,21 +1023,21 @@
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>14217.474239</td>\n",
" <td>14227.934845</td>\n",
" <td>1.000000</td>\n",
" <td>1.250068</td>\n",
" <td>1.250000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>15662.024630</td>\n",
" <td>15669.138235</td>\n",
" <td>2.000000</td>\n",
" <td>2.510000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>17212.723881</td>\n",
" <td>6.671951</td>\n",
" <td>4.210000</td>\n",
" <td>17212.690092</td>\n",
" <td>6.610262</td>\n",
" <td>4.211297</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
@ -1055,9 +1055,9 @@
"mean 15590.776680 7.464000 4.103233\n",
"std 1764.025160 85.924387 20.104873\n",
"min 12347.000000 -9360.000000 0.000000\n",
"25% 14217.474239 1.000000 1.250068\n",
"50% 15662.024630 2.000000 2.510000\n",
"75% 17212.723881 6.671951 4.210000\n",
"25% 14227.934845 1.000000 1.250000\n",
"50% 15669.138235 2.000000 2.510000\n",
"75% 17212.690092 6.610262 4.211297\n",
"max 18239.000000 2880.000000 950.990000"
]
},

View File

@ -1,6 +0,0 @@
eland.ml.ExternalMLModel.predict
================================
.. currentmodule:: eland.ml
.. automethod:: ExternalMLModel.predict

View File

@ -1,6 +0,0 @@
eland.ml.ExternalMLModel
========================
.. currentmodule:: eland.ml
.. autoclass:: ExternalMLModel

View File

@ -0,0 +1,6 @@
eland.ml.ImportedMLModel.predict
================================
.. currentmodule:: eland.ml
.. automethod:: ImportedMLModel.predict

View File

@ -0,0 +1,6 @@
eland.ml.ImportedMLModel
========================
.. currentmodule:: eland.ml
.. autoclass:: ImportedMLModel

View File

@ -17,7 +17,7 @@ The fastest way to get started with machine learning features is to start a free
See https://www.elastic.co/guide/en/machine-learning/current/setup.html and other documentation for more detail.
ExternalMLModel
ImportedMLModel
~~~~~~~~~~~~~~~
.. currentmodule:: eland.ml
@ -26,12 +26,12 @@ Constructor
.. autosummary::
:toctree: api/
ExternalMLModel
ImportedMLModel
Learning API
^^^^^^^^^^^^
.. autosummary::
:toctree: api/
ExternalMLModel.predict
ImportedMLModel.predict

View File

@ -13,4 +13,4 @@
# limitations under the License.
from eland.ml.ml_model import *
from eland.ml.external_ml_model import *
from eland.ml.imported_ml_model import *

View File

@ -28,7 +28,7 @@ from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from xgboost import XGBRegressor, XGBClassifier
class ExternalMLModel(MLModel):
class ImportedMLModel(MLModel):
"""
Transform and serialize a trained 3rd party model into Elasticsearch.
This model can then be used for inference in the Elastic Stack.
@ -67,7 +67,7 @@ class ExternalMLModel(MLModel):
--------
>>> from sklearn import datasets
>>> from sklearn.tree import DecisionTreeClassifier
>>> from eland.ml import ExternalMLModel
>>> from eland.ml import ImportedMLModel
>>> # Train model
>>> training_data = datasets.make_classification(n_features=5, random_state=0)
@ -82,7 +82,7 @@ class ExternalMLModel(MLModel):
>>> # Serialise the model to Elasticsearch
>>> feature_names = ["f0", "f1", "f2", "f3", "f4"]
>>> model_id = "test_decision_tree_classifier"
>>> es_model = ExternalMLModel('localhost', model_id, classifier, feature_names, overwrite=True)
>>> es_model = ImportedMLModel('localhost', model_id, classifier, feature_names, overwrite=True)
>>> # Get some test results from Elasticsearch model
>>> es_model.predict(test_data)
@ -169,7 +169,7 @@ class ExternalMLModel(MLModel):
--------
>>> from sklearn import datasets
>>> from xgboost import XGBRegressor
>>> from eland.ml import ExternalMLModel
>>> from eland.ml import ImportedMLModel
>>> # Train model
>>> training_data = datasets.make_classification(n_features=6, random_state=0)
@ -184,7 +184,7 @@ class ExternalMLModel(MLModel):
>>> # Serialise the model to Elasticsearch
>>> feature_names = ["f0", "f1", "f2", "f3", "f4", "f5"]
>>> model_id = "test_xgb_regressor"
>>> es_model = ExternalMLModel('localhost', model_id, regressor, feature_names, overwrite=True)
>>> es_model = ImportedMLModel('localhost', model_id, regressor, feature_names, overwrite=True)
>>> # Get some test results from Elasticsearch model
>>> es_model.predict(test_data)

View File

@ -18,11 +18,11 @@ from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from xgboost import XGBRegressor, XGBClassifier
from eland.ml import ExternalMLModel
from eland.ml import ImportedMLModel
from eland.tests import ES_TEST_CLIENT
class TestExternalMLModel:
class TestImportedMLModel:
def test_decision_tree_classifier(self):
# Train model
@ -38,7 +38,7 @@ class TestExternalMLModel:
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_decision_tree_classifier"
es_model = ExternalMLModel(ES_TEST_CLIENT, model_id, classifier, feature_names, overwrite=True)
es_model = ImportedMLModel(ES_TEST_CLIENT, model_id, classifier, feature_names, overwrite=True)
es_results = es_model.predict(test_data)
np.testing.assert_almost_equal(test_results, es_results, decimal=4)
@ -60,7 +60,7 @@ class TestExternalMLModel:
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_decision_tree_regressor"
es_model = ExternalMLModel(ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=True)
es_model = ImportedMLModel(ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=True)
es_results = es_model.predict(test_data)
np.testing.assert_almost_equal(test_results, es_results, decimal=4)
@ -82,7 +82,7 @@ class TestExternalMLModel:
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_random_forest_classifier"
es_model = ExternalMLModel(ES_TEST_CLIENT, model_id, classifier, feature_names, overwrite=True)
es_model = ImportedMLModel(ES_TEST_CLIENT, model_id, classifier, feature_names, overwrite=True)
es_results = es_model.predict(test_data)
np.testing.assert_almost_equal(test_results, es_results, decimal=4)
@ -104,7 +104,7 @@ class TestExternalMLModel:
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_random_forest_regressor"
es_model = ExternalMLModel(ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=True)
es_model = ImportedMLModel(ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=True)
es_results = es_model.predict(test_data)
np.testing.assert_almost_equal(test_results, es_results, decimal=4)
@ -126,7 +126,7 @@ class TestExternalMLModel:
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_xgb_classifier"
es_model = ExternalMLModel(ES_TEST_CLIENT, model_id, classifier, feature_names, overwrite=True)
es_model = ImportedMLModel(ES_TEST_CLIENT, model_id, classifier, feature_names, overwrite=True)
es_results = es_model.predict(test_data)
np.testing.assert_almost_equal(test_results, es_results, decimal=4)
@ -148,7 +148,7 @@ class TestExternalMLModel:
feature_names = ["f0", "f1", "f2", "f3", "f4"]
model_id = "test_xgb_regressor"
es_model = ExternalMLModel(ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=True)
es_model = ImportedMLModel(ES_TEST_CLIENT, model_id, regressor, feature_names, overwrite=True)
es_results = es_model.predict(test_data)
np.testing.assert_almost_equal(test_results, es_results, decimal=4)