Checkpoint code before attempting major investigation into using modin

This commit is contained in:
Stephen Dodson 2019-07-03 09:49:58 +00:00
parent 30df901fce
commit 5e10b2e818
10 changed files with 281 additions and 44 deletions

View File

@ -1,7 +1,7 @@
from .utils import *
from .client import *
from .ndframe import *
from .index import *
from .mappings import *
from .dataframe import *
from .series import *
from .dataframe import *
from .utils import *

View File

@ -1,4 +1,5 @@
from elasticsearch import Elasticsearch
from elasticsearch import helpers
class Client():
"""
@ -18,6 +19,12 @@ class Client():
def indices(self):
return self.es.indices
def bulk(self, actions, refresh=False):
return helpers.bulk(self.es, actions, refresh=refresh)
def scan(self, **kwargs):
return helpers.scan(self.es, **kwargs)
def search(self, **kwargs):
return self.es.search(**kwargs)

View File

@ -32,9 +32,14 @@ from pandas.io.formats.printing import pprint_thing
from pandas.compat import StringIO
from pandas.io.common import _expand_user, _stringify_path
from pandas.io.formats import console
from pandas.core import common as com
from eland import NDFrame
from eland import Index
from eland import Series
class DataFrame(NDFrame):
@ -217,10 +222,6 @@ class DataFrame(NDFrame):
return num_rows, num_columns
@property
def columns(self):
return super()._columns
def set_index(self, index_field):
copy = self.copy()
copy._index = Index(index_field)
@ -265,7 +266,6 @@ class DataFrame(NDFrame):
def __getitem__(self, key):
# NOTE: there is a difference between pandas here.
# e.g. df['a'] returns pd.Series, df[['a','b']] return pd.DataFrame
# we always return DataFrame - TODO maybe create eland.Series at some point...
# Implementation mainly copied from pandas v0.24.2
# (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html)
@ -291,10 +291,12 @@ class DataFrame(NDFrame):
# We are left with two options: a single key, and a collection of keys,
columns = []
is_single_key = False
if isinstance(key, str):
if not self._mappings.is_source_field(key):
raise TypeError('Column does not exist: [{0}]'.format(key))
columns.append(key)
is_single_key = True
elif isinstance(key, list):
columns.extend(key)
else:
@ -303,8 +305,19 @@ class DataFrame(NDFrame):
mappings = self._filter_mappings(columns)
# Return new eland.DataFrame with modified mappings
if is_single_key:
return Series(self._client, self._index_pattern, mappings=mappings)
else:
return DataFrame(self._client, self._index_pattern, mappings=mappings)
def __getattr__(self, name):
# Note: obj.x will always call obj.__getattribute__('x') prior to
# calling obj.__getattr__('x').
mappings = self._filter_mappings([name])
return Series(self._client, self._index_pattern, mappings=mappings)
def copy(self):
# TODO - test and validate...may need deep copying
return DataFrame(self._client,
@ -373,7 +386,8 @@ class DataFrame(NDFrame):
result = _buf.getvalue()
return result
def to_pandas(selfs):
return super()._to_pandas()
# From pandas.DataFrame
def _put_str(s, space):

View File

@ -2,6 +2,7 @@ import warnings
import pandas as pd
from pandas.core.dtypes.common import (is_float_dtype, is_bool_dtype, is_integer_dtype, is_datetime_or_timedelta_dtype, is_string_dtype)
class Mappings():
"""
@ -217,6 +218,7 @@ class Mappings():
return capability_matrix_df.sort_index()
@staticmethod
def _es_dtype_to_pd_dtype(es_dtype):
"""
Mapping Elasticsearch types to pandas dtypes
@ -259,6 +261,84 @@ class Mappings():
# Return 'object' for all unsupported TODO - investigate how different types could be supported
return 'object'
@staticmethod
def _pd_dtype_to_es_dtype(pd_dtype):
"""
Mapping pandas dtypes to Elasticsearch dtype
--------------------------------------------
```
Pandas dtype Python type NumPy type Usage
object str string_, unicode_ Text
int64 int int_, int8, int16, int32, int64, uint8, uint16, uint32, uint64 Integer numbers
float64 float float_, float16, float32, float64 Floating point numbers
bool bool bool_ True/False values
datetime64 NA datetime64[ns] Date and time values
timedelta[ns] NA NA Differences between two datetimes
category NA NA Finite list of text values
```
"""
es_dtype = None
# Map all to 64-bit - TODO map to specifics: int32 -> int etc.
if is_float_dtype(pd_dtype):
es_dtype = 'double'
elif is_integer_dtype(pd_dtype):
es_dtype = 'long'
elif is_bool_dtype(pd_dtype):
es_dtype = 'boolean'
elif is_string_dtype(pd_dtype):
es_dtype = 'keyword'
elif is_datetime_or_timedelta_dtype(pd_dtype):
es_dtype = 'date'
else:
warnings.warn('No mapping for pd_dtype: [{0}], using default mapping'.format(pd_dtype))
return es_dtype
@staticmethod
def _generate_es_mappings(dataframe):
"""Given a pandas dataframe, generate the associated Elasticsearch mapping
Parameters
----------
dataframe : pandas.DataFrame
pandas.DataFrame to create schema from
Returns
-------
mapping : str
"""
"""
"mappings" : {
"properties" : {
"AvgTicketPrice" : {
"type" : "float"
},
"Cancelled" : {
"type" : "boolean"
},
"Carrier" : {
"type" : "keyword"
},
"Dest" : {
"type" : "keyword"
}
}
}
"""
mappings = {}
mappings['properties'] = {}
for column_name, dtype in dataframe.dtypes.iteritems():
es_dtype = Mappings._pd_dtype_to_es_dtype(dtype)
mappings['properties'][column_name] = {}
mappings['properties'][column_name]['type'] = es_dtype
return {"mappings": mappings}
def all_fields(self):
"""
Returns
@ -379,3 +459,14 @@ class Mappings():
"""
return pd.Series(self._mappings_capabilities[self._mappings_capabilities._source == True].groupby('pd_dtype')[
'_source'].count().to_dict())
def to_pandas(self):
"""
Returns
-------
df : pd.DataFrame
pandas DaraFrame representing this index
"""

View File

@ -23,10 +23,14 @@ only Elasticsearch aggregatable fields can be aggregated or grouped.
"""
import pandas as pd
import functools
from elasticsearch_dsl import Search
import eland as ed
from pandas.core.generic import NDFrame as pd_NDFrame
from pandas._libs import Timestamp, iNaT, properties
class NDFrame():
"""
@ -44,7 +48,6 @@ class NDFrame():
--------
"""
def __init__(self,
client,
index_pattern,
@ -191,7 +194,12 @@ class NDFrame():
rows = []
index = []
for hit in results['hits']['hits']:
if isinstance(results, dict):
iterator = results['hits']['hits']
else:
iterator = results
for hit in iterator:
row = hit['_source']
# get index value - can be _id or can be field value in source
@ -255,6 +263,23 @@ class NDFrame():
# reverse order (index ascending)
return df.sort_index()
def _to_pandas(self):
"""
Protected method that returns all data as pandas.DataFrame.
Returns
-------
df
pandas.DataFrame of all values
"""
sort_params = self._index.sort_field + ":asc"
results = self._client.scan(index=self._index_pattern)
# We sort here rather than in scan - once everything is in core this
# should be faster
return self._es_results_to_pandas(results)
def _describe(self):
numeric_source_fields = self._mappings.numeric_source_fields()
@ -294,6 +319,10 @@ class NDFrame():
return mappings
@property
def columns(self):
return self._columns
@property
def index(self):
return self._index
@ -309,7 +338,6 @@ class NDFrame():
def get_dtype_counts(self):
return self._mappings.get_dtype_counts()
def _index_count(self):
"""
Returns

View File

@ -72,14 +72,17 @@ class Series(NDFrame):
def __init__(self,
client,
index_pattern,
field_name,
field_name=None,
mappings=None,
index_field=None):
# python 3 syntax
super().__init__(client, index_pattern, mappings=mappings, index_field=index_field)
# now select column (field_name)
if field_name is not None:
self._mappings = self._filter_mappings([field_name])
elif len(self._mappings.source_fields()) != 1:
raise TypeError('Series must have 1 field: [{0}]'.format(len(self._mappings.source_fields())))
def head(self, n=5):
return self._df_to_series(super()._head(n))
@ -199,6 +202,10 @@ class Series(NDFrame):
fmt.buffer_put_lines(buf, lines)
@property
def name(self):
return list(self._mappings.source_fields())[0]
@property
def shape(self):
"""
@ -257,7 +264,7 @@ class Series(NDFrame):
return super()._describe()
def _df_to_series(self, df):
return df.iloc[:, 0]
return df[self.name]
# ----------------------------------------------------------------------
# Rendering Methods
@ -269,8 +276,8 @@ class Series(NDFrame):
max_rows = pd.get_option("display.max_rows")
self.to_string(buf=buf, na_rep='NaN', float_format=None, header=True, index=True, length=False,
dtype=False, name=False, max_rows=max_rows)
self.to_string(buf=buf, na_rep='NaN', float_format=None, header=True, index=True, length=True,
dtype=True, name=True, max_rows=max_rows)
return buf.getvalue()
@ -279,7 +286,7 @@ class Series(NDFrame):
index=True, length=True, dtype=True,
name=True, max_rows=None):
"""
From pandas
From pandas 0.24.2
Render a string representation of the Series.
@ -343,7 +350,6 @@ class Series(NDFrame):
"""
A hacked overridden version of pandas.io.formats.SeriesFormatter that writes correct length
"""
def __init__(self, series, series_length, buf=None, length=True, header=True, index=True,
na_rep='NaN', name=False, float_format=None, dtype=True,
max_rows=None):

View File

@ -1,5 +1,6 @@
# File called _pytest for PyCharm compatability
import numpy as np
from pandas.util.testing import (
assert_series_equal, assert_frame_equal)
@ -88,3 +89,36 @@ class TestMapping(TestData):
assert 'object' == field_capabilities['pd_dtype']
assert True == field_capabilities['searchable']
assert True == field_capabilities['aggregatable']
def test_generate_es_mappings(self):
df = pd.DataFrame(data={'A': np.random.rand(3),
'B': 1,
'C': 'foo',
'D': pd.Timestamp('20190102'),
'E': [1.0, 2.0, 3.0],
'F': False,
'G': [1, 2, 3]},
index=['0','1','2'])
expected_mappings = {'mappings': {
'properties': {'A': {'type': 'double'},
'B': {'type': 'long'},
'C': {'type': 'keyword'},
'D': {'type': 'date'},
'E': {'type': 'double'},
'F': {'type': 'boolean'},
'G': {'type': 'long'}}}}
mappings = ed.Mappings._generate_es_mappings(df)
assert expected_mappings == mappings
# Now create index
index_name = 'eland_test_generate_es_mappings'
ed.pandas_to_es(df, ELASTICSEARCH_HOST, index_name, if_exists="replace", refresh=True)
ed_df = ed.DataFrame(ELASTICSEARCH_HOST, index_name)
ed_df_head = ed_df.head()
assert_frame_equal(df, ed_df_head)

View File

@ -153,3 +153,7 @@ class TestDataFrameBasics(TestData):
ed_flights_timestamp.info()
ed_flights.info()
def test_to_pandas(self):
ed_ecommerce_pd_df = self.ed_ecommerce().to_pandas()
assert_frame_equal(self.pd_ecommerce(), ed_ecommerce_pd_df)

View File

@ -15,7 +15,7 @@ class TestDataFrameGetItem(TestData):
ed_carrier = self.ed_flights()['Carrier']
# pandas returns a Series here
assert_frame_equal(pd.DataFrame(pd_carrier.head(100)), ed_carrier.head(100))
assert_series_equal(pd_carrier.head(100), ed_carrier.head(100))
pd_3_items = self.pd_flights()[['Dest','Carrier','FlightDelay']]
ed_3_items = self.ed_flights()[['Dest','Carrier','FlightDelay']]
@ -36,28 +36,12 @@ class TestDataFrameGetItem(TestData):
def test_getattr_basic(self):
# Test 1 attribute
pd_carrier = self.pd_flights().Carrier
#ed_carrier = self.ed_flights().Carrier
ed_carrier = self.ed_flights().Carrier
print(type(pd_carrier))
print(pd_carrier)
assert_series_equal(pd_carrier.head(100), ed_carrier.head(100))
def test_boolean(self):
# Test 1 attribute
pd_carrier = self.pd_flights()['Carrier == "Kibana Airlines"']
#ed_carrier = self.ed_flights().Carrier
pd_avgticketprice = self.pd_flights().AvgTicketPrice
ed_avgticketprice = self.ed_flights().AvgTicketPrice
print(type(pd_carrier))
print(pd_carrier)
def test_loc(self):
pd = self.pd_flights().loc[10:15, ['Dest', 'Carrier']]
print(type(pd))
print(pd)
pd = self.pd_flights().loc[10]
print(type(pd))
print(pd)
assert_series_equal(pd_avgticketprice.head(100), ed_avgticketprice.head(100))

View File

@ -1,4 +1,73 @@
import eland as ed
from eland import Client
from eland import DataFrame
from eland import Mappings
def read_es(es_params, index_pattern):
return ed.DataFrame(client=es_params, index_pattern=index_pattern)
return DataFrame(client=es_params, index_pattern=index_pattern)
def pandas_to_es(df, es_params, destination_index, if_exists='fail', chunk_size=10000, refresh=False):
"""
Append a pandas DataFrame to an Elasticsearch index.
Mainly used in testing.
Parameters
----------
es_params : Elasticsearch client argument
elasticsearch-py parameters or
elasticsearch-py instance or
eland.Client instance
destination_index : str
Name of Elasticsearch index to be written
if_exists : str, default 'fail'
Behavior when the destination index exists. Value can be one of:
``'fail'``
If table exists, do nothing.
``'replace'``
If table exists, drop it, recreate it, and insert data.
``'append'``
If table exists, insert data. Create if does not exist.
"""
client = Client(es_params)
mapping = Mappings._generate_es_mappings(df)
# If table exists, check if_exists parameter
if client.indices().exists(destination_index):
if if_exists == "fail":
raise ValueError(
"Could not create the index [{0}] because it "
"already exists. "
"Change the if_exists parameter to "
"'append' or 'replace' data.".format(destination_index)
)
elif if_exists == "replace":
client.indices().delete(destination_index)
client.indices().create(destination_index, mapping)
#elif if_exists == "append":
# TODO validate mapping is compatible
else:
client.indices().create(destination_index, mapping)
# Now add data
actions = []
n = 0
for row in df.iterrows():
# Use index as _id
id = row[0]
values = row[1].to_dict()
# Use integer as id field for repeatable results
action = {'_index': destination_index, '_source': values, '_id': str(id)}
actions.append(action)
n = n + 1
if n % chunk_size == 0:
client.bulk(actions, refresh=refresh)
actions = []
client.bulk(actions, refresh=refresh)