eland/eland/ml/imported_ml_model.py
stevedodson 1a90e9232e
7.6.0a3 (#131)
* Updating test matrix for 7.6 + removing oss for now.

* Resolving 7.6.0 docs issues

* Updating ML docs

* Bumping version following doc fixes

* Change ExternalMLModel to ImportedMLModel
2020-02-15 20:29:03 +01:00

239 lines
8.9 KiB
Python

# Copyright 2020 Elasticsearch BV
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union, List
import numpy as np
from eland.ml._model_transformers import SKLearnDecisionTreeTransformer, SKLearnForestRegressorTransformer, \
SKLearnForestClassifierTransformer, XGBoostRegressorTransformer, XGBoostClassifierTransformer
from eland.ml._optional import import_optional_dependency
from eland.ml.ml_model import MLModel
sklearn = import_optional_dependency("sklearn")
xgboost = import_optional_dependency("xgboost")
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from xgboost import XGBRegressor, XGBClassifier
class ImportedMLModel(MLModel):
"""
Transform and serialize a trained 3rd party model into Elasticsearch.
This model can then be used for inference in the Elastic Stack.
Parameters
----------
es_client: Elasticsearch client argument(s)
- elasticsearch-py parameters or
- elasticsearch-py instance or
- eland.Client instance
model_id: str
The unique identifier of the trained inference model in Elasticsearch.
model: An instance of a supported python model. We support the following model types:
- sklearn.tree.DecisionTreeClassifier
- sklearn.tree.DecisionTreeRegressor
- sklearn.ensemble.RandomForestRegressor
- sklearn.ensemble.RandomForestClassifier
- xgboost.XGBClassifier
- xgboost.XGBRegressor
feature_names: List[str]
Names of the features (required)
classification_labels: List[str]
Labels of the classification targets
classification_weights: List[str]
Weights of the classification targets
overwrite: bool
Delete and overwrite existing model (if exists)
Examples
--------
>>> from sklearn import datasets
>>> from sklearn.tree import DecisionTreeClassifier
>>> from eland.ml import ImportedMLModel
>>> # Train model
>>> training_data = datasets.make_classification(n_features=5, random_state=0)
>>> test_data = [[-50.1, 0.2, 0.3, -0.5, 1.0], [1.6, 2.1, -10, 50, -1.0]]
>>> classifier = DecisionTreeClassifier()
>>> classifier = classifier.fit(training_data[0], training_data[1])
>>> # Get some test results
>>> classifier.predict(test_data)
array([0, 1])
>>> # Serialise the model to Elasticsearch
>>> feature_names = ["f0", "f1", "f2", "f3", "f4"]
>>> model_id = "test_decision_tree_classifier"
>>> es_model = ImportedMLModel('localhost', model_id, classifier, feature_names, overwrite=True)
>>> # Get some test results from Elasticsearch model
>>> es_model.predict(test_data)
array([0, 1])
>>> # Delete model from Elasticsearch
>>> es_model.delete_model()
"""
def __init__(self,
es_client,
model_id: str,
model: Union[DecisionTreeClassifier,
DecisionTreeRegressor,
RandomForestRegressor,
RandomForestClassifier,
XGBClassifier,
XGBRegressor],
feature_names: List[str],
classification_labels: List[str] = None,
classification_weights: List[float] = None,
overwrite=False):
super().__init__(
es_client,
model_id
)
self._feature_names = feature_names
self._model_type = None
# Transform model
if isinstance(model, DecisionTreeRegressor):
serializer = SKLearnDecisionTreeTransformer(model, feature_names).transform()
self._model_type = MLModel.TYPE_REGRESSION
elif isinstance(model, DecisionTreeClassifier):
serializer = SKLearnDecisionTreeTransformer(model, feature_names, classification_labels).transform()
self._model_type = MLModel.TYPE_CLASSIFICATION
elif isinstance(model, RandomForestRegressor):
serializer = SKLearnForestRegressorTransformer(model, feature_names).transform()
self._model_type = MLModel.TYPE_REGRESSION
elif isinstance(model, RandomForestClassifier):
serializer = SKLearnForestClassifierTransformer(model, feature_names, classification_labels).transform()
self._model_type = MLModel.TYPE_CLASSIFICATION
elif isinstance(model, XGBRegressor):
serializer = XGBoostRegressorTransformer(model, feature_names).transform()
self._model_type = MLModel.TYPE_REGRESSION
elif isinstance(model, XGBClassifier):
serializer = XGBoostClassifierTransformer(model, feature_names, classification_labels).transform()
self._model_type = MLModel.TYPE_CLASSIFICATION
else:
raise NotImplementedError("ML model of type {}, not currently implemented".format(type(model)))
if overwrite:
self.delete_model()
serialized_model = str(serializer.serialize_and_compress_model())[2:-1] # remove `b` and str quotes
self._client.perform_request(
"PUT", "/_ml/inference/" + self._model_id,
body={
"input": {
"field_names": feature_names
},
"compressed_definition": serialized_model
}
)
def predict(self, X):
"""
Make a prediction using a trained model stored in Elasticsearch.
Parameters for this method are not yet fully compatible with standard sklearn.predict.
Parameters
----------
X: list or list of lists of type float
Input feature vector - TODO support DataFrame and other formats
Returns
-------
y: np.ndarray of dtype float for regressors or int for classifiers
Examples
--------
>>> from sklearn import datasets
>>> from xgboost import XGBRegressor
>>> from eland.ml import ImportedMLModel
>>> # Train model
>>> training_data = datasets.make_classification(n_features=6, random_state=0)
>>> test_data = [[-1, -2, -3, -4, -5, -6], [10, 20, 30, 40, 50, 60]]
>>> regressor = XGBRegressor(objective='reg:squarederror')
>>> regressor = regressor.fit(training_data[0], training_data[1])
>>> # Get some test results
>>> regressor.predict(np.array(test_data))
array([0.23733574, 1.1897984 ], dtype=float32)
>>> # Serialise the model to Elasticsearch
>>> feature_names = ["f0", "f1", "f2", "f3", "f4", "f5"]
>>> model_id = "test_xgb_regressor"
>>> es_model = ImportedMLModel('localhost', model_id, regressor, feature_names, overwrite=True)
>>> # Get some test results from Elasticsearch model
>>> es_model.predict(test_data)
array([0.2373357, 1.1897984], dtype=float32)
>>> # Delete model from Elasticsearch
>>> es_model.delete_model()
"""
docs = []
if isinstance(X, list):
# Is it a list of lists?
if all(isinstance(i, list) for i in X):
for i in X:
doc = dict()
doc['_source'] = dict(zip(self._feature_names, i))
docs.append(doc)
else: # single feature vector1
doc = dict()
doc['_source'] = dict(zip(self._feature_names, i))
docs.append(doc)
else:
raise NotImplementedError("Prediction for type {}, not supported".format(type(X)))
results = self._client.perform_request(
"POST",
"/_ingest/pipeline/_simulate",
body={
"pipeline": {
"processors": [
{"inference": {
"model_id": self._model_id,
"inference_config": {self._model_type: {}},
"field_mappings": {}
}}
]
},
"docs": docs
})
y = [
doc['doc']['_source']['ml']['inference']['predicted_value'] for doc in results['docs']
]
# Return results as np.ndarray of float32 or int (consistent with sklearn/xgboost)
if self._model_type == MLModel.TYPE_CLASSIFICATION:
dt = np.int
else:
dt = np.float32
return np.asarray(y, dtype=dt)