mirror of
https://github.com/elastic/eland.git
synced 2025-07-11 00:02:14 +08:00
* Updating test matrix for 7.6 + removing oss for now. * Resolving 7.6.0 docs issues * Updating ML docs * Bumping version following doc fixes * Change ExternalMLModel to ImportedMLModel
239 lines
8.9 KiB
Python
239 lines
8.9 KiB
Python
# Copyright 2020 Elasticsearch BV
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Union, List
|
|
|
|
import numpy as np
|
|
|
|
from eland.ml._model_transformers import SKLearnDecisionTreeTransformer, SKLearnForestRegressorTransformer, \
|
|
SKLearnForestClassifierTransformer, XGBoostRegressorTransformer, XGBoostClassifierTransformer
|
|
from eland.ml._optional import import_optional_dependency
|
|
from eland.ml.ml_model import MLModel
|
|
|
|
sklearn = import_optional_dependency("sklearn")
|
|
xgboost = import_optional_dependency("xgboost")
|
|
|
|
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
|
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
|
|
from xgboost import XGBRegressor, XGBClassifier
|
|
|
|
|
|
class ImportedMLModel(MLModel):
|
|
"""
|
|
Transform and serialize a trained 3rd party model into Elasticsearch.
|
|
This model can then be used for inference in the Elastic Stack.
|
|
|
|
Parameters
|
|
----------
|
|
es_client: Elasticsearch client argument(s)
|
|
- elasticsearch-py parameters or
|
|
- elasticsearch-py instance or
|
|
- eland.Client instance
|
|
|
|
model_id: str
|
|
The unique identifier of the trained inference model in Elasticsearch.
|
|
|
|
model: An instance of a supported python model. We support the following model types:
|
|
- sklearn.tree.DecisionTreeClassifier
|
|
- sklearn.tree.DecisionTreeRegressor
|
|
- sklearn.ensemble.RandomForestRegressor
|
|
- sklearn.ensemble.RandomForestClassifier
|
|
- xgboost.XGBClassifier
|
|
- xgboost.XGBRegressor
|
|
|
|
feature_names: List[str]
|
|
Names of the features (required)
|
|
|
|
classification_labels: List[str]
|
|
Labels of the classification targets
|
|
|
|
classification_weights: List[str]
|
|
Weights of the classification targets
|
|
|
|
overwrite: bool
|
|
Delete and overwrite existing model (if exists)
|
|
|
|
Examples
|
|
--------
|
|
>>> from sklearn import datasets
|
|
>>> from sklearn.tree import DecisionTreeClassifier
|
|
>>> from eland.ml import ImportedMLModel
|
|
|
|
>>> # Train model
|
|
>>> training_data = datasets.make_classification(n_features=5, random_state=0)
|
|
>>> test_data = [[-50.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]]
|
|
>>> classifier = DecisionTreeClassifier()
|
|
>>> classifier = classifier.fit(training_data[0], training_data[1])
|
|
|
|
>>> # Get some test results
|
|
>>> classifier.predict(test_data)
|
|
array([0, 1])
|
|
|
|
>>> # Serialise the model to Elasticsearch
|
|
>>> feature_names = ["f0", "f1", "f2", "f3", "f4"]
|
|
>>> model_id = "test_decision_tree_classifier"
|
|
>>> es_model = ImportedMLModel('localhost', model_id, classifier, feature_names, overwrite=True)
|
|
|
|
>>> # Get some test results from Elasticsearch model
|
|
>>> es_model.predict(test_data)
|
|
array([0, 1])
|
|
|
|
>>> # Delete model from Elasticsearch
|
|
>>> es_model.delete_model()
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
es_client,
|
|
model_id: str,
|
|
model: Union[DecisionTreeClassifier,
|
|
DecisionTreeRegressor,
|
|
RandomForestRegressor,
|
|
RandomForestClassifier,
|
|
XGBClassifier,
|
|
XGBRegressor],
|
|
feature_names: List[str],
|
|
classification_labels: List[str] = None,
|
|
classification_weights: List[float] = None,
|
|
overwrite=False):
|
|
super().__init__(
|
|
es_client,
|
|
model_id
|
|
)
|
|
|
|
self._feature_names = feature_names
|
|
self._model_type = None
|
|
|
|
# Transform model
|
|
if isinstance(model, DecisionTreeRegressor):
|
|
serializer = SKLearnDecisionTreeTransformer(model, feature_names).transform()
|
|
self._model_type = MLModel.TYPE_REGRESSION
|
|
elif isinstance(model, DecisionTreeClassifier):
|
|
serializer = SKLearnDecisionTreeTransformer(model, feature_names, classification_labels).transform()
|
|
self._model_type = MLModel.TYPE_CLASSIFICATION
|
|
elif isinstance(model, RandomForestRegressor):
|
|
serializer = SKLearnForestRegressorTransformer(model, feature_names).transform()
|
|
self._model_type = MLModel.TYPE_REGRESSION
|
|
elif isinstance(model, RandomForestClassifier):
|
|
serializer = SKLearnForestClassifierTransformer(model, feature_names, classification_labels).transform()
|
|
self._model_type = MLModel.TYPE_CLASSIFICATION
|
|
elif isinstance(model, XGBRegressor):
|
|
serializer = XGBoostRegressorTransformer(model, feature_names).transform()
|
|
self._model_type = MLModel.TYPE_REGRESSION
|
|
elif isinstance(model, XGBClassifier):
|
|
serializer = XGBoostClassifierTransformer(model, feature_names, classification_labels).transform()
|
|
self._model_type = MLModel.TYPE_CLASSIFICATION
|
|
else:
|
|
raise NotImplementedError("ML model of type {}, not currently implemented".format(type(model)))
|
|
|
|
if overwrite:
|
|
self.delete_model()
|
|
|
|
serialized_model = str(serializer.serialize_and_compress_model())[2:-1] # remove `b` and str quotes
|
|
self._client.perform_request(
|
|
"PUT", "/_ml/inference/" + self._model_id,
|
|
body={
|
|
"input": {
|
|
"field_names": feature_names
|
|
},
|
|
"compressed_definition": serialized_model
|
|
}
|
|
)
|
|
|
|
def predict(self, X):
|
|
"""
|
|
Make a prediction using a trained model stored in Elasticsearch.
|
|
|
|
Parameters for this method are not yet fully compatible with standard sklearn.predict.
|
|
|
|
Parameters
|
|
----------
|
|
X: list or list of lists of type float
|
|
Input feature vector - TODO support DataFrame and other formats
|
|
|
|
Returns
|
|
-------
|
|
y: np.ndarray of dtype float for regressors or int for classifiers
|
|
|
|
Examples
|
|
--------
|
|
>>> from sklearn import datasets
|
|
>>> from xgboost import XGBRegressor
|
|
>>> from eland.ml import ImportedMLModel
|
|
|
|
>>> # Train model
|
|
>>> training_data = datasets.make_classification(n_features=6, random_state=0)
|
|
>>> test_data = [[-1, -2, -3, -4, -5, -6], [10, 20, 30, 40, 50, 60]]
|
|
>>> regressor = XGBRegressor(objective='reg:squarederror')
|
|
>>> regressor = regressor.fit(training_data[0], training_data[1])
|
|
|
|
>>> # Get some test results
|
|
>>> regressor.predict(np.array(test_data))
|
|
array([0.23733574, 1.1897984 ], dtype=float32)
|
|
|
|
>>> # Serialise the model to Elasticsearch
|
|
>>> feature_names = ["f0", "f1", "f2", "f3", "f4", "f5"]
|
|
>>> model_id = "test_xgb_regressor"
|
|
>>> es_model = ImportedMLModel('localhost', model_id, regressor, feature_names, overwrite=True)
|
|
|
|
>>> # Get some test results from Elasticsearch model
|
|
>>> es_model.predict(test_data)
|
|
array([0.2373357, 1.1897984], dtype=float32)
|
|
|
|
>>> # Delete model from Elasticsearch
|
|
>>> es_model.delete_model()
|
|
|
|
"""
|
|
docs = []
|
|
if isinstance(X, list):
|
|
# Is it a list of lists?
|
|
if all(isinstance(i, list) for i in X):
|
|
for i in X:
|
|
doc = dict()
|
|
doc['_source'] = dict(zip(self._feature_names, i))
|
|
docs.append(doc)
|
|
|
|
else: # single feature vector1
|
|
doc = dict()
|
|
doc['_source'] = dict(zip(self._feature_names, i))
|
|
docs.append(doc)
|
|
else:
|
|
raise NotImplementedError("Prediction for type {}, not supported".format(type(X)))
|
|
|
|
results = self._client.perform_request(
|
|
"POST",
|
|
"/_ingest/pipeline/_simulate",
|
|
body={
|
|
"pipeline": {
|
|
"processors": [
|
|
{"inference": {
|
|
"model_id": self._model_id,
|
|
"inference_config": {self._model_type: {}},
|
|
"field_mappings": {}
|
|
}}
|
|
]
|
|
},
|
|
"docs": docs
|
|
})
|
|
|
|
y = [
|
|
doc['doc']['_source']['ml']['inference']['predicted_value'] for doc in results['docs']
|
|
]
|
|
|
|
# Return results as np.ndarray of float32 or int (consistent with sklearn/xgboost)
|
|
if self._model_type == MLModel.TYPE_CLASSIFICATION:
|
|
dt = np.int
|
|
else:
|
|
dt = np.float32
|
|
return np.asarray(y, dtype=dt)
|