mirror of
https://github.com/fxsjy/jieba.git
synced 2025-07-10 00:01:33 +08:00
commit
d16727ba89
4
.gitignore
vendored
4
.gitignore
vendored
@ -164,3 +164,7 @@ pip-log.txt
|
||||
*.log
|
||||
test/tmp/*
|
||||
|
||||
#jython
|
||||
*.class
|
||||
|
||||
MANIFEST
|
||||
|
17
Changelog
17
Changelog
@ -1,3 +1,20 @@
|
||||
2013-07-01: version 0.31
|
||||
1. 修改了代码缩进格式,遵循PEP8标准
|
||||
2. 支持Jython解析器,感谢 @piaolingxue
|
||||
3. 修复中英混合词汇不能识别数字在前词语的Bug
|
||||
4. 部分代码重构,感谢 @chao78787
|
||||
5. 多进程并行分词模式下自动检测CPU个数设置合适的进程数,感谢@linkerlin
|
||||
6. 修复了0.3版中jieba.extra_tags方法对whoosh模块的错误依赖
|
||||
|
||||
|
||||
|
||||
2013-07-01: version 0.30
|
||||
==========================
|
||||
1) 新增jieba.tokenize方法,返回每个词的起始位置
|
||||
2) 新增ChineseAnalyzer,用于支持whoosh搜索引擎
|
||||
3)添加了更多的中英混合词汇
|
||||
4)修改了一些py文件的加载方法,从而支持py2exe,cxfree打包为exe
|
||||
|
||||
2013-06-17: version 0.29.1
|
||||
==========================
|
||||
1) 优化了viterbi算法的代码,分词速度提升15%
|
||||
|
20
LICENSE
Normal file
20
LICENSE
Normal file
@ -0,0 +1,20 @@
|
||||
The MIT License (MIT)
|
||||
|
||||
Copyright (c) 2013 Sun Junyi
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||||
this software and associated documentation files (the "Software"), to deal in
|
||||
the Software without restriction, including without limitation the rights to
|
||||
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software is furnished to do so,
|
||||
subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||||
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||||
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
2
MANIFEST.in
Normal file
2
MANIFEST.in
Normal file
@ -0,0 +1,2 @@
|
||||
graft README.md
|
||||
graft Changelog
|
72
README.md
72
README.md
@ -29,19 +29,31 @@ http://jiebademo.ap01.aws.af.cm/
|
||||
|
||||
(Powered by Appfog)
|
||||
|
||||
Python Version
|
||||
==============
|
||||
* 目前master分支是只支持Python2.x 的
|
||||
* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
|
||||
网站代码:https://github.com/fxsjy/jiebademo
|
||||
|
||||
|
||||
Usage
|
||||
========
|
||||
Python 2.x 下的安装
|
||||
===================
|
||||
* 全自动安装:`easy_install jieba` 或者 `pip install jieba`
|
||||
* 半自动安装:先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install
|
||||
* 手动安装:将jieba目录放置于当前目录或者site-packages目录
|
||||
* 通过import jieba 来引用 (第一次import时需要构建Trie树,需要几秒时间)
|
||||
|
||||
|
||||
Python 3.x 下的安装
|
||||
====================
|
||||
* 目前master分支是只支持Python2.x 的
|
||||
* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
|
||||
|
||||
git clone https://github.com/fxsjy/jieba.git
|
||||
git checkout jieba3k
|
||||
python setup.py install
|
||||
|
||||
结巴分词Java版本
|
||||
================
|
||||
作者:piaolingxue
|
||||
地址:https://github.com/huaban/jieba-analysis
|
||||
|
||||
Algorithm
|
||||
========
|
||||
* 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)
|
||||
@ -122,7 +134,7 @@ Output:
|
||||
>>> import jieba.posseg as pseg
|
||||
>>> words = pseg.cut("我爱北京天安门")
|
||||
>>> for w in words:
|
||||
... print(w.word,w.flag)
|
||||
... print w.word, w.flag
|
||||
...
|
||||
我 r
|
||||
爱 v
|
||||
@ -142,6 +154,50 @@ Output:
|
||||
|
||||
* 实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。
|
||||
|
||||
|
||||
功能 6) : Tokenize:返回词语在原文的起始位置
|
||||
============================================
|
||||
* 注意,输入参数只接受unicode
|
||||
* 默认模式
|
||||
|
||||
```python
|
||||
result = jieba.tokenize('永和服装饰品有限公司')
|
||||
for tk in result:
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))
|
||||
```
|
||||
|
||||
```
|
||||
word 永和 start: 0 end:2
|
||||
word 服装 start: 2 end:4
|
||||
word 饰品 start: 4 end:6
|
||||
word 有限公司 start: 6 end:10
|
||||
|
||||
```
|
||||
|
||||
* 搜索模式
|
||||
|
||||
```python
|
||||
result = jieba.tokenize('永和服装饰品有限公司', mode='search')
|
||||
for tk in result:
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0], tk[1], tk[2]))
|
||||
```
|
||||
|
||||
```
|
||||
word 永和 start: 0 end:2
|
||||
word 服装 start: 2 end:4
|
||||
word 饰品 start: 4 end:6
|
||||
word 有限 start: 6 end:8
|
||||
word 公司 start: 8 end:10
|
||||
word 有限公司 start: 6 end:10
|
||||
```
|
||||
|
||||
|
||||
功能 7) : ChineseAnalyzer for Whoosh搜索引擎
|
||||
============================================
|
||||
* 引用: `from jieba.analyse import ChineseAnalyzer `
|
||||
* 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py
|
||||
|
||||
|
||||
其他词典
|
||||
========
|
||||
1. 占用内存较小的词典文件
|
||||
@ -189,7 +245,7 @@ jieba采用延迟加载,"import jieba"不会立即触发词典的加载,一
|
||||
|
||||
Change Log
|
||||
==========
|
||||
http://www.oschina.net/p/jieba/news#list
|
||||
https://github.com/fxsjy/jieba/blob/master/Changelog
|
||||
|
||||
jieba
|
||||
========
|
||||
|
@ -1,10 +1,9 @@
|
||||
from __future__ import with_statement
|
||||
import re
|
||||
__version__ = '0.31'
|
||||
__license__ = 'MIT'
|
||||
|
||||
import math
|
||||
import re
|
||||
import os
|
||||
import sys
|
||||
import pprint
|
||||
from . import finalseg
|
||||
import time
|
||||
|
||||
@ -39,7 +38,7 @@ def gen_trie(f_name):
|
||||
ltotal+=freq
|
||||
p = trie
|
||||
for c in word:
|
||||
if not c in p:
|
||||
if c not in p:
|
||||
p[c] ={}
|
||||
p = p[c]
|
||||
p['']='' #ending flag
|
||||
@ -150,7 +149,7 @@ def get_DAG(sentence):
|
||||
if c in p:
|
||||
p = p[c]
|
||||
if '' in p:
|
||||
if not i in DAG:
|
||||
if i not in DAG:
|
||||
DAG[i]=[]
|
||||
DAG[i].append(j)
|
||||
j+=1
|
||||
@ -163,7 +162,7 @@ def get_DAG(sentence):
|
||||
i+=1
|
||||
j=i
|
||||
for i in range(len(sentence)):
|
||||
if not i in DAG:
|
||||
if i not in DAG:
|
||||
DAG[i] =[i]
|
||||
return DAG
|
||||
|
||||
@ -186,7 +185,7 @@ def __cut_DAG(sentence):
|
||||
yield buf
|
||||
buf=''
|
||||
else:
|
||||
if not (buf in FREQ):
|
||||
if (buf not in FREQ):
|
||||
regognized = finalseg.cut(buf)
|
||||
for t in regognized:
|
||||
yield t
|
||||
@ -201,7 +200,7 @@ def __cut_DAG(sentence):
|
||||
if len(buf)==1:
|
||||
yield buf
|
||||
else:
|
||||
if not (buf in FREQ):
|
||||
if (buf not in FREQ):
|
||||
regognized = finalseg.cut(buf)
|
||||
for t in regognized:
|
||||
yield t
|
||||
@ -210,7 +209,7 @@ def __cut_DAG(sentence):
|
||||
yield elem
|
||||
|
||||
def cut(sentence,cut_all=False):
|
||||
if( type(sentence) is bytes):
|
||||
if isinstance(sentence, bytes):
|
||||
try:
|
||||
sentence = sentence.decode('utf-8')
|
||||
except UnicodeDecodeError:
|
||||
@ -227,8 +226,9 @@ def cut(sentence,cut_all=False):
|
||||
if cut_all:
|
||||
cut_block = __cut_all
|
||||
for blk in blocks:
|
||||
if len(blk)==0:
|
||||
continue
|
||||
if re_han.match(blk):
|
||||
#pprint.pprint(__cut_DAG(blk))
|
||||
for word in cut_block(blk):
|
||||
yield word
|
||||
else:
|
||||
@ -284,7 +284,7 @@ def add_word(word, freq, tag=None):
|
||||
user_word_tag_tab[word] = tag.strip()
|
||||
p = trie
|
||||
for c in word:
|
||||
if not c in p:
|
||||
if c not in p:
|
||||
p[c] = {}
|
||||
p = p[c]
|
||||
p[''] = '' # ending flag
|
||||
@ -299,13 +299,17 @@ def __lcut_all(sentence):
|
||||
def __lcut_for_search(sentence):
|
||||
return list(__ref_cut_for_search(sentence))
|
||||
|
||||
|
||||
@require_initialized
|
||||
def enable_parallel(processnum):
|
||||
def enable_parallel(processnum=None):
|
||||
global pool,cut,cut_for_search
|
||||
if os.name=='nt':
|
||||
raise Exception("parallel mode only supports posix system")
|
||||
|
||||
from multiprocessing import Pool
|
||||
raise Exception("jieba: parallel mode only supports posix system")
|
||||
if sys.version_info[0]==2 and sys.version_info[1]<6:
|
||||
raise Exception("jieba: the parallel feature needs Python version>2.5 ")
|
||||
from multiprocessing import Pool,cpu_count
|
||||
if processnum==None:
|
||||
processnum = cpu_count()
|
||||
pool = Pool(processnum)
|
||||
|
||||
def pcut(sentence,cut_all=False):
|
||||
@ -341,7 +345,7 @@ def set_dictionary(dictionary_path):
|
||||
with DICT_LOCK:
|
||||
abs_path = os.path.normpath( os.path.join( os.getcwd(), dictionary_path ) )
|
||||
if not os.path.exists(abs_path):
|
||||
raise Exception("path does not exists:" + abs_path)
|
||||
raise Exception("jieba: path does not exists:" + abs_path)
|
||||
DICTIONARY = abs_path
|
||||
initialized = False
|
||||
|
||||
@ -353,7 +357,7 @@ def get_abs_path_dict():
|
||||
def tokenize(unicode_sentence,mode="default"):
|
||||
#mode ("default" or "search")
|
||||
if not isinstance(unicode_sentence, str):
|
||||
raise Exception("jieba: the input parameter should string.")
|
||||
raise Exception("jieba: the input parameter should unicode.")
|
||||
start = 0
|
||||
if mode=='default':
|
||||
for w in cut(unicode_sentence):
|
||||
|
@ -1,12 +1,15 @@
|
||||
import re
|
||||
import os
|
||||
from math import log
|
||||
from . import prob_start
|
||||
from . import prob_trans
|
||||
from . import prob_emit
|
||||
import marshal
|
||||
import sys
|
||||
|
||||
MIN_FLOAT=-3.14e100
|
||||
|
||||
PROB_START_P = "prob_start.p"
|
||||
PROB_TRANS_P = "prob_trans.p"
|
||||
PROB_EMIT_P = "prob_emit.p"
|
||||
|
||||
|
||||
PrevStatus = {
|
||||
'B':('E','S'),
|
||||
'M':('M','B'),
|
||||
@ -14,6 +17,35 @@ PrevStatus = {
|
||||
'E':('B','M')
|
||||
}
|
||||
|
||||
def load_model():
|
||||
_curpath=os.path.normpath( os.path.join( os.getcwd(), os.path.dirname(__file__) ) )
|
||||
|
||||
start_p = {}
|
||||
abs_path = os.path.join(_curpath, PROB_START_P)
|
||||
with open(abs_path, mode='rb') as f:
|
||||
start_p = marshal.load(f)
|
||||
f.closed
|
||||
|
||||
trans_p = {}
|
||||
abs_path = os.path.join(_curpath, PROB_TRANS_P)
|
||||
with open(abs_path, 'rb') as f:
|
||||
trans_p = marshal.load(f)
|
||||
f.closed
|
||||
|
||||
emit_p = {}
|
||||
abs_path = os.path.join(_curpath, PROB_EMIT_P)
|
||||
with file(abs_path, 'rb') as f:
|
||||
emit_p = marshal.load(f)
|
||||
f.closed
|
||||
|
||||
return start_p, trans_p, emit_p
|
||||
|
||||
if sys.platform.startswith("java"):
|
||||
start_P, trans_P, emit_P = load_model()
|
||||
else:
|
||||
import prob_start,prob_trans,prob_emit
|
||||
start_P, trans_P, emit_P = prob_start.P, prob_trans.P, prob_emit.P
|
||||
|
||||
def viterbi(obs, states, start_p, trans_p, emit_p):
|
||||
V = [{}] #tabular
|
||||
path = {}
|
||||
@ -36,7 +68,8 @@ def viterbi(obs, states, start_p, trans_p, emit_p):
|
||||
|
||||
|
||||
def __cut(sentence):
|
||||
prob, pos_list = viterbi(sentence,('B','M','E','S'), prob_start.P, prob_trans.P, prob_emit.P)
|
||||
global emit_P
|
||||
prob, pos_list = viterbi(sentence,('B','M','E','S'), start_P, trans_P, emit_P)
|
||||
begin, next = 0,0
|
||||
#print pos_list, sentence
|
||||
for i,char in enumerate(sentence):
|
||||
|
BIN
jieba/finalseg/prob_emit.p
Normal file
BIN
jieba/finalseg/prob_emit.p
Normal file
Binary file not shown.
BIN
jieba/finalseg/prob_start.p
Normal file
BIN
jieba/finalseg/prob_start.p
Normal file
Binary file not shown.
BIN
jieba/finalseg/prob_trans.p
Normal file
BIN
jieba/finalseg/prob_trans.p
Normal file
Binary file not shown.
@ -3,29 +3,62 @@ import os
|
||||
from . import viterbi
|
||||
import jieba
|
||||
import sys
|
||||
from . import prob_start
|
||||
from . import prob_trans
|
||||
from . import prob_emit
|
||||
from . import char_state_tab
|
||||
import marshal
|
||||
|
||||
default_encoding = sys.getfilesystemencoding()
|
||||
|
||||
def load_model(f_name):
|
||||
PROB_START_P = "prob_start.p"
|
||||
PROB_TRANS_P = "prob_trans.p"
|
||||
PROB_EMIT_P = "prob_emit.p"
|
||||
CHAR_STATE_TAB_P = "char_state_tab.p"
|
||||
|
||||
def load_model(f_name,isJython=True):
|
||||
_curpath=os.path.normpath( os.path.join( os.getcwd(), os.path.dirname(__file__) ) )
|
||||
prob_p_path = os.path.join(_curpath,f_name)
|
||||
if f_name.endswith(".py"):
|
||||
return eval(open(prob_p_path,"rb").read())
|
||||
else:
|
||||
|
||||
result = {}
|
||||
with file(f_name, "rb") as f:
|
||||
for line in open(f_name,"rb"):
|
||||
line = line.strip()
|
||||
if line=="":continue
|
||||
line = line.decode("utf-8")
|
||||
word, _, tag = line.split(" ")
|
||||
result[word]=tag
|
||||
f.closed
|
||||
if not isJython:
|
||||
return result
|
||||
|
||||
word_tag_tab = load_model(jieba.get_abs_path_dict())
|
||||
start_p = {}
|
||||
abs_path = os.path.join(_curpath, PROB_START_P)
|
||||
with open(abs_path, mode='rb') as f:
|
||||
start_p = marshal.load(f)
|
||||
f.closed
|
||||
|
||||
trans_p = {}
|
||||
abs_path = os.path.join(_curpath, PROB_TRANS_P)
|
||||
with open(abs_path, 'rb') as f:
|
||||
trans_p = marshal.load(f)
|
||||
f.closed
|
||||
|
||||
emit_p = {}
|
||||
abs_path = os.path.join(_curpath, PROB_EMIT_P)
|
||||
with file(abs_path, 'rb') as f:
|
||||
emit_p = marshal.load(f)
|
||||
f.closed
|
||||
|
||||
state = {}
|
||||
abs_path = os.path.join(_curpath, CHAR_STATE_TAB_P)
|
||||
with file(abs_path, 'rb') as f:
|
||||
state = marshal.load(f)
|
||||
f.closed
|
||||
|
||||
return state, start_p, trans_p, emit_p, result
|
||||
|
||||
if sys.platform.startswith("java"):
|
||||
char_state_tab_P, start_P, trans_P, emit_P, word_tag_tab = load_model(jieba.get_abs_path_dict())
|
||||
else:
|
||||
import char_state_tab, prob_start, prob_trans, prob_emit
|
||||
char_state_tab_P, start_P, trans_P, emit_P = char_state_tab.P, prob_start.P, prob_trans.P, prob_emit.P
|
||||
word_tag_tab = load_model(jieba.get_abs_path_dict(),isJython=False)
|
||||
|
||||
if jieba.user_word_tag_tab:
|
||||
word_tag_tab.update(jieba.user_word_tag_tab)
|
||||
@ -48,7 +81,7 @@ class pair(object):
|
||||
return self.__unicode__().encode(arg)
|
||||
|
||||
def __cut(sentence):
|
||||
prob, pos_list = viterbi.viterbi(sentence,char_state_tab.P, prob_start.P, prob_trans.P, prob_emit.P)
|
||||
prob, pos_list = viterbi.viterbi(sentence,char_state_tab_P, start_P, trans_P, emit_P)
|
||||
begin, next = 0,0
|
||||
|
||||
for i,char in enumerate(sentence):
|
||||
@ -105,7 +138,7 @@ def __cut_DAG(sentence):
|
||||
yield pair(buf,word_tag_tab.get(buf,'x'))
|
||||
buf=''
|
||||
else:
|
||||
if not (buf in jieba.FREQ):
|
||||
if (buf not in jieba.FREQ):
|
||||
regognized = __cut_detail(buf)
|
||||
for t in regognized:
|
||||
yield t
|
||||
@ -120,7 +153,7 @@ def __cut_DAG(sentence):
|
||||
if len(buf)==1:
|
||||
yield pair(buf,word_tag_tab.get(buf,'x'))
|
||||
else:
|
||||
if not (buf in jieba.FREQ):
|
||||
if (buf not in jieba.FREQ):
|
||||
regognized = __cut_detail(buf)
|
||||
for t in regognized:
|
||||
yield t
|
||||
@ -129,7 +162,7 @@ def __cut_DAG(sentence):
|
||||
yield pair(elem,word_tag_tab.get(elem,'x'))
|
||||
|
||||
def __cut_internal(sentence):
|
||||
if not ( type(sentence) is str):
|
||||
if not isinstance(sentence, str):
|
||||
try:
|
||||
sentence = sentence.decode('utf-8')
|
||||
except:
|
||||
|
BIN
jieba/posseg/char_state_tab.p
Normal file
BIN
jieba/posseg/char_state_tab.p
Normal file
Binary file not shown.
BIN
jieba/posseg/prob_emit.p
Normal file
BIN
jieba/posseg/prob_emit.p
Normal file
Binary file not shown.
BIN
jieba/posseg/prob_start.p
Normal file
BIN
jieba/posseg/prob_start.p
Normal file
Binary file not shown.
BIN
jieba/posseg/prob_trans.p
Normal file
BIN
jieba/posseg/prob_trans.p
Normal file
Binary file not shown.
2
setup.py
2
setup.py
@ -1,6 +1,6 @@
|
||||
from distutils.core import setup
|
||||
setup(name='jieba',
|
||||
version='0.29.1',
|
||||
version='0.31',
|
||||
description='Chinese Words Segementation Utilities',
|
||||
author='Sun, Junyi',
|
||||
author_email='ccnusjy@gmail.com',
|
||||
|
@ -2,18 +2,20 @@ import sys,time
|
||||
import sys
|
||||
sys.path.append("../../")
|
||||
import jieba
|
||||
jieba.enable_parallel(4)
|
||||
|
||||
jieba.enable_parallel()
|
||||
|
||||
url = sys.argv[1]
|
||||
content = open(url,"rb").read()
|
||||
with open(url,"rb") as content:
|
||||
content = content.read()
|
||||
t1 = time.time()
|
||||
words = list(jieba.cut(content))
|
||||
|
||||
words = "/ ".join(jieba.cut(content))
|
||||
t2 = time.time()
|
||||
tm_cost = t2-t1
|
||||
|
||||
log_f = open("1.log","wb")
|
||||
for w in words:
|
||||
log_f.write(w.encode("utf-8"))
|
||||
print('cost',tm_cost)
|
||||
print('speed' , len(content)/tm_cost, " bytes/second")
|
||||
|
||||
with open("1.log","wb") as log_f:
|
||||
log_f.write(words.encode('utf-8'))
|
||||
|
||||
|
||||
|
@ -5,17 +5,15 @@ import jieba
|
||||
jieba.initialize()
|
||||
|
||||
url = sys.argv[1]
|
||||
content = open(url,"rb").read()
|
||||
with open(url,"rb") as content:
|
||||
content = content.read()
|
||||
t1 = time.time()
|
||||
words = list(jieba.cut(content))
|
||||
|
||||
words = "/ ".join(jieba.cut(content))
|
||||
t2 = time.time()
|
||||
tm_cost = t2-t1
|
||||
|
||||
log_f = open("1.log","wb")
|
||||
|
||||
log_f.write(bytes("/ ".join(words),'utf-8'))
|
||||
|
||||
print('cost',tm_cost)
|
||||
print('speed' , len(content)/tm_cost, " bytes/second")
|
||||
|
||||
with open("1.log","wb") as log_f:
|
||||
log_f.write(words.encode('utf-8'))
|
||||
log_f.write(bytes("/ ".join(words),'utf-8'))
|
||||
|
Loading…
x
Reference in New Issue
Block a user