mirror of
https://github.com/fxsjy/jieba.git
synced 2025-07-10 00:01:33 +08:00
621 lines
23 KiB
Markdown
621 lines
23 KiB
Markdown
jieba
|
||
========
|
||
"结巴"中文分词:做最好的 Python 中文分词组件
|
||
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
|
||
- _Scroll down for English documentation._
|
||
|
||
注意!
|
||
========
|
||
这个branch `jieba3k` 是专门用于Python3.x的版本
|
||
|
||
特点
|
||
========
|
||
* 支持三种分词模式:
|
||
* 精确模式,试图将句子最精确地切开,适合文本分析;
|
||
* 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
|
||
* 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
|
||
|
||
* 支持繁体分词
|
||
* 支持自定义词典
|
||
|
||
在线演示
|
||
=========
|
||
http://jiebademo.ap01.aws.af.cm/
|
||
|
||
(Powered by Appfog)
|
||
|
||
网站代码:https://github.com/fxsjy/jiebademo
|
||
|
||
|
||
安装说明
|
||
=======
|
||
Python 2.x
|
||
-----------
|
||
* 全自动安装:`easy_install jieba` 或者 `pip install jieba`
|
||
* 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install
|
||
* 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录
|
||
* 通过 `import jieba` 来引用
|
||
|
||
Python 3.x
|
||
-----------
|
||
* 目前 master 分支是只支持 Python2.x 的
|
||
* Python 3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
|
||
|
||
```shell
|
||
git clone https://github.com/fxsjy/jieba.git
|
||
git checkout jieba3k
|
||
python setup.py install
|
||
```
|
||
|
||
* 或使用pip3安装: pip3 install jieba3k
|
||
|
||
算法
|
||
========
|
||
* 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
|
||
* 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
|
||
* 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法
|
||
|
||
主要功能
|
||
=======
|
||
1) :分词
|
||
--------
|
||
* `jieba.cut` 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
|
||
* `jieba.cut_for_search` 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
|
||
* 注意:待分词的字符串可以是 GBK 字符串、UTF-8 字符串或者 unicode
|
||
* `jieba.cut` 以及 `jieba.cut_for_search` 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),也可以用 list(jieba.cut(...)) 转化为 list
|
||
|
||
代码示例( 分词 )
|
||
|
||
```python
|
||
#encoding=utf-8
|
||
import jieba
|
||
|
||
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||
print("Full Mode:", "/ ".join(seg_list)) # 全模式
|
||
|
||
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
|
||
print("Default Mode:", "/ ".join(seg_list)) # 精确模式
|
||
|
||
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
|
||
print(", ".join(seg_list))
|
||
|
||
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||
print(", ".join(seg_list))
|
||
```
|
||
|
||
输出:
|
||
|
||
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
|
||
|
||
【精确模式】: 我/ 来到/ 北京/ 清华大学
|
||
|
||
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
|
||
|
||
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
|
||
|
||
2) :添加自定义词典
|
||
----------------
|
||
|
||
* 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
|
||
* 用法: jieba.load_userdict(file_name) # file_name 为自定义词典的路径
|
||
* 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开
|
||
* 范例:
|
||
|
||
* 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
|
||
|
||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
|
||
|
||
|
||
* 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
|
||
|
||
* 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
|
||
|
||
|
||
* "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
|
||
|
||
3) :关键词提取
|
||
-------------
|
||
* jieba.analyse.extract_tags(sentence,topK,withWeight) #需要先 `import jieba.analyse`
|
||
* sentence 为待提取的文本
|
||
* topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
|
||
* withWeight 为是否一并返回关键词权重值,默认值为 False
|
||
|
||
代码示例 (关键词提取)
|
||
|
||
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
|
||
|
||
关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径
|
||
|
||
* 用法: jieba.analyse.set_idf_path(file_name) # file_name为自定义语料库的路径
|
||
* 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big
|
||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py
|
||
|
||
关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径
|
||
|
||
* 用法: jieba.analyse.set_stop_words(file_name) # file_name为自定义语料库的路径
|
||
* 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt
|
||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py
|
||
|
||
关键词一并返回关键词权重值示例
|
||
|
||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py
|
||
|
||
#### 基于TextRank算法的关键词抽取实现
|
||
算法论文: [TextRank: Bringing Order into Texts](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf)
|
||
|
||
##### 基本思想:
|
||
|
||
1. 将待抽取关键词的文本进行分词
|
||
2. 以固定窗口大小(我选的5,可适当调整),词之间的共现关系,构建图
|
||
3. 计算图中节点的PageRank,注意是无向带权图
|
||
|
||
##### 基本使用:
|
||
jieba.analyse.textrank(raw_text)
|
||
|
||
##### 示例结果:
|
||
来自`__main__`的示例结果:
|
||
|
||
```
|
||
吉林 1.0
|
||
欧亚 0.864834432786
|
||
置业 0.553465925497
|
||
实现 0.520660869531
|
||
收入 0.379699688954
|
||
增资 0.355086023683
|
||
子公司 0.349758490263
|
||
全资 0.308537396283
|
||
城市 0.306103738053
|
||
商业 0.304837414946
|
||
```
|
||
|
||
4) : 词性标注
|
||
-----------
|
||
* 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法
|
||
* 用法示例
|
||
|
||
```pycon
|
||
>>> import jieba.posseg as pseg
|
||
>>> words = pseg.cut("我爱北京天安门")
|
||
>>> for w in words:
|
||
... print(w.word, w.flag)
|
||
...
|
||
我 r
|
||
爱 v
|
||
北京 ns
|
||
天安门 ns
|
||
```
|
||
|
||
5) : 并行分词
|
||
-----------
|
||
* 原理:将目标文本按行分隔后,把各行文本分配到多个 python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
|
||
* 基于 python 自带的 multiprocessing 模块,目前暂不支持 windows
|
||
* 用法:
|
||
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
|
||
* `jieba.disable_parallel()` # 关闭并行分词模式
|
||
|
||
* 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
|
||
|
||
* 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。
|
||
|
||
|
||
6) : Tokenize:返回词语在原文的起始位置
|
||
----------------------------------
|
||
* 注意,输入参数只接受 unicode
|
||
* 默认模式
|
||
|
||
```python
|
||
result = jieba.tokenize(u'永和服装饰品有限公司')
|
||
for tk in result:
|
||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||
```
|
||
|
||
```
|
||
word 永和 start: 0 end:2
|
||
word 服装 start: 2 end:4
|
||
word 饰品 start: 4 end:6
|
||
word 有限公司 start: 6 end:10
|
||
|
||
```
|
||
|
||
* 搜索模式
|
||
|
||
```python
|
||
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
|
||
for tk in result:
|
||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||
```
|
||
|
||
```
|
||
word 永和 start: 0 end:2
|
||
word 服装 start: 2 end:4
|
||
word 饰品 start: 4 end:6
|
||
word 有限 start: 6 end:8
|
||
word 公司 start: 8 end:10
|
||
word 有限公司 start: 6 end:10
|
||
```
|
||
|
||
|
||
7) : ChineseAnalyzer for Whoosh 搜索引擎
|
||
--------------------------------------------
|
||
* 引用: `from jieba.analyse import ChineseAnalyzer`
|
||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
|
||
|
||
8) : 命令行分词
|
||
-------------------
|
||
|
||
使用示例:`cat news.txt | python -m jieba > cut_result.txt`
|
||
|
||
命令行选项(翻译):
|
||
|
||
使用: python -m jieba [options] filename
|
||
|
||
结巴命令行界面。
|
||
|
||
固定参数:
|
||
filename 输入文件
|
||
|
||
可选参数:
|
||
-h, --help 显示此帮助信息并退出
|
||
-d [DELIM], --delimiter [DELIM]
|
||
使用 DELIM 分隔词语,而不是用默认的' / '。
|
||
若不指定 DELIM,则使用一个空格分隔。
|
||
-D DICT, --dict DICT 使用 DICT 代替默认词典
|
||
-u USER_DICT, --user-dict USER_DICT
|
||
使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用
|
||
-a, --cut-all 全模式分词
|
||
-n, --no-hmm 不使用隐含马尔可夫模型
|
||
-q, --quiet 不输出载入信息到 STDERR
|
||
-V, --version 显示版本信息并退出
|
||
|
||
如果没有指定文件名,则使用标准输入。
|
||
|
||
`--help` 选项输出:
|
||
|
||
$> python -m jieba --help
|
||
usage: python -m jieba [options] filename
|
||
|
||
Jieba command line interface.
|
||
|
||
positional arguments:
|
||
filename input file
|
||
|
||
optional arguments:
|
||
-h, --help show this help message and exit
|
||
-d [DELIM], --delimiter [DELIM]
|
||
use DELIM instead of ' / ' for word delimiter; or a
|
||
space if it is used without DELIM
|
||
-D DICT, --dict DICT use DICT as dictionary
|
||
-u USER_DICT, --user-dict USER_DICT
|
||
use USER_DICT together with the default dictionary or
|
||
DICT (if specified)
|
||
-a, --cut-all full pattern cutting
|
||
-n, --no-hmm don't use the Hidden Markov Model
|
||
-q, --quiet don't print loading messages to stderr
|
||
-V, --version show program's version number and exit
|
||
|
||
If no filename specified, use STDIN instead.
|
||
|
||
模块初始化机制的改变:lazy load (从0.28版本开始)
|
||
-------------------------------------------
|
||
|
||
jieba 采用延迟加载,"import jieba" 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。
|
||
|
||
import jieba
|
||
jieba.initialize() # 手动初始化(可选)
|
||
|
||
|
||
在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:
|
||
|
||
jieba.set_dictionary('data/dict.txt.big')
|
||
|
||
例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py
|
||
|
||
其他词典
|
||
========
|
||
1. 占用内存较小的词典文件
|
||
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
|
||
|
||
2. 支持繁体分词更好的词典文件
|
||
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
|
||
|
||
下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 `jieba.set_dictionary('data/dict.txt.big')`
|
||
|
||
其他语言实现
|
||
==========
|
||
|
||
结巴分词 Java 版本
|
||
----------------
|
||
作者:piaolingxue
|
||
地址:https://github.com/huaban/jieba-analysis
|
||
|
||
结巴分词 C++ 版本
|
||
----------------
|
||
作者:yanyiwu
|
||
地址:https://github.com/aszxqw/cppjieba
|
||
|
||
结巴分词 Node.js 版本
|
||
----------------
|
||
作者:yanyiwu
|
||
地址:https://github.com/aszxqw/nodejieba
|
||
|
||
结巴分词 Erlang 版本
|
||
----------------
|
||
作者:falood
|
||
地址:https://github.com/falood/exjieba
|
||
|
||
结巴分词 R 版本
|
||
----------------
|
||
作者:qinwf
|
||
地址:https://github.com/qinwf/jiebaR
|
||
|
||
结巴分词 iOS 版本
|
||
----------------
|
||
作者:yanyiwu
|
||
地址:https://github.com/aszxqw/iosjieba
|
||
|
||
系统集成
|
||
========
|
||
1. Solr: https://github.com/sing1ee/jieba-solr
|
||
|
||
分词速度
|
||
=========
|
||
* 1.5 MB / Second in Full Mode
|
||
* 400 KB / Second in Default Mode
|
||
* 测试环境: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
|
||
|
||
常见问题
|
||
=========
|
||
1. 模型的数据是如何生成的?https://github.com/fxsjy/jieba/issues/7
|
||
2. 这个库的授权是? https://github.com/fxsjy/jieba/issues/2
|
||
|
||
* 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed
|
||
|
||
修订历史
|
||
==========
|
||
https://github.com/fxsjy/jieba/blob/master/Changelog
|
||
|
||
--------------------
|
||
|
||
jieba
|
||
========
|
||
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
|
||
|
||
Features
|
||
========
|
||
* Support three types of segmentation mode:
|
||
* 1) Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis.
|
||
* 2) Full Mode gets all the possible words from the sentence. Fast but not accurate.
|
||
* 3) Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines.
|
||
|
||
Usage
|
||
========
|
||
* Fully automatic installation: `easy_install jieba` or `pip install jieba`
|
||
* Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run `python setup.py install` after extracting.
|
||
* Manual installation: place the `jieba` directory in the current directory or python `site-packages` directory.
|
||
* `import jieba`.
|
||
|
||
Algorithm
|
||
========
|
||
* Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations.
|
||
* Use dynamic programming to find the most probable combination based on the word frequency.
|
||
* For unknown words, a HMM-based model is used with the Viterbi algorithm.
|
||
|
||
Main Functions
|
||
==============
|
||
|
||
1) : Cut
|
||
--------
|
||
* The `jieba.cut` function accepts three input parameters: the first parameter is the string to be cut; the second parameter is `cut_all`, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model.
|
||
* `jieba.cut` returns an generator, from which you can use a `for` loop to get the segmentation result (in unicode), or `list(jieba.cut( ... ))` to create a list.
|
||
* `jieba.cut_for_search` accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines.
|
||
|
||
**Code example: segmentation**
|
||
|
||
```python
|
||
#encoding=utf-8
|
||
import jieba
|
||
|
||
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||
print("Full Mode:", "/ ".join(seg_list)) # 全模式
|
||
|
||
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
|
||
print("Default Mode:", "/ ".join(seg_list)) # 默认模式
|
||
|
||
seg_list = jieba.cut("他来到了网易杭研大厦")
|
||
print(", ".join(seg_list))
|
||
|
||
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||
print(", ".join(seg_list))
|
||
```
|
||
|
||
Output:
|
||
|
||
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
|
||
|
||
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
|
||
|
||
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
|
||
|
||
[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
|
||
|
||
|
||
2) : Add a custom dictionary
|
||
----------------------------
|
||
|
||
* Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but adding your own new words can ensure a higher accuracy.
|
||
* Usage: `jieba.load_userdict(file_name) # file_name is the path of the custom dictionary`
|
||
* The dictionary format is the same as that of `analyse/idf.txt`: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space
|
||
* Example:
|
||
|
||
云计算 5
|
||
李小福 2
|
||
创新办 3
|
||
|
||
[Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
|
||
|
||
[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
|
||
|
||
3) : Keyword Extraction
|
||
-----------------------
|
||
* `jieba.analyse.extract_tags(sentence,topK,withWeight) # needs to first import jieba.analyse`
|
||
* `sentence`: the text to be extracted
|
||
* `topK`: return how many keywords with the highest TF/IDF weights. The default value is 20
|
||
* `withWeight`: whether return TF/IDF weights with the keywords. The default value is False
|
||
|
||
Example (keyword extraction)
|
||
|
||
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
|
||
|
||
Developers can specify their own custom IDF corpus in jieba keyword extraction
|
||
|
||
* Usage: `jieba.analyse.set_idf_path(file_name) # file_name is the path for the custom corpus`
|
||
* Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big
|
||
* Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py
|
||
|
||
Developers can specify their own custom stop words corpus in jieba keyword extraction
|
||
|
||
* Usage: `jieba.analyse.set_stop_words(file_name) # file_name is the path for the custom corpus`
|
||
* Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt
|
||
* Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py
|
||
|
||
There's also a [TextRank](http://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf) implementation available.
|
||
|
||
Use: `jieba.analyse.textrank(raw_text)`.
|
||
|
||
4) : Part of Speech Tagging
|
||
-----------
|
||
* Tags the POS of each word after segmentation, using labels compatible with ictclas.
|
||
* Example:
|
||
|
||
```pycon
|
||
>>> import jieba.posseg as pseg
|
||
>>> words = pseg.cut("我爱北京天安门")
|
||
>>> for w in words:
|
||
... print(w.word, w.flag)
|
||
...
|
||
我 r
|
||
爱 v
|
||
北京 ns
|
||
天安门 ns
|
||
```
|
||
|
||
5) : Parallel Processing
|
||
-----------
|
||
* Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster.
|
||
* Based on the multiprocessing module of Python.
|
||
* Usage:
|
||
* `jieba.enable_parallel(4)` # Enable parallel processing. The parameter is the number of processes.
|
||
* `jieba.disable_parallel()` # Disable parallel processing.
|
||
|
||
* Example:
|
||
https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
|
||
|
||
* Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version.
|
||
|
||
6) : Tokenize: return words with position
|
||
----------------------------------
|
||
* The input must be unicode
|
||
* Default mode
|
||
|
||
```python
|
||
result = jieba.tokenize(u'永和服装饰品有限公司')
|
||
for tk in result:
|
||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||
```
|
||
|
||
```
|
||
word 永和 start: 0 end:2
|
||
word 服装 start: 2 end:4
|
||
word 饰品 start: 4 end:6
|
||
word 有限公司 start: 6 end:10
|
||
|
||
```
|
||
|
||
* Search mode
|
||
|
||
```python
|
||
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
|
||
for tk in result:
|
||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||
```
|
||
|
||
```
|
||
word 永和 start: 0 end:2
|
||
word 服装 start: 2 end:4
|
||
word 饰品 start: 4 end:6
|
||
word 有限 start: 6 end:8
|
||
word 公司 start: 8 end:10
|
||
word 有限公司 start: 6 end:10
|
||
```
|
||
|
||
|
||
7) : ChineseAnalyzer for Whoosh
|
||
--------------------------------------------
|
||
* `from jieba.analyse import ChineseAnalyzer`
|
||
* Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
|
||
|
||
8) : Command Line Interface
|
||
-------------------
|
||
|
||
$> python -m jieba --help
|
||
usage: python -m jieba [options] filename
|
||
|
||
Jieba command line interface.
|
||
|
||
positional arguments:
|
||
filename input file
|
||
|
||
optional arguments:
|
||
-h, --help show this help message and exit
|
||
-d [DELIM], --delimiter [DELIM]
|
||
use DELIM instead of ' / ' for word delimiter; or a
|
||
space if it is used without DELIM
|
||
-D DICT, --dict DICT use DICT as dictionary
|
||
-u USER_DICT, --user-dict USER_DICT
|
||
use USER_DICT together with the default dictionary or
|
||
DICT (if specified)
|
||
-a, --cut-all full pattern cutting
|
||
-n, --no-hmm don't use the Hidden Markov Model
|
||
-q, --quiet don't print loading messages to stderr
|
||
-V, --version show program's version number and exit
|
||
|
||
If no filename specified, use STDIN instead.
|
||
|
||
Initialization
|
||
---------------
|
||
By default, Jieba don't build the prefix dictionary unless it's necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call:
|
||
|
||
import jieba
|
||
jieba.initialize() # (optional)
|
||
|
||
You can also specify the dictionary (not supported before version 0.28) :
|
||
|
||
jieba.set_dictionary('data/dict.txt.big')
|
||
|
||
|
||
Using Other Dictionaries
|
||
========
|
||
It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download:
|
||
|
||
1. A smaller dictionary for a smaller memory footprint:
|
||
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
|
||
|
||
2. There is also a bigger dictionary that has better support for traditional Chinese (繁體):
|
||
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
|
||
|
||
By default, an in-between dictionary is used, called `dict.txt` and included in the distribution.
|
||
|
||
In either case, download the file you want, and then call `jieba.set_dictionary('data/dict.txt.big')` or just replace the existing `dict.txt`.
|
||
|
||
Segmentation speed
|
||
=========
|
||
* 1.5 MB / Second in Full Mode
|
||
* 400 KB / Second in Default Mode
|
||
* Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
|
||
|
||
Online demo
|
||
=========
|
||
http://jiebademo.ap01.aws.af.cm/
|
||
|
||
(Powered by Appfog)
|